|
Top Document: FAQ: comp.ai.genetic part 3/6 (A Guide to Frequently Asked Questions) Previous Document: Q3: Who is concerned with EAs? Next Document: Q4.1: What about Alife systems, like Tierra and VENUS? See reader questions & answers on this topic! - Help others by sharing your knowledge
The All Stars
There are currently 3 main paradigms in EA research: GENETIC
ALGORITHMs, EVOLUTIONARY PROGRAMMING, and EVOLUTION STRATEGIEs.
CLASSIFIER SYSTEMs and GENETIC PROGRAMMING are OFFSPRING of the GA
community. Besides this leading crop, there are numerous other
different approaches, alongside hybrid experiments, i.e. there exist
pieces of software residing in some researchers computers, that have
been described in papers in conference proceedings, and may someday
prove useful on certain tasks. To stay in EA slang, we should think
of these evolving strands as BUILDING BLOCKs, that when recombined
someday, will produce new offspring and give birth to new EA
paradigm(s).
One such interesting offspring is the Memetic Algorithm. This is a
hybrid evolutionary algorithm, which makes use of local search
operators. For details, see
http://www.densis.fee.unicamp.br/~moscato/memetic_home.html
Promising Rookies
As far as "solving complex function and COMBINATORIAL OPTIMIZATION
tasks" is concerned, Davis' work on real-valued representations and
adaptive operators should be mentioned (Davis 89). Moreover Whitley's
Genitor system incorporating ranking and "steady state" mechanism
(Whitley 89), Goldberg's "messy GAs", involves adaptive
representations (Goldberg 91), and Eshelman's CHC algorithm (Eshelman
91). For real FUNCTION OPTIMIZATION, Differential EVOLUTION seems
hard to beat in terms of convergence speed as well as simplicity:
With just three control variables, tuning is particularly easy to do.
For "the design of robust learning systems", i.e. the field
characterized by CFS, Holland's (1986) CLASSIFIER SYSTEM, with its
state-of-the-art implementation CFS-C (Riolo 88), we should note
developments in SAMUEL (Grefenstette 89), GABIL (De Jong & Spears
91), and GIL (Janikow 91).
References
Davis, L. (1989) "Adapting operator probabilities in genetic
algorithms", [ICGA89], 60-69.
De Jong K.A. & Spears W. (1991) "Learning concept classification
rules using genetic algorithms". Proc. 12th IJCAI, 651-656, Sydney,
Australia: Morgan Kaufmann.
Dorigo M. & E. Sirtori (1991)."ALECSYS: A Parallel Laboratory for
Learning Classifier Systems". Proceedings of the Fourth International
Conference on Genetic Algorithms, San Diego, California, R.K.Belew
and L.B.Booker (Eds.), Morgan Kaufmann, 296-302.
Dorigo M. (1995). "ALECSYS and the AutonoMouse: Learning to Control a
Real Robot by Distributed Classifier Systems". Machine Learning, 19,
3, 209-240.
Eshelman, L.J. et al. (1991) "Preventing premature convergence in
genetic algorithms by preventing incest", [ICGA91], 115-122.
Goldberg, D. et al. (1991) "Don't worry, be messy", [ICGA91], 24-30.
Grefenstette, J.J. (1989) "A system for learning control strategies
with genetic algorithms", [ICGA89], 183-190.
Holland, J.H. (1986) "Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel rule-based
systems". In R. Michalski, J. Carbonell, T. Mitchell (eds), Machine
Learning: An Artificial Intelligence Approach. Los Altos: Morgan
Kaufmann.
Janikow C. (1991) "Inductive learning of decision rules from
attribute-based examples: A knowledge-intensive Genetic Algorithm
approach". TR91-030, The University of North Carolina at Chapel Hill,
Dept. of Computer Science, Chapel Hill, NC.
Riolo, R.L. (1988) "CFS-C: A package of domain independent
subroutines for implementing classifier systems in arbitrary, user-
defined environments". Logic of computers group, Division of
computer science and engineering, University of Michigan.
Whitley, D. et al. (1989) "The GENITOR algorithm and selection
pressure: why rank-based allocation of reproductive trials is best",
[ICGA89], 116-121.
User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: FAQ: comp.ai.genetic part 3/6 (A Guide to Frequently Asked Questions) Previous Document: Q3: Who is concerned with EAs? Next Document: Q4.1: What about Alife systems, like Tierra and VENUS? Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: David.Beasley@cs.cf.ac.uk (David Beasley)
Last Update March 27 2014 @ 02:11 PM
|

Paid Studies: Make $7774 Or More Per Week: https://fla.kr/rCjf
Forex + Cryptocurrency = $ 9163 per week: https://links.wtf/KSfv
Invest $ 9811 and get $ 26859 every month: https://fla.kr/rBm3
Just how to Make $6628 FAST, Rapid Loan, The Busy Budgeter: https://darknesstr.com/wxng
https://tinyurl.com/y7h69pcq
https://delhiescortss.com/%D7%97%D7%91%D7%99%D7%9C%D7%95%D7%AA-%D7%A1%D7%A4%D7%90-%D7%9E%D7%A4%D7%A0%D7%A7%D7%95%D7%AA-%D7%91%D7%93%D7%A8%D7%95%D7%9D-%D7%A1%D7%A4%D7%90-%D7%A4%D7%9C%D7%95%D7%A1/
https://rokslides.com/%d7%a2%d7%99%d7%a1%d7%95%d7%99-%d7%98%d7%a0%d7%98%d7%a8%d7%99-%d7%a2%d7%91%d7%95%d7%93%d7%aa-%d7%a2%d7%95%d7%9e%d7%a7-%d7%a2%d7%9d-%d7%94%d7%92%d7%95%d7%a3/
https://lover-israil-graf.gq/news/spathathcaro
https://sapnaranaut.hatenablog.com/entry/2023/02/12/005103
https://sapnaranaut.hatenablog.com/entry/2023/02/10/042933
https://sapnaranaut.hatenablog.com/entry/2023/02/13/073142
https://sapnaranaut.hatenablog.com/entry/2023/02/11/024301
https://sapnaranaut.hatenablog.com/entry/2023/02/07/201048
https://sapnaranaut.hatenablog.com/entry/2023/02/12/182424
https://sapnaranaut.hatenablog.com/entry/2023/02/11/173845