faqs.org - Internet FAQ Archives

RFC 4260 - Mobile IPv6 Fast Handovers for 802.11 Networks


Or Display the document by number




Network Working Group                                         P. McCann
Request for Comments: 4260                          Lucent Technologies
Category: Informational                                   November 2005

            Mobile IPv6 Fast Handovers for 802.11 Networks

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document describes how a Mobile IPv6 Fast Handover could be
   implemented on link layers conforming to the 802.11 suite of
   specifications.

Table of Contents

   1. Introduction ....................................................2
      1.1. Conventions Used in This Document ..........................2
   2. Terminology .....................................................2
   3. Deployment Architectures for Mobile IPv6 on 802.11 ..............3
   4. 802.11 Handovers in Detail ......................................5
   5. FMIPv6 Message Exchanges ........................................7
   6. Beacon Scanning and NAR Discovery ...............................8
   7. Scenarios .......................................................9
      7.1. Scenario 1abcdef23456g .....................................9
      7.2. Scenario ab123456cdefg ....................................10
      7.3. Scenario 123456abcdefg ....................................10
   8. Security Considerations ........................................10
   9. Conclusions ....................................................12
   10. References ....................................................13
      10.1. Normative References .....................................13
      10.2. Informative References ...................................13
   11. Acknowledgements ..............................................13

1.  Introduction

   The Mobile IPv6 Fast Handover protocol [2] has been proposed as a way
   to minimize the interruption in service experienced by a Mobile IPv6
   node as it changes its point of attachment to the Internet.  Without
   such a mechanism, a mobile node cannot send or receive packets from
   the time that it disconnects from one point of attachment in one
   subnet to the time it registers a new care-of address from the new
   point of attachment in a new subnet.  Such an interruption would be
   unacceptable for real-time services such as Voice-over-IP.

   The basic idea behind a Mobile IPv6 fast handover is to leverage
   information from the link-layer technology to either predict or
   rapidly respond to a handover event.  This allows IP connectivity to
   be restored at the new point of attachment sooner than would
   otherwise be possible.  By tunneling data between the old and new
   access routers, it is possible to provide IP connectivity in advance
   of actual Mobile IP registration with the home agent or correspondent
   node.  This allows real-time services to be reestablished without
   waiting for such Mobile IP registration to complete.  Because Mobile
   IP registration involves time-consuming Internet round-trips, the
   Mobile IPv6 fast handover can provide for a smaller interruption in
   real-time services than an ordinary Mobile IP handover.

   The particular link-layer information available, as well as the
   timing of its availability (before, during, or after a handover has
   occurred), differs according to the particular link-layer technology
   in use.  This document gives a set of deployment examples for Mobile
   IPv6 Fast Handovers on 802.11 networks.  We begin with a brief
   overview of relevant aspects of basic 802.11 [3].  We examine how and
   when handover information might become available to the IP layers
   that implement Fast Handover, both in the network infrastructure and
   on the mobile node.  Finally, we trace the protocol steps for Mobile
   IPv6 Fast Handover in this environment.

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [1].

2.  Terminology

   This document borrows all of the terminology from Mobile IPv6 Fast
   Handovers [2], with the following additional terms from the 802.11
   specification [3] (some definitions slightly modified for clarity):

   Access Point (AP): Any entity that has station functionality and
                  provides access to the distribution services, via the
                  wireless medium (WM) for associated stations.

   Association:   The service used to establish access point/station
                  (AP/STA) mapping and enable STA access to the
                  Distribution System.

   Basic Service Set (BSS): A set of stations controlled by a single
                  coordination function, where the coordination function
                  may be centralized (e.g., in a single AP) or
                  distributed (e.g., for an ad hoc network).  The BSS
                  can be thought of as the coverage area of a single AP.

   Distribution System (DS): A system used to interconnect a set of
                  basic service sets (BSSs) and integrated local area
                  networks (LANs) to create an extended service set
                  (ESS).

   Extended Service Set (ESS): A set of one or more interconnected basic
                  service sets (BSSs) and integrated local area networks
                  (LANs) that appears as a single BSS to the logical
                  link control layer at any station associated with one
                  of those BSSs.  The ESS can be thought of as the
                  coverage area provided by a collection of APs all
                  interconnected by the Distribution System.  It may
                  consist of one or more IP subnets.

   Station (STA): Any device that contains an IEEE 802.11 conformant
                  medium access control (MAC) and physical layer (PHY)
                  interface to the wireless medium (WM).

3.  Deployment Architectures for Mobile IPv6 on 802.11

   In this section, we describe the two most likely relationships
   between Access Points (APs), Access Routers (ARs), and IP subnets
   that are possible in an 802.11 network deployment.  In this document,
   our focus is mainly on the infrastructure mode [3] of 802.11.
   Usually, a given STA is associated with one and only one AP at any
   given instant; however, implementations are possible [4] where
   multiple associations per STA may be maintained as long as the APs
   are connected to disjoint DSs.  An STA may be in communication with
   an AP only when radio propagation conditions permit.  Note that, as
   with any layer-2 technology, handover from one layer-2 point of
   attachment (AP) to another does not necessarily mean a change of AR
   or subnet.

                  AR                              AR
            AR     |    AR                   AR    |     AR
              \    |   /                       \   |    /
               Subnet 1                         Subnet 2
             /  /  |  \  \                    /  /  |  \  \
            /  /   |   \  \                  /  /   |   \  \
           /   |   |   |   \                /   |   |   |   \
        AP1  AP2  AP3  AP4  AP5          AP6  AP7  AP8  AP9  AP10

             Figure 1.  An 802.11 deployment with relay APs.

   Figure 1 depicts a typical 802.11 deployment with two IP subnets,
   each with three Access Routers and five Access Points.  Note that the
   APs in this figure are acting as link-layer relays, which means that
   they transport Ethernet-layer frames between the wireless medium and
   the subnet.  Note that APs do not generally implement any particular
   spanning tree algorithm, yet are more sophisticated than simple
   bridges that would relay all traffic; only traffic addressed to STAs
   known to be associated on a given AP would be forwarded.  Each subnet
   is on top of a single LAN or VLAN, and we assume in this example that
   APs 6-10 cannot reach the VLAN on which Subnet 1 is implemented.
   Note that a handover from AP1 to AP2 does not require a change of AR
   (here we assume the STA will be placed on the same VLAN during such a
   handoff) because all three ARs are link-layer reachable from an STA
   connected to any AP1-5.  Therefore, such handoffs would not require
   IP-layer mobility management, although some IP-layer signaling may be
   required to determine that connectivity to the existing AR is still
   available.  However, a handover from AP5 to AP6 would require a
   change of AR, because AP6 cannot reach the VLAN on which Subnet 1 is
   implemented and therefore the STA would be attaching to a different
   subnet.  An IP-layer handover mechanism would need to be invoked in
   order to provide low-interruption handover between the two ARs.

                                Internet
                               /    |   \
                              /     |    \
                             /      |     \
                           AR      AR      AR
                           AP1     AP2     AP3

        Figure 2. An 802.11 deployment with integrated APs/ARs.

   Figure 2 depicts an alternative 802.11 deployment where each AP is
   integrated with exactly one AR on a disjoint VLAN.  In this case,
   every change of AP would result in a necessary change of AR, which

   would require some IP-layer handover mechanism to provide for low-
   interruption handover between the ARs.  Also, the AR shares a MAC-
   layer identifier with its attached AP.

   In the next section, we examine the steps involved in any 802.11
   handover.  Subsequent sections discuss how these steps could be
   integrated with an IP-layer handover mechanism in each of the above
   deployment scenarios.

4.  802.11 Handovers in Detail

   An 802.11 handover takes place when an STA changes its association
   from one AP to another ("re-association").  This process consists of
   the following steps:

     0. The STA realizes that a handoff is necessary due to degrading
        radio transmission environment for the current AP.

     1. The STA performs a scan to see what APs are available.  The
        result of the scan is a list of APs together with physical layer
        information, such as signal strength.

     2. The STA chooses one of the APs and performs a join to
        synchronize its physical and MAC-layer timing parameters with
        the selected AP.

     3. The STA requests authentication with the new AP.  For an "Open
        System", such authentication is a single round-trip message
        exchange with null authentication.

     4. The STA requests association or re-association with the new AP.
        A re-association request contains the MAC-layer address of the
        old AP, while a plain association request does not.

     5. If operating in accordance with 802.11i [6], the STA and AP
        would execute 802.1X EAP-on-LAN procedures to authenticate the
        association (step 3 would have executed in "Open System" mode).

     6. The new AP sends a Layer 2 Update frame on the local LAN segment
        to update the learning tables of any connected Ethernet bridges.

   Although we preface step 1 with step 0 for illustration purposes,
   there is no standardized trigger for step 1.  It may be performed as
   a result of decaying radio conditions on the current AP or at other
   times as determined by local implementation decisions.  Some network
   interface cards (NICs) may do scanning in the background,
   interleaving scans between data packets.  This decreases the time
   required to roam if the performance of the current AP proves

   unsatisfactory, but it imposes more of a burden on the AP, since
   typically the STA places it in power-save mode prior to the scan,
   then once the scan is complete, returns to the AP channel in order to
   pick up queued packets.  This can result in buffer exhaustion on the
   AP and attendant packet loss.

   During step 2, the STA performs rate adjustment where it chooses the
   best available transmission rate.  Rate adjustment can be quite
   time-consuming as well as unpredictable.

   Note that in some existing 802.11 implementations, steps 1-4 are
   performed by firmware in rapid succession (note that even in these
   implementations step 3 is sometimes performed in a host driver,
   especially for newer implementations).  This might make it impossible
   for the host to take any actions (including sending or receiving IP
   packets) before the handover is complete.  In other 802.11
   implementations, it is possible to invoke the scan (step 1) and join
   (step 2) operations independently.  This would make it possible to,
   e.g., perform step 1 far in advance of the handover and perhaps in
   advance of any real-time traffic.  This could substantially reduce
   the handover latency, as one study has concluded that the 802.11
   beacon scanning function may take several hundred milliseconds to
   complete [8], during which time sending and receiving IP packets is
   not possible.  However, scanning too far in advance may make the
   information out-of-date by the time of handover, which would cause
   the subsequent joint operation to fail if radio conditions have
   changed so much in the interim that the target AP is no longer
   reachable.  So, a host may choose to do scanning based on, among
   other considerations, the age of the previously scanned information.
   In general, performing such subsequent scans is a policy issue that a
   given implementation of FMIPv6 over 802.11 must consider carefully.

   Even if steps 1 and 2 are performed in rapid succession, there is no
   guarantee that an AP found during step 1 will be available during
   step 2 because radio conditions can change dramatically from moment
   to moment.  The STA may then decide to associate with a completely
   different AP.  Often, this decision is implemented in firmware and
   the attached host would have no control over which AP is chosen.
   However, tools such as the host AP driver [10] offer full control
   over when and to which AP the host needs to associate.  Operation as
   an Independent BSS (IBSS) or "ad-hoc mode" [3] may also permit the
   necessary control, although in this latter case attachment to an
   infrastructure AP would be impossible.  Implementers can make use of
   such tools to obtain the best combination of flexibility and
   performance.

   The coverage area of a single AP is known as a Basic Service Set
   (BSS).  An Extended Service Set (ESS) is formed from a collection of
   APs that all broadcast the same ESSID.  Note that an STA would send a
   re-association (which includes both the old and new AP addresses)
   only if the ESSID of the old and new APs are the same.

   A change of BSS within an ESS may or may not require an IP-layer
   handover, depending on whether the APs can send packets to the same
   IP subnets.  If an IP-layer handover is required, then FMIPv6 can
   decrease the overall latency of the handover.  The main goal of this
   document is to describe the most reasonable scenarios for how the
   events of an 802.11 handover may interleave with the message
   exchanges in FMIPv6.

5.  FMIPv6 Message Exchanges

   An FMIPv6 handover nominally consists of the following messages:

     a. The mobile node (MN) sends a Router Solicitation for Proxy
        (RtSolPr) to find out about neighboring ARs.

     b. The MN receives a Proxy Router Advertisement (PrRtAdv)
        containing one or more [AP-ID, AR-Info] tuples.

     c. The MN sends a Fast Binding Update (FBU) to the Previous Access
        Router (PAR).

     d. The PAR sends a Handover Initiate (HI) message to the New Access
        Router (NAR).

     e. The NAR sends a Handover Acknowledge (HAck) message to the PAR.

     f. The PAR sends a Fast Binding Acknowledgement (FBack) message to
        the MS on the new link.  The FBack is also optionally sent on
        the previous link if the FBU was sent from there.

     g. The MN sends Fast Neighbor Advertisement (FNA) to the NAR after
        attaching to it.

   The MN may connect to the NAR prior to sending the FBU if the
   handover is unanticipated.  In this case, the FNA (step g) would
   contain the FBU (listed as step c above) and then steps d, e, and f
   would take place from there.

6.  Beacon Scanning and NAR Discovery

   The RtSolPr message is used to request information about the
   router(s) connected to one or more APs.  The APs are specified in the
   New Access Point Link-Layer Address option in the RtSolPr and
   associated IP-layer information is returned in the IP Address Option
   of the PrRtAdv [2].  In the case of an 802.11 link, the link-layer
   address is the BSSID of some AP.

   Beacon scanning (step 1 from Section 4) produces a list of available
   APs along with signal strength information for each.  This list would
   supply the necessary addresses for the New Access Point Link-Layer
   Address option(s) in the RtSolPr messages.  To obtain this list, the
   host needs to invoke the MLME-SCAN.request primitive (see Section
   10.3.2.1 of the 802.11 specification [3]).  The BSSIDs returned by
   this primitive are the link-layer addresses of the available APs.

   Because beacon scanning takes on the order of a few hundred
   milliseconds to complete, and because it is generally not possible to
   send and receive IP packets during this time, the MN needs to
   schedule these events with care so that they do not disrupt ongoing
   real-time services.  For example, the scan could be performed at the
   time the MN attaches to the network prior to any real-time traffic.
   However, if the interval between scanning and handover is too long,
   the neighbor list may be out of date.  For example, the signal
   strengths of neighboring APs may have dramatically changed, and a
   handover directed to the apparently best AP from the old list may
   fail.  If the handover is executed in firmware, the STA may even
   choose a new target AP that is entirely missing from the old list
   (after performing its own scan).  Both cases would limit the ability
   of the MN to choose the correct NAR for the FBU in step c during an
   anticipated handover.  Ongoing work in the IEEE 802.11k task group
   may address extensions that allow interleaving beacon scanning with
   data transmission/reception along with buffering at APs to minimize
   packet loss.

   Note that, aside from physical layer parameters such as signal
   strength, it may be possible to obtain all necessary information
   about neighboring APs by using the wildcard form of the RtSolPr
   message.  This would cause the current access router to return a list
   of neighboring APs and would not interrupt ongoing communication with
   the current AP.  This request could be made at the time the MN first
   attaches to the access router and periodically thereafter. This would
   enable the MN to cache the necessary [AP-ID, AR-Info] tuples and
   might enable it to react more quickly when a handover becomes
   necessary due to a changing radio environment.  However, because the
   information does not include up-to-date signal strength, it would not
   enable the MN to predict accurately the next AP prior to a handover.

   Also, if the scale of the network is such that a given access router
   is attached to many APs, then it is possible that there may not be
   room to list all APs in the PrRtAdv.

   The time taken to scan for beacons is significant because it involves
   iteration through all 802.11 channels and listening on each one for
   active beacons.  A more targeted approach would allow the STA to
   scan, e.g., only one or two channels of interest, which would provide
   for much shorter interruption of real-time traffic.  However, such
   optimizations are currently outside the scope of 802.11
   specifications.

7.  Scenarios

   In this section, we look at a few of the possible scenarios for using
   FMIPv6 in an 802.11 context.  Each scenario is labeled by the
   sequence of events that take place, where the numbered events are
   from Section 4 and the lettered events are from Section 5.  For
   example, "1abcde23456fg" represents step 1 from Section 4 followed by
   steps a-e from Section 5 followed by steps 2-6 from Section 4
   followed by steps f and g from Section 5.  This is the sequence where
   the MN performs a scan, then the MN executes the FMIPv6 messaging to
   obtain NAR information and send a binding update, then the PAR
   initiates HI/HAck exchange, then the 802.11 handover completes, and
   finally the HAck is received at the PAR and the MN sends an FNA.

   Each scenario is followed by a brief description and discussion of
   the benefits and drawbacks.

7.1.  Scenario 1abcdef23456g

   This scenario is the predictive mode of operation from the FMIPv6
   specification.  In this scenario, the host executes the scan sometime
   prior to the handover and is able to send the FBU prior to handover.
   Only the FNA is sent after the handover.  This mode of operation
   requires that the scan and join operations (steps 1 and 2) can be
   performed separately and under host control, so that steps a-f can be
   inserted between 1 and 2.  As mentioned previously, such control may
   be possible in some implementations [10] but not in others.

   Steps 1ab may be executed far in advance of the handover, which would
   remove them from the critical path.  This would minimize the service
   interruption from beacon scanning and allow at least one
   RtSolPr/PrRtAdv exchange to complete so that the host has link-layer
   information about some NARs.  Note that if steps ab were delayed
   until handover is imminent, there would be no guarantee that the
   RtSolPr/PrRtAdv exchange would complete especially in a radio
   environment where the connection to the old AP is deteriorating

   rapidly.  However, if there were a long interval between the scan and
   the handover, then the FBU (step c) would be created with out-of-date
   information.  There is no guarantee that the MN will actually attach
   to the desired new AP after it has sent the FBU to the oAR, because
   changing radio conditions may cause NAR to be suddenly unreachable.
   If this were the case, then the handover would need to devolve into
   one of the reactive cases given below.

7.2.  Scenario ab123456cdefg

   This is the reactive mode of operation from the FMIPv6 specification.
   This scenario does not require host intervention between steps 1 and
   2.

   However, it does require that the MN obtain the link-layer address of
   NAR prior to handover, so that it has a link-layer destination
   address for outgoing packets (default router information).  This
   would then be used for sending the FNA (with encapsulated FBU) when
   it reaches the new subnet.

7.3.  Scenario 123456abcdefg

   In this scenario, the MN does not obtain any information about the
   NAR prior to executing the handover.  It is completely reactive and
   consists of soliciting a router advertisement after handover and then
   sending an FNA with encapsulated FBU immediately.

   This scenario may be appropriate when it is difficult to learn the
   link-layer address of the NAR prior to handover.  This may be the
   case, e.g., if the scan primitive is not available to the host and
   the wildcard PrRtAdv form returns too many results.  It may be
   possible to skip the router advertisement/solicitation steps (ab) in
   some cases, if it is possible to learn the NAR's link-layer address
   through some other means.  In the deployment illustrated in Figure 2,
   this would be exactly the new AP's MAC-layer address, which can be
   learned from the link-layer handover messages.  However, in the case
   of Figure 1, this information must be learned through router
   discovery of some form.  Also note that even in the case of Figure 2,
   the MN must somehow be made aware that it is in fact operating in a
   Figure 2 network and not a Figure 1 network.

8.  Security Considerations

   The security considerations applicable to FMIPv6 are described in the
   base FMIPv6 specification [2].  In particular, the PAR must be
   assured of the authenticity of the FBU before it begins to redirect
   user traffic.  However, if the association with the new AP is not

   protected using mutual authentication, it may be possible for a rogue
   AP to fool the MN into sending an FBU to the PAR when it is not in
   its best interest to do so.

   Note that step 6 from Section 4 installs layer-2 forwarding state
   that can redirect user traffic and cause disruption of service if it
   can be triggered by a malicious node.

   Note that step 3 from Section 4 could potentially provide some
   security; however, due to the identified weaknesses in Wired
   Equivalent Privacy (WEP) shared key security [9] this should not be
   relied upon.  Instead, the Robust Security Network [6] will require
   the STA to undergo 802.1X Port-Based Network Access Control [5]
   before proceeding to steps 5 or 6. 802.1X defines a way to
   encapsulate Extensible Authentication Protocol (EAP) on 802 networks
   (EAPOL, for "EAP over LANs").  With this method, the client and AP
   participate in an EAP exchange that itself can encapsulate any of the
   various EAP authentication methods.  The EAPOL exchange can output a
   Master Session Key (MSK) and Extended Master Session Key (EMSK),
   which can then be used to derive transient keys, which in turn can be
   used to encrypt/authenticate subsequent traffic.  It is possible to
   use 802.1X pre-authentication [6] between an STA and a target AP
   while the STA is associated with another AP; this would enable
   authentication to be done in advance of handover, which would allow
   faster resumption of service after roaming.  However, because EAPOL
   frames carry only MAC-layer instead of IP-layer addresses, this is
   currently only specified to work within a single VLAN, where IP-layer
   handover mechanisms are not necessarily needed anyway.  In the most
   interesting case for FMIPv6 (roaming across subnet boundaries), the
   802.1X exchange would need to be performed after handover to the new
   AP.  This would introduce additional handover delay while the 802.1X
   exchange takes place, which may also involve round-trips to RADIUS or
   Diameter servers.  The EAP exchange could be avoided if a preexisting
   Pairwise Master Key (PMK) is found between the STA and the AP, which
   may be the case if the STA has previously visited that AP or one that
   shares a common back-end infrastructure.

   Perhaps faster cross-subnet authentication could be achieved with the
   use of pre-authentication using an IP-layer mechanism that could
   cross subnet boundaries.  To our knowledge, this sort of work is not
   currently under way in the IEEE.  The security considerations of
   these new approaches would need to be carefully studied.

9.  Conclusions

   The Mobile IPv6 Fast Handover specification presents a protocol for
   shortening the period of service interruption during a change in
   link-layer point of attachment.  This document attempts to show how
   this protocol may be applied in the context of 802.11 access
   networks.

   Implementation of FMIPv6 must be done in the context of a particular
   link-layer implementation, which must provide the triggers for the
   FMIPv6 message flows.  For example, the host must be notified of such
   events as degradation of signal strength or attachment to a new AP.

   The particular implementation of the 802.11 hardware and firmware may
   dictate how FMIPv6 is able to operate.  For example, to execute a
   predictive handover, the scan request primitive must be available to
   the host and the firmware must execute join operations only under
   host control [10], not autonomously in response to its own handover
   criteria.  Obtaining the desired PrRtAdv and sending an FBU
   immediately prior to handover requires that messages be exchanged
   over the wireless link during a period when connectivity is
   degrading.  In some cases, the scenario given in Section 7.1 may not
   complete successfully or the FBU may redirect traffic to the wrong
   NAR.  However, in these cases the handover may devolve to the
   scenario from Section 7.2 or the scenario from Section 7.3.
   Ultimately, falling back to basic Mobile IPv6 operation [7] and
   sending a Binding Update directly to the Home Agent can be used to
   recover from any failure of the FMIPv6 protocol.

10.  References

10.1.  Normative References

   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [2]  Koodli, R., "Fast Handovers for Mobile IPv6", RFC 4068, July
        2005.

   [3]  "Wireless LAN Medium Access Control (MAC) and Physical Layer
        (PHY) Specifications", ANSI/IEEE Std 802.11, 1999 Edition.

   [4]  Bahl, P., Bahl, P., and Chandra, R., "MultiNet: Enabling
        Simultaneous Connections to Multiple Wireless Networks Using a
        Single Radio", Microsoft Tech Report, MSR-TR-2003-46, June 2003.

   [5]  "Port-Based Network Access Control", IEEE Std 802.1X-2004, July
        2004.

   [6]  "Medium Access Control (MAC) Security Enhancements", IEEE Std
        802.11i-2004, July 2004.

   [7]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
        IPv6", RFC 3775, June 2004.

10.2.  Informative References

   [8]  Mitra, A., Shin, M., and Arbaugh, W., "An Empirical Analysis of
        the IEEE 802.11 MAC Layer Handoff Process", CS-TR-4395,
        University of Maryland Department of Computer Science, September
        2002.

   [9]  Borisov, N., Goldberg, I., and Wagner, D., "Intercepting Mobile
        Communications: The Insecurity of 802.11", Proceedings of the
        Seventh Annual International Conference on Mobile Computing and
        Networking, July 2001, pp. 180-188.

   [10] Malinen, J., "Host AP driver for Intersil Prism2/2.5/3 and WPA
        Supplicant", http://hostap.epitest.fi/, July 2004.

11.  Acknowledgements

   Thanks to Bob O'Hara for providing explanation and insight on the
   802.11 standards.  Thanks to James Kempf, Erik Anderlind, Rajeev
   Koodli, and Bernard Aboba for providing comments on earlier versions.

Author's Address

   Pete McCann
   Lucent Technologies
   Rm 9C-226R
   1960 Lucent Lane
   Naperville, IL  60563

   Phone: +1 630 713 9359
   Fax:   +1 630 713 1921
   EMail: mccap@lucent.com

Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

 

User Contributions:

Comment about this RFC, ask questions, or add new information about this topic: