Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

Artificial Intelligence FAQ: Bibliography 4/6 [Monthly posting]
Section - [4-9] Machine Learning

( Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Cities ]


Top Document: Artificial Intelligence FAQ: Bibliography 4/6 [Monthly posting]
Previous Document: [4-8] Connectionism and Neural Nets
Next Document: [4-10] Case-Based Reasoning
See reader questions & answers on this topic! - Help others by sharing your knowledge

General:

   Tom Mitchell, "Machine Learning", McGraw Hill, 1997.

   Christopher Bishop, "Neural Networks for Pattern Recognition", Oxford
   University Press, 1996.  ISBN 0-19-853849-9 Hardback, ISBN 0-19-853864-2
   Paperback.

   J. G. Carbonell, editor, "Machine Learning: Paradigms and Methods", MIT
   Press, Cambridge, MA 1990.

   Alan Hutchinson, "Algorithmic Learning", Oxford University Press,
   Oxford, England, 1994. 434 pages, ISBN 0-19-853848-0 paper (27.50
   Sterling), ISBN 0-19-853766-2 hardcover (55.00 Sterling). Corrections and
   additions are available by anonymous ftp from 
      ftp://dcs.kcl.ac.uk/ftp/pub/alg-learn/ [137.73.8.10]

   Tom Mitchell, Jaime G. Carbonell, and Ryszard S. Michalski,
   "Machine Learning: A guide to current research", Kluwer Academic
   Publishers, Boston, 1986. [A bit out of date.]

   Jude W. Shavlik and Thomas D. Dietterich, editors, "Readings in
   Machine Learning", Morgan Kaufmann Publishers, 1990, 853 pages.
   ISBN 1-55860-143-0, $49.95.

Reinforcement Learning
   General:
   Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An
   introduction. MIT Press, Cambridge Mass.

   Games:
   Tesauro, G (1992) Practical issues in temporal difference
   learning. Machine Learning, 8(3-4):257-277.

   Lee, K.-F., and Mahajan S. (1988) A pattern classification approach to
   evaluation function learning. Artificial Intelligence, 36(1):1-26 

Support Vector Machines
   N. Cristianini and J. Shawe-Taylor, "An Introduction To Support
   Vector Machines", Cambridge University Press,
   2000. (www.support-vector.net) 

Decision Trees:

   Quinlan, J. Ross, "Induction of Decision Trees", Machine Learning
   1(1):81-106, 1986.  

   Quinlan, J. Ross, "C4.5: Programs for Machine Learning", Morgan Kaufmann
   Publishers, 1992. ISBN 1-55860-238-0. $44.95 US, $49.45 International.
   For a slight additional charge ($25), the book comes with software (ISBN
   1-55860-240-2). For software only, (ISBN 1-55860-239-9) $34.95 US,
   $38.45 International.

Probabilistic Clustering:

   Fisher, D.H., "Knowledge Acquisition Via Incremental Conceptual
   Clustering", Machine Learning 2:139-172, 1987. (Probabilistic
   clustering methods.) 

   Clancey, W.J., "Classification Problem Solving", Proceedings of the
   National Conference on Artificial Intelligence, 49-55, Los Altos, CA,
   Morgan Kaufmann. 1984.

Version Spaces:

   Tom M. Mitchell, "Generalization as Search", Artificial Intelligence
   18:203-226, 1982.

Machine Discovery:

   Langley, P., and Zytkow, J. M., "Data-driven approaches to empirical
   discovery", Artificial Intelligence 40:283-312, 1989.

   Langley, P., Simon, H.A., Bradshaw, G.L., and Zytkow, J.M.,
   "Scientific Discovery: Computational Explorations of the Creative
   Processes", MIT Press, Cambridge, MA, 1987.

   Langley, P., Simon, H.A. and Bradshaw, G.L., "Heuristics for
   Empirical Discovery", in L. Bolc, editor, Computational Models
   of Learning, Springer-Verlag, 1987. Also appears as CMU CS
   Tech Report CMU-CS-84-14.

Chunking:

   Laird J.E., Rosenbloom, P.S. and Newell, A., "Chunking in SOAR: The
   Anatomy of a General Learning Mechanism", Machine Learning
   1:1-46, 1986. 

Explanation-Based Learning:

   Mitchell, Tom M., Keller, R. M., and Kedar-Cabelli, S. T., 
   "Explanation-based learning: A unified view", Machine Learning
   1:47-80, 1986.

Derivational Analogy:

   Carbonell, J. G., "Derivational analogy: A theory of
   reconstructive problem solving and expertise acquisition." In R.S.
   Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine
   Learning: An Artificial Intelligence Approach, Morgan Kaufmann
   Publishers, San Mateo, CA, 1986.

Theoretical Results:

   Haussler, D., "Quantifying Inductive Bias: AI Learning
   Algorithms and Valiant's Learning Framework", Artificial Intelligence,
   36:177-221, 1988.

   Leslie G. Valiant, "A theory of the learnable", Communications
   of the ACM, 27(11):1134--1142, 1984. 

User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA




Top Document: Artificial Intelligence FAQ: Bibliography 4/6 [Monthly posting]
Previous Document: [4-8] Connectionism and Neural Nets
Next Document: [4-10] Case-Based Reasoning

Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page

[ Usenet FAQs | Web FAQs | Documents | RFC Index ]

Send corrections/additions to the FAQ Maintainer:
crabbe@usna.edu





Last Update March 27 2014 @ 02:11 PM