Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

comp.ai.neural-nets FAQ, Part 7 of 7: Hardware
Section - Neural Network hardware?

( Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Cities ]


Top Document: comp.ai.neural-nets FAQ, Part 7 of 7: Hardware
Previous Document: News Headers
Next Document: What are some applications of NNs?
See reader questions & answers on this topic! - Help others by sharing your knowledge

Overview articles: 

 o Clark S. Lindsey and Thomas Lindblad (1998), "Review of hardware neural
   networks: A user's perspective", 
   http://www.particle.kth.se/~lindsey/elba2html/elba2html.html 

 o P. D. Moerland and E. Fiesler (1997), "Neural Network Adaptations to
   Hardware Implementations", in Handbook of Neural Computation, 
   http://www.idiap.ch/~perry/moerland-97.1.bib.abs.html 

The journal, IEEE Transactions on Neural Networks, plans to have a
special issue on neural networks hardware implementations in September,
2003. 

Various NN hardware information can be found at the following web sites: 

 o Pacific Northwest National Laboratory:
   http://www.emsl.pnl.gov:2080/proj/neuron/neural/systems/commercial.html 
 o Dr. Denise Gorse, University College London:
   http://www.cs.ucl.ac.uk/staff/D.Gorse/research/pRAM.html 
 o Neural Chips and Evolvable Hardware:
   http://glendhu.com/ai/neuralchips/ 

User Contributions:

1
Majid Maqbool
Sep 27, 2024 @ 5:05 am
https://techpassion.co.uk/how-does-a-smart-tv-work-read-complete-details/
PDP++ is a neural-network simulation system written in C++, developed as an advanced version of the original PDP software from McClelland and Rumelhart's "Explorations in Parallel Distributed Processing Handbook" (1987). The software is designed for both novice users and researchers, providing flexibility and power in cognitive neuroscience studies. Featured in Randall C. O'Reilly and Yuko Munakata's "Computational Explorations in Cognitive Neuroscience" (2000), PDP++ supports a wide range of algorithms. These include feedforward and recurrent error backpropagation, with continuous and real-time models such as Almeida-Pineda. It also incorporates constraint satisfaction algorithms like Boltzmann Machines, Hopfield networks, and mean-field networks, as well as self-organizing learning algorithms, including Self-organizing Maps (SOM) and Hebbian learning. Additionally, it supports mixtures-of-experts models and the Leabra algorithm, which combines error-driven and Hebbian learning with k-Winners-Take-All inhibitory competition. PDP++ is a comprehensive tool for exploring neural network models in cognitive neuroscience.

Comment about this article, ask questions, or add new information about this topic:




Top Document: comp.ai.neural-nets FAQ, Part 7 of 7: Hardware
Previous Document: News Headers
Next Document: What are some applications of NNs?

Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page

[ Usenet FAQs | Web FAQs | Documents | RFC Index ]

Send corrections/additions to the FAQ Maintainer:
saswss@unx.sas.com (Warren Sarle)





Last Update March 27 2014 @ 02:11 PM