|
Top Document: Gasoline FAQ - Part 3 of 4 Previous Document: 7. What parameters determine octane requirement? See reader questions & answers on this topic! - Help others by sharing your knowledge
8.1 What causes an empty fuel tank?
* You forgot to refill it.
* Your friendly neighbourhood thief "borrowed" the gasoline - the unfriendly
one took the vehicle.
* The fuel tank leaked.
* Your darling child/wife/husband/partner/mother/father used the car.
* The most likely reason is that your local garage switched to an oxygenated
gasoline, and the engine management system compensated for the oxygen
content, causing the fuel consumption to increase ( although the effect on
well tuned engines is only 2-4% ).
8.2 Is knock the only abnormal combustion problem?
No. Many of the abnormal combustion problems are induced by the same
conditions, and so one can lead to another.
Preignition occurs when the air-fuel mixture is ignited prematurely by
glowing deposits or hot surfaces - such as exhaust valves and spark plugs.
If it continues, it can increase in severity and become Run-away Surface
Ignition (RSI) which prevents the combustion heat being converted into
mechanical energy, thus rapidly melting pistons. The Ricardo method uses an
electrically-heated wire in the engine to measure preignition tendency. The
scale uses iso-octane as 100 and cyclohexane as 0.
Some common fuel components:-
paraffins 50-100
benzene 26
toluene 93
xylene >100
cyclopentane 70
di-isobutylene 64
hexene-2 -26
There is no direct correlation between antiknock ability and preignition
tendency, however high combustion chamber temperatures favour both, and so
one may lead to the other. An engine knocking during high-speed operation
will increase in temperature and that can induce preignition, and conversely
any preignition will result in higher temperatures than may induce knock.
Misfire is commonly caused by either a failure in the ignition system, or
fouling of the spark plug by deposits. The most common cause of deposits
was the alkyl lead additives in gasoline, and the yellow glaze of various
lead salts was used by mechanics to assess engine tune. From the upper
recess to the tip, the composition changed, but typical compounds ( going
from cold to hot ) were PbClBr; 2PbO.PbClBr; PbO.PbSO4; 3Pb3(PO4)2.PbClBr.
Run-on is the tendency of an engine to continue running after the ignition
has been switched off. It is usually caused by the spontaneous ignition of
the fuel-air mixture, rather than by surface ignition from hotspots or
deposits, as commonly believed. The narrow range of conditions for
spontaneous ignition of the fuel-air mixture ( engine speed, charge
temperature, cylinder pressure ) may be created when the engine is switched
off. The engine may refire, thus taking the conditions out of the critical
range for a couple of cycles, and then refire again, until overall cooling
of the engine drops it out of the critical region. The octane rating of the
fuel is the appropriate parameter, and it is not rare for an engine to
require a higher Octane fuel to prevent run-on than to avoid knock [27,28].
Obviously, engines with fuel injection systems do not have the problem, and
idle speed is an important factor. Later model carburettors have an idle
stop solenoid which partially closes the throttle blades when the ignition
key was off, and thus ( if set correctly ) prevents run-on.
8.3 Can I prevent carburetter icing?
Yes, carburettor icing is caused by the combination of highly volatile fuel,
high humidity and low ambient temperature. The extent of cooling, caused by
the latent heat of the vaporised gasoline in the carburettor, can be as much
as 20C, perhaps dropping below the dew point of the charge. If this happens,
water will condense on the cooler carburettor surfaces, and will freeze if
the temperature is low enough. The fuel volatility can not always be reduced
to eliminate icing, so anti-icing additives are used. In the US, anti-icing
additives are seldom required because of the widespread use heated intake
air and fuel injection [28].
Two types of additive are added to gasoline to inhibit icing:-
- surfactants that form a monomolecular layer over the metal parts that
inhibits ice crystal formation. These are usually added at concentrations
of 30-150 ppm.
- cryoscopic additives that depress the freezing point of the condensed water
so that it does not turn to ice. Alcohols ( methanol, iso-propyl alcohol,
etc. ) and glycols ( hexylene glycol, dipropylene glycol ) are used at
concentrations of 0.03% - 1%.
If you have icing problems, the addition of 100-200mls of alcohol to a full
tank of dry gasoline will prevent icing under moderately-cold conditions.
If you believe there is a small amount of water in the fuel tank, add 500mls
of anhydrous isopropyl alcohol as the first treatment, and isopropyl
alcohol is also preferred for more severe conditions. Oxygenated gasolines
using alcohols can also be used. It's important to ensure the alcohol is
anhydrous, as some grades contain up to 30% water.
8.4 Should I store fuel to avoid the oxygenate season?
No. The fuel will be from a different season, and will have significantly
different volatility properties that may induce driveability problems. You
can tune your engine to perform on oxygenated gasoline as well as it did on
traditional gasoline, however you will have increased fuel consumption due
to the useless oxygen in the oxygenates. Some engines may not initially
perform well on some oxygenated fuels, usually because of the slightly
different volatility and combustion characteristics. A good mechanic should
be able to recover any lost performance or driveability, providing the engine
is in reasonable condition.
8.5 Can I improve fuel economy by using quality gasolines?
Yes, several manufacturers have demonstrated that their new gasoline additive
packages are more effective than traditional gasoline formulations. Texaco
claimed their new vapour-phase fuel additive can reduce existing deposits by
up to 30%, improve fuel economy, and reduce NOx tailpipe emissions by 15%,
when compared to other advanced liquid phase additives [49]. The advertising
claims have been successfully disputed in court by Chevron - who demonstrated
that their existing fuel additive already offered similar benefits. Other
reputable gasoline manufacturers will have similar additive packages in their
premium quality gasolines [50]. Quality gasolines, of whatever octane
ratings, will include a full range of gasoline additives designed to provide
consistent fuel quality.
Note that oxygenated gasolines must decrease fuel economy for the same power.
If your engine is initially well-tuned on hydrocarbon gasolines, the
stoichiometry will move to lean, and maximum power is slightly rich, so
either the management system ( if you have one ) or your mechanic has to
increase the fuel flow. The minor improvements in combustion efficiency that
oxygenates may provide, can not compensate for 2+% of oxygen in the fuel
that will not provide energy.
8.6 What is "stale" fuel, and should I use it?
"Stale" fuel is caused by improper storage, and usually smells sour. The
gasoline has been allowed to get warm, thus catalysing olefin decomposition
reactions, and perhaps also losing volatile material in unsealed containers.
Such fuel will tend to rapidly form gums, and will usually have a significant
reduction in octane rating. The fuel can be used by blending with twice the
volume of new gasoline, but the blended fuel should be used immediately,
otherwise teh old fuel will catalyse rapid decomposition of the new,
resulting in even larger quantities of stale fuel. Some stale fuels can drop
several octane numbers, so be generous with the dilution.
8.7 How can I remove water in the fuel tank?
If you only have a small quantity of water, then the addition of 500mls of
dry isopropanol (IPA) to a near-full 30-40 litre tank will absorb the water,
and will not significantly affect combustion. Once you have mopped up the
water with IPA, small, regular doses of any anhydrous alcohol will help
keep the tank dry. This technique will not work if you have very large
amounts of water, and the addition of greater amounts of IPA may result in
poor driveability.
Water in fuel tanks can be minimised by keeping the fuel tank near full, and
filling in the morning from a service station that allows storage tanks to
stand for several hours after refilling before using the fuel. Note that
oxygenated gasolines have greater water solubility, and should cope with
small quantities of water.
8.8 Can I used unleaded on older vehicles?
Yes, providing the octane is appropriate. There are some older engines that
cut the valve seats directly into the cylinder head ( eg BMC minis ). The
absence of lead, which lubricated the valve seat, causes the very hard
oxidation products of the exhaust valve to wear down the seat. This valve
seat recession is usually corrected by installing seat inserts, hardening
the seats, or use of specific valve seat recession protection additives
( such as Valvemaster ). Most other problems arise because the fuels have
different volatility, or the reduction of combustion chamber deposits.
These can usually be cured by reference to the vehicle manufacturer, who
will probably have a publication with the changes. Some vehicles will
perform as well on unleaded with a slightly lower octane than recommended
leaded fuel, due to the significant reduction in deposits from modern
unleaded gasolines. If premium unleaded petrol containing relatively
high levels of aromatics is used, some carburetted engines from the 1960s
may experience spark plug fouling, however most vehicle manufacturers
have guides to ensure careful engine tuning will eliminate most of the
problem.
User Contributions:Top Document: Gasoline FAQ - Part 3 of 4 Previous Document: 7. What parameters determine octane requirement? Part1 - Part2 - Part3 - Part4 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: B.Hamilton@irl.cri.nz
Last Update March 27 2014 @ 02:11 PM
|

Comment about this article, ask questions, or add new information about this topic: