Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

comp.ai.neural-nets FAQ, Part 2 of 7: Learning
Section - How does ill-conditioning affect NN training?

( Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Cities ]


Top Document: comp.ai.neural-nets FAQ, Part 2 of 7: Learning
Previous Document: What are conjugate gradients,
Next Document: How should categories be encoded?
See reader questions & answers on this topic! - Help others by sharing your knowledge

Numerical condition is one of the most fundamental and important concepts in
numerical analysis. Numerical condition affects the speed and accuracy of
most numerical algorithms. Numerical condition is especially important in
the study of neural networks because ill-conditioning is a common cause of
slow and inaccurate results from backprop-type algorithms. For more
information, see:
ftp://ftp.sas.com/pub/neural/illcond/illcond.html 

User Contributions:

1
Majid Maqbool
Sep 27, 2024 @ 5:05 am
https://techpassion.co.uk/how-does-a-smart-tv-work-read-complete-details/
PDP++ is a neural-network simulation system written in C++, developed as an advanced version of the original PDP software from McClelland and Rumelhart's "Explorations in Parallel Distributed Processing Handbook" (1987). The software is designed for both novice users and researchers, providing flexibility and power in cognitive neuroscience studies. Featured in Randall C. O'Reilly and Yuko Munakata's "Computational Explorations in Cognitive Neuroscience" (2000), PDP++ supports a wide range of algorithms. These include feedforward and recurrent error backpropagation, with continuous and real-time models such as Almeida-Pineda. It also incorporates constraint satisfaction algorithms like Boltzmann Machines, Hopfield networks, and mean-field networks, as well as self-organizing learning algorithms, including Self-organizing Maps (SOM) and Hebbian learning. Additionally, it supports mixtures-of-experts models and the Leabra algorithm, which combines error-driven and Hebbian learning with k-Winners-Take-All inhibitory competition. PDP++ is a comprehensive tool for exploring neural network models in cognitive neuroscience.

Comment about this article, ask questions, or add new information about this topic:




Top Document: comp.ai.neural-nets FAQ, Part 2 of 7: Learning
Previous Document: What are conjugate gradients,
Next Document: How should categories be encoded?

Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page

[ Usenet FAQs | Web FAQs | Documents | RFC Index ]

Send corrections/additions to the FAQ Maintainer:
saswss@unx.sas.com (Warren Sarle)





Last Update March 27 2014 @ 02:11 PM