|
Top Document: FAQ: comp.ai.genetic part 3/6 (A Guide to Frequently Asked Questions) Previous Document: Q2: What applications of EAs are there? Next Document: Q4: How many EAs exist? Which? See reader questions & answers on this topic! - Help others by sharing your knowledge
EVOLUTIONARY COMPUTATION attracts researchers and people of quite
dissimilar disciplines, i.e. EC is a interdisciplinary research
field:
Computer scientists
Want to find out about the properties of sub-symbolic information
processing with EAs and about learning, i.e. adaptive systems in
general.
They also build the hardware necessary to enable future EAs
(precursors are already beginning to emerge) to huge real world
problems, i.e. the term "massively parallel computation" [HILLIS92],
springs to mind.
Engineers
Of many kinds want to exploit the capabilities of EAs on many areas
to solve their application, esp. OPTIMIZATION problems.
Roboticists
Want to build MOBOTs (MOBile ROBOTs, i.e. R2D2's and #5's cousins)
that navigate through uncertain ENVIRONMENTs, without using built-in
"maps". The MOBOTS thus have to adapt to their surroundings, and
learn what they can do "move-through-door" and what they can't "move-
through-wall" on their own by "trial-and-error".
Cognitive scientists
Might view CFS as a possible apparatus to describe models of thinking
and cognitive systems.
Physicists
Use EC hardware, e.g. Hillis' (Thinking Machine Corp.'s) Connection
Machine to model real world problems which include thousands of
variables, that run "naturally" in parallel, and thus can be modelled
more easily and esp. "faster" on a parallel machine, than on a
serial "PC" one.
Biologists
Are finding EAs useful when it comes to protein folding and other
such bio-computational problems (see Q2).
EAs can also be used to model the behaviour of real POPULATIONs of
organisms. Some biologists are hostile to modeling, but an entire
community of Population Biologists arose with the 'evolutionary
synthesis' of the 1930's created by the polymaths R.A. Fisher, J.B.S.
Haldane, and S. Wright. Wright's SELECTION in small populations,
thereby avoiding local optima) is of current interest to both
biologists and ECers -- populations are naturally parallel.
A good exposition of current population Biology modeling is J.
Maynard Smith's text Evolutionary Genetics. Richard Dawkin's Selfish
Gene and Extended Phenotype are unparalleled (sic!) prose expositions
of evolutionary processes. Rob Collins' papers are excellent
parallel GA models of evolutionary processes (available in [ICGA91]
and by FTP from ftp.cognet.ucla.edu/pub/alife/papers/ ).
As fundamental motivation, consider Fisher's comment: "No practical
biologist interested in (e.g.) sexual REPRODUCTION would be led to
work out the detailed consequences experienced by organisms having
three or more sexes; yet what else should [s/]he do if [s/]he wishes
to understand why the sexes are, in fact, always
two?" (Three sexes would make for even weirder grammar, [s/]he
said...)
Chemists
And in particular biochemists and molecular chemists, are interested
in problems such as the conformational analysis of molecular clusters
and related problems in molecular sciences. The application of GAs
to molecular systems has opened an interesting area of research and
the number of chemists involved in it increases day-by-day.
Some typical research topics include:
o protein folding; o conformational analysis and energy
minimization; o docking algorithms for drug-design; o solvent site
prediction in macromolecules;
Several papers have been published in journals such as Journal of
Computational Chemistry and Journal of Computer-Aided Design.
Some interesting WWW sites related to the applications of GAs to
chemistry (or molecular science in general) include:
o http://garage.cps.msu.edu/projects/biochem/biochem.html about GAs
in biochemistry (water site prediction, drug-design and protein
folding); o
http://www.tc.cornell.edu/Edu/SPUR/SPUR94/Main/John.html about the
application of GAs to the search of conformational energy minima;
o http://cmp.ameslab.gov/cmp/CMP_Theory/gsa/gen2.html By using a
GA in combiation with a Tight-binding model, David Deaven and Kai-
Ming Ho founded fullerene cages (including C60) starting from
random coordinates.
See also Q2 for applications in biocomputing.
Philosophers
and some other really curious people may also be interested in EC for
various reasons.
User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: FAQ: comp.ai.genetic part 3/6 (A Guide to Frequently Asked Questions) Previous Document: Q2: What applications of EAs are there? Next Document: Q4: How many EAs exist? Which? Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: David.Beasley@cs.cf.ac.uk (David Beasley)
Last Update March 27 2014 @ 02:11 PM
|

Paid Studies: Make $7774 Or More Per Week: https://fla.kr/rCjf
Forex + Cryptocurrency = $ 9163 per week: https://links.wtf/KSfv
Invest $ 9811 and get $ 26859 every month: https://fla.kr/rBm3
Just how to Make $6628 FAST, Rapid Loan, The Busy Budgeter: https://darknesstr.com/wxng
https://tinyurl.com/y7h69pcq
https://delhiescortss.com/%D7%97%D7%91%D7%99%D7%9C%D7%95%D7%AA-%D7%A1%D7%A4%D7%90-%D7%9E%D7%A4%D7%A0%D7%A7%D7%95%D7%AA-%D7%91%D7%93%D7%A8%D7%95%D7%9D-%D7%A1%D7%A4%D7%90-%D7%A4%D7%9C%D7%95%D7%A1/
https://rokslides.com/%d7%a2%d7%99%d7%a1%d7%95%d7%99-%d7%98%d7%a0%d7%98%d7%a8%d7%99-%d7%a2%d7%91%d7%95%d7%93%d7%aa-%d7%a2%d7%95%d7%9e%d7%a7-%d7%a2%d7%9d-%d7%94%d7%92%d7%95%d7%a3/
https://lover-israil-graf.gq/news/spathathcaro
https://sapnaranaut.hatenablog.com/entry/2023/02/12/005103
https://sapnaranaut.hatenablog.com/entry/2023/02/10/042933
https://sapnaranaut.hatenablog.com/entry/2023/02/13/073142
https://sapnaranaut.hatenablog.com/entry/2023/02/11/024301
https://sapnaranaut.hatenablog.com/entry/2023/02/07/201048
https://sapnaranaut.hatenablog.com/entry/2023/02/12/182424
https://sapnaranaut.hatenablog.com/entry/2023/02/11/173845