faqs.org - Internet FAQ Archives

RFC 6349 - Framework for TCP Throughput Testing


Or Display the document by number




Internet Engineering Task Force (IETF)                    B. Constantine
Request for Comments: 6349                                          JDSU
Category: Informational                                        G. Forget
ISSN: 2070-1721                            Bell Canada (Ext. Consultant)
                                                                 R. Geib
                                                        Deutsche Telekom
                                                              R. Schrage
                                                      Schrage Consulting
                                                             August 2011

                  Framework for TCP Throughput Testing

Abstract

   This framework describes a practical methodology for measuring end-
   to-end TCP Throughput in a managed IP network.  The goal is to
   provide a better indication in regard to user experience.  In this
   framework, TCP and IP parameters are specified to optimize TCP
   Throughput.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6349.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
      1.1. Requirements Language ......................................4
      1.2. Terminology ................................................5
      1.3. TCP Equilibrium ............................................6
   2. Scope and Goals .................................................7
   3. Methodology .....................................................8
      3.1. Path MTU ..................................................10
      3.2. Round-Trip Time (RTT) and Bottleneck Bandwidth (BB) .......11
           3.2.1. Measuring RTT ......................................11
           3.2.2. Measuring BB .......................................12
      3.3. Measuring TCP Throughput ..................................12
           3.3.1. Minimum TCP RWND ...................................13
   4. TCP Metrics ....................................................16
      4.1. Transfer Time Ratio .......................................16
           4.1.1. Maximum Achievable TCP Throughput Calculation ......17
           4.1.2. TCP Transfer Time and Transfer Time Ratio
                  Calculation ........................................19
      4.2. TCP Efficiency ............................................20
           4.2.1. TCP Efficiency Percentage Calculation ..............20
      4.3. Buffer Delay ..............................................20
           4.3.1. Buffer Delay Percentage Calculation ................21
   5. Conducting TCP Throughput Tests ................................21
      5.1. Single versus Multiple TCP Connections ....................21
      5.2. Results Interpretation ....................................22
   6. Security Considerations ........................................25
      6.1. Denial-of-Service Attacks .................................25
      6.2. User Data Confidentiality .................................25
      6.3. Interference with Metrics .................................25
   7. Acknowledgments ................................................26
   8. Normative References ...........................................26

1.  Introduction

   In the network industry, the SLA (Service Level Agreement) provided
   to business-class customers is generally based upon Layer 2/3
   criteria such as bandwidth, latency, packet loss, and delay
   variations (jitter).  Network providers are coming to the realization
   that Layer 2/3 testing is not enough to adequately ensure end-users'
   satisfaction.  In addition to Layer 2/3 testing, this framework
   recommends a methodology for measuring TCP Throughput in order to
   provide meaningful results with respect to user experience.

   Additionally, business-class customers seek to conduct repeatable TCP
   Throughput tests between locations.  Since these organizations rely
   on the networks of the providers, a common test methodology with
   predefined metrics would benefit both parties.

   Note that the primary focus of this methodology is managed business-
   class IP networks, e.g., those Ethernet-terminated services for which
   organizations are provided an SLA from the network provider.  Because
   of the SLA, the expectation is that the TCP Throughput should achieve
   the guaranteed bandwidth.  End-users with "best effort" access could
   use this methodology, but this framework and its metrics are intended
   to be used in a predictable managed IP network.  No end-to-end
   performance can be guaranteed when only the access portion is being
   provisioned to a specific bandwidth capacity.

   The intent behind this document is to define a methodology for
   testing sustained TCP Layer performance.  In this document, the
   achievable TCP Throughput is that amount of data per unit of time
   that TCP transports when in the TCP Equilibrium state.  (See
   Section 1.3 for the TCP Equilibrium definition).  Throughout this
   document, "maximum achievable throughput" refers to the theoretical
   achievable throughput when TCP is in the Equilibrium state.

   TCP is connection oriented, and at the transmitting side, it uses a
   congestion window (TCP CWND).  At the receiving end, TCP uses a
   receive window (TCP RWND) to inform the transmitting end on how many
   Bytes it is capable of accepting at a given time.

   Derived from Round-Trip Time (RTT) and network Bottleneck Bandwidth
   (BB), the Bandwidth-Delay Product (BDP) determines the Send and
   Received Socket buffer sizes required to achieve the maximum TCP
   Throughput.  Then, with the help of slow start and congestion
   avoidance algorithms, a TCP CWND is calculated based on the IP
   network path loss rate.  Finally, the minimum value between the
   calculated TCP CWND and the TCP RWND advertised by the opposite end
   will determine how many Bytes can actually be sent by the
   transmitting side at a given time.

   Both TCP Window sizes (RWND and CWND) may vary during any given TCP
   session, although up to bandwidth limits, larger RWND and larger CWND
   will achieve higher throughputs by permitting more in-flight Bytes.

   At both ends of the TCP connection and for each socket, there are
   default buffer sizes.  There are also kernel-enforced maximum buffer
   sizes.  These buffer sizes can be adjusted at both ends (transmitting
   and receiving).  Some TCP/IP stack implementations use Receive Window
   Auto-Tuning, although, in order to obtain the maximum throughput, it
   is critical to use large enough TCP Send and Receive Socket Buffer
   sizes.  In fact, they SHOULD be equal to or greater than BDP.

   Many variables are involved in TCP Throughput performance, but this
   methodology focuses on the following:

   - BB (Bottleneck Bandwidth)

   - RTT (Round-Trip Time)

   - Send and Receive Socket Buffers

   - Minimum TCP RWND

   - Path MTU (Maximum Transmission Unit)

   This methodology proposes TCP testing that SHOULD be performed in
   addition to traditional tests of the Layer 2/3 type.  In fact, Layer
   2/3 tests are REQUIRED to verify the integrity of the network before
   conducting TCP tests.  Examples include "iperf" (UDP mode) and manual
   packet-layer test techniques where packet throughput, loss, and delay
   measurements are conducted.  When available, standardized testing
   similar to [RFC2544], but adapted for use in operational networks,
   MAY be used.

   Note: [RFC2544] was never meant to be used outside a lab environment.

   Sections 2 and 3 of this document provide a general overview of the
   proposed methodology.  Section 4 defines the metrics, while Section 5
   explains how to conduct the tests and interpret the results.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.2.  Terminology

   The common definitions used in this methodology are as follows:

   - TCP Throughput Test Device (TCP TTD) refers to a compliant TCP host
     that generates traffic and measures metrics as defined in this
     methodology, i.e., a dedicated communications test instrument.

   - Customer Provided Equipment (CPE) refers to customer-owned
     equipment (routers, switches, computers, etc.).

   - Customer Edge (CE) refers to a provider-owned demarcation device.

   - Provider Edge (PE) refers to a provider's distribution equipment.

   - Bottleneck Bandwidth (BB) refers to the lowest bandwidth along the
     complete path.  "Bottleneck Bandwidth" and "Bandwidth" are used
     synonymously in this document.  Most of the time, the Bottleneck
     Bandwidth is in the access portion of the wide-area network
     (CE - PE).

   - Provider (P) refers to provider core network equipment.

   - Network Under Test (NUT) refers to the tested IP network path.

   - Round-Trip Time (RTT) is the elapsed time between the clocking in
     of the first bit of a TCP segment sent and the receipt of the last
     bit of the corresponding TCP Acknowledgment.

   - Bandwidth-Delay Product (BDP) refers to the product of a data
     link's capacity (in bits per second) and its end-to-end delay (in
     seconds).

   +---+ +----+ +----+  +----+ +---+  +---+ +----+  +----+ +----+ +---+
   |TCP|-| CPE|-| CE |--| PE |-| P |--| P |-| PE |--| CE |-| CPE|-|TCP|
   |TTD| |    | |    |BB|    | |   |  |   | |    |BB|    | |    | |TTD|
   +---+ +----+ +----+  +----+ +---+  +---+ +----+  +----+ +----+ +---+
         <------------------------ NUT ------------------------->
     R >-----------------------------------------------------------|
     T                                                             |
     T <-----------------------------------------------------------|

                  Figure 1.2.  Devices, Links, and Paths

   Note that the NUT may be built with a variety of devices including,
   but not limited to, load balancers, proxy servers, or WAN
   acceleration appliances.  The detailed topology of the NUT SHOULD be
   well-known when conducting the TCP Throughput tests, although this
   methodology makes no attempt to characterize specific network
   architectures.

1.3.  TCP Equilibrium

   TCP connections have three (3) fundamental congestion window phases,
   which are depicted in Figure 1.3.

   1. The Slow Start phase, which occurs at the beginning of a TCP
      transmission or after a retransmission Time-Out.

   2. The Congestion Avoidance phase, during which TCP ramps up to
      establish the maximum achievable throughput.  It is important to
      note that retransmissions are a natural by-product of the TCP
      congestion avoidance algorithm as it seeks to achieve maximum
      throughput.

   3. The Loss Recovery phase, which could include Fast Retransmit
      (Tahoe) or Fast Recovery (Reno and New Reno).  When packet loss
      occurs, the Congestion Avoidance phase transitions either to Fast
      Retransmission or Fast Recovery, depending upon the TCP
      implementation.  If a Time-Out occurs, TCP transitions back to the
      Slow Start phase.

    /\  |
    /\  |High ssthresh  TCP CWND                         TCP
    /\  |Loss Event *   halving    3-Loss Recovery       Equilibrium
     T  |          * \  upon loss
     h  |          *  \    /  \        Time-Out            Adjusted
     r  |          *   \  /    \      +--------+         * ssthresh
   T o  |          *    \/      \    / Multiple|        *
   C u  |          * 2-Congestion\  /  Loss    |        *
   P g  |         *    Avoidance  \/   Event   |       *
     h  |        *              Half           |     *
     p  |      *                TCP CWND       | * 1-Slow Start
     u  | * 1-Slow Start                      Min TCP CWND after T-O
     t  +-----------------------------------------------------------
          Time > > > > > > > > > > > > > > > > > > > > > > > > > >

      Note: ssthresh = Slow Start threshold.

                       Figure 1.3.  TCP CWND Phases

   A well-tuned and well-managed IP network with appropriate TCP
   adjustments in the IP hosts and applications should perform very
   close to the BB when TCP is in the Equilibrium state.

   This TCP methodology provides guidelines to measure the maximum
   achievable TCP Throughput when TCP is in the Equilibrium state.  All
   maximum achievable TCP Throughputs specified in Section 3.3 are with
   respect to this condition.

   It is important to clarify the interaction between the sender's Send
   Socket Buffer and the receiver's advertised TCP RWND size.  TCP test
   programs such as "iperf", "ttcp", etc. allow the sender to control
   the quantity of TCP Bytes transmitted and unacknowledged (in-flight),
   commonly referred to as the Send Socket Buffer.  This is done
   independently of the TCP RWND size advertised by the receiver.

2.  Scope and Goals

   Before defining the goals, it is important to clearly define the
   areas that are out of scope.

   - This methodology is not intended to predict the TCP Throughput
     during the transient stages of a TCP connection, such as during the
     Slow Start phase.

   - This methodology is not intended to definitively benchmark TCP
     implementations of one OS to another, although some users may find
     value in conducting qualitative experiments.

   - This methodology is not intended to provide detailed diagnosis of
     problems within endpoints or within the network itself as related
     to non-optimal TCP performance, although results interpretation for
     each test step may provide insights to potential issues.

   - This methodology does not propose to operate permanently with high
     measurement loads.  TCP performance and optimization within
     operational networks MAY be captured and evaluated by using data
     from the "TCP Extended Statistics MIB" [RFC4898].

   In contrast to the above exclusions, the primary goal is to define a
   method to conduct a practical end-to-end assessment of sustained TCP
   performance within a managed business-class IP network.  Another key
   goal is to establish a set of "best practices" that a non-TCP expert
   SHOULD apply when validating the ability of a managed IP network to
   carry end-user TCP applications.

   Specific goals are to:

   - Provide a practical test approach that specifies tunable parameters
     (such as MTU (Maximum Transmission Unit) and Socket Buffer sizes)
     and how these affect the outcome of TCP performance over an IP
     network.

   - Provide specific test conditions such as link speed, RTT, MTU,
     Socket Buffer sizes, and achievable TCP Throughput when TCP is in
     the Equilibrium state.  For guideline purposes, provide examples of
     test conditions and their maximum achievable TCP Throughput.
     Section 1.3 provides specific details concerning the definition of
     TCP Equilibrium within this methodology, while Section 3 provides
     specific test conditions with examples.

   - Define three (3) basic metrics to compare the performance of TCP
     connections under various network conditions.  See Section 4.

   - Provide some areas within the end host or the network that SHOULD
     be considered for investigation in test situations where the
     recommended procedure does not yield the maximum achievable TCP
     Throughput.  However, this methodology is not intended to provide
     detailed diagnosis on these issues.  See Section 5.2.

3.  Methodology

   This methodology is intended for operational and managed IP networks.
   A multitude of network architectures and topologies can be tested.
   The diagram in Figure 1.2 is very general and is only provided to
   illustrate typical segmentation within end-user and network provider
   domains.

   Also, as stated in Section 1, it is considered best practice to
   verify the integrity of the network by conducting Layer 2/3 tests
   such as [RFC2544] or other methods of network stress tests; although
   it is important to mention here that [RFC2544] was never meant to be
   used outside a lab environment.

   It is not possible to make an accurate TCP Throughput measurement
   when the network is dysfunctional.  In particular, if the network is
   exhibiting high packet loss and/or high jitter, then TCP Layer
   Throughput testing will not be meaningful.  As a guideline, 5% packet
   loss and/or 150 ms of jitter may be considered too high for an
   accurate measurement.

   TCP Throughput testing may require cooperation between the end-user
   customer and the network provider.  As an example, in an MPLS
   (Multiprotocol Label Switching) network architecture, the testing
   SHOULD be conducted either on the CPE or on the CE device and not on
   the PE (Provider Edge) router.

   The following represents the sequential order of steps for this
   testing methodology:

   1. Identify the Path MTU.  Packetization Layer Path MTU Discovery
      (PLPMTUD) [RFC4821] SHOULD be conducted.  It is important to
      identify the path MTU so that the TCP TTD is configured properly
      to avoid fragmentation.

   2. Baseline Round-Trip Time and Bandwidth.  This step establishes the
      inherent, non-congested Round-Trip Time (RTT) and the Bottleneck
      Bandwidth (BB) of the end-to-end network path.  These measurements
      are used to provide estimates of the TCP RWND and Send Socket
      Buffer sizes that SHOULD be used during subsequent test steps.

   3. TCP Connection Throughput Tests.  With baseline measurements of
      Round-Trip Time and Bottleneck Bandwidth, single- and multiple-
      TCP-connection throughput tests SHOULD be conducted to baseline
      network performance.

   These three (3) steps are detailed in Sections 3.1 to 3.3.

   Important to note are some of the key characteristics and
   considerations for the TCP test instrument.  The test host MAY be a
   standard computer or a dedicated communications test instrument.  In
   both cases, it MUST be capable of emulating both a client and a
   server.

   The following criteria SHOULD be considered when selecting whether
   the TCP test host can be a standard computer or has to be a dedicated
   communications test instrument:

   - TCP implementation used by the test host, OS version (e.g., LINUX
     OS kernel using TCP New Reno), TCP options supported, etc. will
     obviously be more important when using dedicated communications
     test instruments where the TCP implementation may be customized or
     tuned to run in higher-performance hardware.  When a compliant TCP
     TTD is used, the TCP implementation SHOULD be identified in the
     test results.  The compliant TCP TTD SHOULD be usable for complete
     end-to-end testing through network security elements and SHOULD
     also be usable for testing network sections.

   - More importantly, the TCP test host MUST be capable of generating
     and receiving stateful TCP test traffic at the full BB of the NUT.
     Stateful TCP test traffic means that the test host MUST fully
     implement a TCP/IP stack; this is generally a comment aimed at
     dedicated communications test equipment that sometimes "blasts"
     packets with TCP headers.  At the time of this publication, testing
     TCP Throughput at rates greater than 100 Mbps may require high-
     performance server hardware or dedicated hardware-based test tools.

   - A compliant TCP Throughput Test Device MUST allow adjusting both
     Send and Receive Socket Buffer sizes.  The Socket Buffers MUST be
     large enough to fill the BDP.

   - Measuring RTT and retransmissions per connection will generally
     require a dedicated communications test instrument.  In the absence
     of dedicated hardware-based test tools, these measurements may need
     to be conducted with packet capture tools, i.e., conduct TCP
     Throughput tests and analyze RTT and retransmissions in packet
     captures.  Another option MAY be to use the "TCP Extended
     Statistics MIB" [RFC4898].

   - The [RFC4821] PLPMTUD test SHOULD be conducted with a dedicated
     tester that exposes the ability to run the PLPMTUD algorithm
     independently from the OS stack.

3.1.  Path MTU

   TCP implementations should use Path MTU Discovery techniques (PMTUD).
   PMTUD relies on ICMP 'need to frag' messages to learn the path MTU.
   When a device has a packet to send that has the Don't Fragment (DF)
   bit in the IP header set and the packet is larger than the MTU of the
   next hop, the packet is dropped, and the device sends an ICMP 'need
   to frag' message back to the host that originated the packet.  The
   ICMP 'need to frag' message includes the next-hop MTU, which PMTUD
   uses to adjust itself.  Unfortunately, because many network managers
   completely disable ICMP, this technique does not always prove
   reliable.

   Packetization Layer Path MTU Discovery (PLPMTUD) [RFC4821] MUST then
   be conducted to verify the network path MTU.  PLPMTUD can be used
   with or without ICMP.  [RFC4821] specifies search_high and search_low
   parameters for the MTU, and we recommend using those parameters.  The
   goal is to avoid fragmentation during all subsequent tests.

3.2.  Round-Trip Time (RTT) and Bottleneck Bandwidth (BB)

   Before stateful TCP testing can begin, it is important to determine
   the baseline RTT (i.e., non-congested inherent delay) and BB of the
   end-to-end network to be tested.  These measurements are used to
   calculate the BDP and to provide estimates of the TCP RWND and Send
   Socket Buffer sizes that SHOULD be used in subsequent test steps.

3.2.1.  Measuring RTT

   As previously defined in Section 1.2, RTT is the elapsed time between
   the clocking in of the first bit of a TCP segment sent and the
   receipt of the last bit of the corresponding TCP Acknowledgment.

   The RTT SHOULD be baselined during off-peak hours in order to obtain
   a reliable figure of the inherent network latency.  Otherwise,
   additional delay caused by network buffering can occur.  Also, when
   sampling RTT values over a given test interval, the minimum measured
   value SHOULD be used as the baseline RTT.  This will most closely
   estimate the real inherent RTT.  This value is also used to determine
   the Buffer Delay Percentage metric defined in Section 4.3.

   The following list is not meant to be exhaustive, although it
   summarizes some of the most common ways to determine Round-Trip Time.
   The desired measurement precision (i.e., ms versus us) may dictate
   whether the RTT measurement can be achieved with ICMP pings or by a
   dedicated communications test instrument with precision timers.  The
   objective of this section is to list several techniques in order of
   decreasing accuracy.

   - Use test equipment on each end of the network, "looping" the far-
     end tester so that a packet stream can be measured back and forth
     from end to end.  This RTT measurement may be compatible with delay
     measurement protocols specified in [RFC5357].

   - Conduct packet captures of TCP test sessions using "iperf" or FTP,
     or other TCP test applications.  By running multiple experiments,
     packet captures can then be analyzed to estimate RTT.  It is
     important to note that results based upon the SYN -> SYN-ACK at the
     beginning of TCP sessions SHOULD be avoided, since Firewalls might
     slow down 3-way handshakes.  Also, at the sender's side,
     Ostermann's LINUX TCPTRACE utility with -l -r arguments can be used
     to extract the RTT results directly from the packet captures.

   - Obtain RTT statistics available from MIBs defined in [RFC4898].

   - ICMP pings may also be adequate to provide Round-Trip Time
     estimates, provided that the packet size is factored into the
     estimates (i.e., pings with different packet sizes might be
     required).  Some limitations with ICMP ping may include ms
     resolution and whether or not the network elements are responding
     to pings.  Also, ICMP is often rate-limited or segregated into
     different buffer queues.  ICMP might not work if QoS (Quality of
     Service) reclassification is done at any hop.  ICMP is not as
     reliable and accurate as in-band measurements.

3.2.2.  Measuring BB

   Before any TCP Throughput test can be conducted, bandwidth
   measurement tests SHOULD be run with stateless IP streams (i.e., not
   stateful TCP) in order to determine the BB of the NUT.  These
   measurements SHOULD be conducted in both directions, especially in
   asymmetrical access networks (e.g., Asymmetric Bit-Rate DSL (ADSL)
   access).  These tests SHOULD be performed at various intervals
   throughout a business day or even across a week.

   Testing at various time intervals would provide a better
   characterization of TCP Throughput and better diagnosis insight (for
   cases where there are TCP performance issues).  The bandwidth tests
   SHOULD produce logged outputs of the achieved bandwidths across the
   complete test duration.

   There are many well-established techniques available to provide
   estimated measures of bandwidth over a network.  It is a common
   practice for network providers to conduct Layer 2/3 bandwidth
   capacity tests using [RFC2544], although it is understood that
   [RFC2544] was never meant to be used outside a lab environment.
   These bandwidth measurements SHOULD use network capacity techniques
   as defined in [RFC5136].

3.3.  Measuring TCP Throughput

   This methodology specifically defines TCP Throughput measurement
   techniques to verify maximum achievable TCP performance in a managed
   business-class IP network.

   With baseline measurements of RTT and BB from Section 3.2, a series
   of single- and/or multiple-TCP-connection throughput tests SHOULD be
   conducted.

   The number of trials and the choice between single or multiple TCP
   connections will be based on the intention of the test.  A single-
   TCP-connection test might be enough to measure the achievable
   throughput of Metro Ethernet connectivity.  However, it is important

   to note that various traffic management techniques can be used in an
   IP network and that some of those techniques can only be tested with
   multiple connections.  As an example, multiple TCP sessions might be
   required to detect traffic shaping versus policing.  Multiple
   sessions might also be needed to measure Active Queue Management
   performance.  However, traffic management testing is not within the
   scope of this test methodology.

   In all circumstances, it is RECOMMENDED to run the tests in each
   direction independently first and then to run them in both directions
   simultaneously.  It is also RECOMMENDED to run the tests at different
   times of the day.

   In each case, the TCP Transfer Time Ratio, the TCP Efficiency
   Percentage, and the Buffer Delay Percentage MUST be measured in each
   direction.  These 3 metrics are defined in Section 4.

3.3.1.  Minimum TCP RWND

   The TCP TTD MUST allow the Send Socket Buffer and Receive Window
   sizes to be set higher than the BDP; otherwise, TCP performance will
   be limited.  In the business customer environment, these settings are
   not generally adjustable by the average user.  These settings are
   either hard-coded in the application or configured within the OS as
   part of a corporate image.  In many cases, the user's host Send
   Socket Buffer and Receive Window size settings are not optimal.

   This section provides derivations of BDPs under various network
   conditions.  It also provides examples of achievable TCP Throughput
   with various TCP RWND sizes.  This provides important guidelines
   showing what can be achieved with settings higher than the BDP,
   versus what would be achieved in a variety of real-world conditions.

   The minimum required TCP RWND size can be calculated from the
   Bandwidth-Delay Product (BDP), which is as follows:

      BDP (bits) = RTT (sec) X BB (bps)

   Note that the RTT is being used as the "Delay" variable for the BDP.
   Then, by dividing the BDP by 8, we obtain the minimum required TCP
   RWND size in Bytes.  For optimal results, the Send Socket Buffer MUST
   be adjusted to the same value at each end of the network.

      Minimum required TCP RWND = BDP / 8

   As an example, on a T3 link with 25-ms RTT, the BDP would equal
   ~1,105,000 bits, and the minimum required TCP RWND would be ~138 KB.

   Note that separate calculations are REQUIRED on asymmetrical paths.
   An asymmetrical-path example would be a 90-ms RTT ADSL line with 5
   Mbps downstream and 640 Kbps upstream.  The downstream BDP would
   equal ~450,000 bits, while the upstream one would be only
   ~57,600 bits.

   The following table provides some representative network link speeds,
   RTT, BDP, and their associated minimum required TCP RWND sizes.

       Link                                        Minimum Required
       Speed*        RTT              BDP             TCP RWND
       (Mbps)        (ms)            (bits)           (KBytes)
   --------------------------------------------------------------------
        1.536        20.00           30,720              3.84
        1.536        50.00           76,800              9.60
        1.536       100.00          153,600             19.20
       44.210        10.00          442,100             55.26
       44.210        15.00          663,150             82.89
       44.210        25.00        1,105,250            138.16
      100.000         1.00          100,000             12.50
      100.000         2.00          200,000             25.00
      100.000         5.00          500,000             62.50
    1,000.000         0.10          100,000             12.50
    1,000.000         0.50          500,000             62.50
    1,000.000         1.00        1,000,000            125.00
   10,000.000         0.05          500,000             62.50
   10,000.000         0.30        3,000,000            375.00

   * Note that link speed is the BB for the NUT

    Table 3.3.1. Link Speed, RTT, Calculated BDP, and Minimum TCP RWND

   In the above table, the following serial link speeds are used:

      - T1 = 1.536 Mbps (for a B8ZS line encoding facility)
      - T3 = 44.21 Mbps (for a C-Bit framing facility)

   The previous table illustrates the minimum required TCP RWND.  If a
   smaller TCP RWND size is used, then the TCP Throughput cannot be
   optimal.  To calculate the TCP Throughput, the following formula is
   used:

      TCP Throughput = TCP RWND X 8 / RTT

   An example could be a 100-Mbps IP path with 5-ms RTT and a TCP RWND
   of 16 KB; then:

      TCP Throughput = 16 KBytes X 8 bits / 5 ms
      TCP Throughput = 128,000 bits / 0.005 sec
      TCP Throughput = 25.6 Mbps

   Another example, for a T3 using the same calculation formula, is
   illustrated in Figure 3.3.1a:

      TCP Throughput = 16 KBytes X 8 bits / 10 ms
      TCP Throughput = 128,000 bits / 0.01 sec
      TCP Throughput = 12.8 Mbps*

   When the TCP RWND size exceeds the BDP (T3 link and 64-KByte TCP RWND
   on a 10-ms RTT path), the maximum Frames Per Second (FPS) limit of
   3664 is reached, and then the formula is:

      TCP Throughput = max FPS X (MTU - 40) X 8
      TCP Throughput = 3664 FPS X 1460 Bytes X 8 bits
      TCP Throughput = 42.8 Mbps**

   The following diagram compares achievable TCP Throughputs on a T3
   with Send Socket Buffer and TCP RWND sizes of 16 KB versus 64 KB.

             45|
               |           _______**42.8
             40|           |64KB |
    TCP        |           |     |
   Through-  35|           |     |
    put        |           |     |          +-----+34.1
   (Mbps)    30|           |     |          |64KB |
               |           |     |          |     |
             25|           |     |          |     |
               |           |     |          |     |
             20|           |     |          |     |          _______20.5
               |           |     |          |     |          |64KB |
             15|           |     |          |     |          |     |
               |*12.8+-----|     |          |     |          |     |
             10|     |16KB |     |          |     |          |     |
               |     |     |     |8.5 +-----|     |          |     |
              5|     |     |     |    |16KB |     |5.1 +-----|     |
               |_____|_____|_____|____|_____|_____|____|16KB |_____|____
                          10               15               25
                                  RTT (milliseconds)

         Figure 3.3.1a.  TCP Throughputs on a T3 at Different RTTs

   The following diagram shows the achievable TCP Throughput on a 25-ms
   T3 when Send Socket Buffer and TCP RWND sizes are increased.

             45|
               |
             40|                                            +-----+40.9
    TCP        |                                            |     |
   Through-  35|                                            |     |
    put        |                                            |     |
   (Mbps)    30|                                            |     |
               |                                            |     |
             25|                                            |     |
               |                                            |     |
             20|                               +-----+20.5  |     |
               |                               |     |      |     |
             15|                               |     |      |     |
               |                               |     |      |     |
             10|                  +-----+10.2  |     |      |     |
               |                  |     |      |     |      |     |
              5|     +-----+5.1   |     |      |     |      |     |
               |_____|_____|______|_____|______|_____|______|_____|_____
                       16           32           64            128*
                            TCP RWND Size (KBytes)

      * Note that 128 KB requires the [RFC1323] TCP Window Scale option.

      Figure 3.3.1b.  TCP Throughputs on a T3 with Different TCP RWND

4.  TCP Metrics

   This methodology focuses on a TCP Throughput and provides 3 basic
   metrics that can be used for better understanding of the results.  It
   is recognized that the complexity and unpredictability of TCP makes
   it very difficult to develop a complete set of metrics that accounts
   for the myriad of variables (i.e., RTT variations, loss conditions,
   TCP implementations, etc.).  However, these 3 metrics facilitate TCP
   Throughput comparisons under varying network conditions and host
   buffer size/RWND settings.

4.1.  Transfer Time Ratio

   The first metric is the TCP Transfer Time Ratio, which is simply the
   ratio between the Actual TCP Transfer Time versus the Ideal TCP
   Transfer Time.

   The Actual TCP Transfer Time is simply the time it takes to transfer
   a block of data across TCP connection(s).

   The Ideal TCP Transfer Time is the predicted time for which a block
   of data SHOULD transfer across TCP connection(s), considering the BB
   of the NUT.

                                 Actual TCP Transfer Time
      TCP Transfer Time Ratio =  -------------------------
                                 Ideal TCP Transfer Time

   The Ideal TCP Transfer Time is derived from the Maximum Achievable
   TCP Throughput, which is related to the BB and Layer 1/2/3/4
   overheads associated with the network path.  The following sections
   provide derivations for the Maximum Achievable TCP Throughput and
   example calculations for the TCP Transfer Time Ratio.

4.1.1.  Maximum Achievable TCP Throughput Calculation

   This section provides formulas to calculate the Maximum Achievable
   TCP Throughput, with examples for T3 (44.21 Mbps) and Ethernet.

   All calculations are based on IP version 4 with TCP/IP headers of 20
   Bytes each (20 for TCP + 20 for IP) within an MTU of 1500 Bytes.

   First, the maximum achievable Layer 2 throughput of a T3 interface is
   limited by the maximum quantity of Frames Per Second (FPS) permitted
   by the actual physical layer (Layer 1) speed.

   The calculation formula is:

      FPS = T3 Physical Speed / ((MTU + PPP + Flags + CRC16) X 8)

      FPS = (44.21 Mbps /
                 ((1500 Bytes + 4 Bytes + 2 Bytes + 2 Bytes) X 8 )))
      FPS = (44.21 Mbps / (1508 Bytes X 8))
      FPS = 44.21 Mbps / 12064 bits
      FPS = 3664

   Then, to obtain the Maximum Achievable TCP Throughput (Layer 4), we
   simply use:

      (MTU - 40) in Bytes X 8 bits X max FPS

   For a T3, the maximum TCP Throughput =

      1460 Bytes X 8 bits X 3664 FPS

      Maximum TCP Throughput = 11680 bits X 3664 FPS
      Maximum TCP Throughput = 42.8 Mbps

   On Ethernet, the maximum achievable Layer 2 throughput is limited by
   the maximum Frames Per Second permitted by the IEEE802.3 standard.

   The maximum FPS for 100-Mbps Ethernet is 8127, and the calculation
   formula is:

      FPS = (100 Mbps / (1538 Bytes X 8 bits))

   The maximum FPS for GigE is 81274, and the calculation formula is:

      FPS = (1 Gbps / (1538 Bytes X 8 bits))

   The maximum FPS for 10GigE is 812743, and the calculation formula is:

      FPS = (10 Gbps / (1538 Bytes X 8 bits))

   The 1538 Bytes equates to:

      MTU + Ethernet + CRC32 + IFG + Preamble + SFD
           (IFG = Inter-Frame Gap and SFD = Start of Frame Delimiter)

   where MTU is 1500 Bytes, Ethernet is 14 Bytes, CRC32 is 4 Bytes, IFG
   is 12 Bytes, Preamble is 7 Bytes, and SFD is 1 Byte.

   Then, to obtain the Maximum Achievable TCP Throughput (Layer 4), we
   simply use:

      (MTU - 40) in Bytes X 8 bits X max FPS

   For 100-Mbps Ethernet, the maximum TCP Throughput =

      1460 Bytes X 8 bits X 8127 FPS

      Maximum TCP Throughput = 11680 bits X 8127 FPS
      Maximum TCP Throughput = 94.9 Mbps

   It is important to note that better results could be obtained with
   jumbo frames on Gigabit and 10-Gigabit Ethernet interfaces.

4.1.2.  TCP Transfer Time and Transfer Time Ratio Calculation

   The following table illustrates the Ideal TCP Transfer Time of a
   single TCP connection when its TCP RWND and Send Socket Buffer sizes
   equal or exceed the BDP.

       Link                             Maximum            Ideal TCP
       Speed                   BDP      Achievable TCP     Transfer Time
       (Mbps)     RTT (ms)   (KBytes)   Throughput(Mbps)   (seconds)*
   --------------------------------------------------------------------
         1.536    50.00         9.6            1.4             571.0
        44.210    25.00       138.2           42.8              18.0
       100.000     2.00        25.0           94.9               9.0
     1,000.000     1.00       125.0          949.2               1.0
    10,000.000     0.05        62.5        9,492.0               0.1

    * Transfer times are rounded for simplicity.

          Table 4.1.2.  Link Speed, RTT, BDP, TCP Throughput, and
                 Ideal TCP Transfer Time for a 100-MB File

   For a 100-MB file (100 X 8 = 800 Mbits), the Ideal TCP Transfer Time
   is derived as follows:

                                          800 Mbits
      Ideal TCP Transfer Time = -----------------------------------
                                 Maximum Achievable TCP Throughput

   To illustrate the TCP Transfer Time Ratio, an example would be the
   bulk transfer of 100 MB over 5 simultaneous TCP connections  (each
   connection transferring 100 MB).  In this example, the Ethernet
   service provides a Committed Access Rate (CAR) of 500 Mbps.  Each
   connection may achieve different throughputs during a test, and the
   overall throughput rate is not always easy to determine (especially
   as the number of connections increases).

   The Ideal TCP Transfer Time would be ~8 seconds, but in this example,
   the Actual TCP Transfer Time was 12 seconds.  The TCP Transfer Time
   Ratio would then be 12/8 = 1.5, which indicates that the transfer
   across all connections took 1.5 times longer than the ideal.

4.2.  TCP Efficiency

   The second metric represents the percentage of Bytes that were not
   retransmitted.

                          Transmitted Bytes - Retransmitted Bytes
      TCP Efficiency % =  ---------------------------------------  X 100
                                   Transmitted Bytes

   Transmitted Bytes are the total number of TCP Bytes to be
   transmitted, including the original and the retransmitted Bytes.

4.2.1.  TCP Efficiency Percentage Calculation

   As an example, if 100,000 Bytes were sent and 2,000 had to be
   retransmitted, the TCP Efficiency Percentage would be calculated as:

                           102,000 - 2,000
      TCP Efficiency % =  -----------------  X 100 = 98.03%
                             102,000

   Note that the Retransmitted Bytes may have occurred more than once;
   if so, then these multiple retransmissions are added to the
   Retransmitted Bytes and to the Transmitted Bytes counts.

4.3.  Buffer Delay

   The third metric is the Buffer Delay Percentage, which represents the
   increase in RTT during a TCP Throughput test versus the inherent or
   baseline RTT.  The baseline RTT is the Round-Trip Time inherent to
   the network path under non-congested conditions as defined in
   Section 3.2.1.  The average RTT is derived from the total of all
   measured RTTs during the actual test at every second divided by the
   test duration in seconds.

                                      Total RTTs during transfer
      Average RTT during transfer = -----------------------------
                                     Transfer duration in seconds

                       Average RTT during transfer - Baseline RTT
      Buffer Delay % = ------------------------------------------ X 100
                                   Baseline RTT

4.3.1.  Buffer Delay Percentage Calculation

   As an example, consider a network path with a baseline RTT of 25 ms.
   During the course of a TCP transfer, the average RTT across the
   entire transfer increases to 32 ms.  Then, the Buffer Delay
   Percentage would be calculated as:

                       32 - 25
      Buffer Delay % = ------- X 100 = 28%
                         25

   Note that the TCP Transfer Time Ratio, TCP Efficiency Percentage, and
   the Buffer Delay Percentage MUST all be measured during each
   throughput test.  A poor TCP Transfer Time Ratio (i.e., Actual TCP
   Transfer Time greater than the Ideal TCP Transfer Time) may be
   diagnosed by correlating with sub-optimal TCP Efficiency Percentage
   and/or Buffer Delay Percentage metrics.

5.  Conducting TCP Throughput Tests

   Several TCP tools are currently used in the network world, and one of
   the most common is "iperf".  With this tool, hosts are installed at
   each end of the network path; one acts as a client and the other as a
   server.  The Send Socket Buffer and the TCP RWND sizes of both client
   and server can be manually set.  The achieved throughput can then be
   measured, either uni-directionally or bi-directionally.  For higher-
   BDP situations in lossy networks (Long Fat Networks (LFNs) or
   satellite links, etc.), TCP options such as Selective Acknowledgment
   SHOULD become part of the window size/throughput characterization.

   Host hardware performance must be well understood before conducting
   the tests described in the following sections.  A dedicated
   communications test instrument will generally be REQUIRED, especially
   for line rates of GigE and 10 GigE.  A compliant TCP TTD SHOULD
   provide a warning message when the expected test throughput will
   exceed the subscribed customer SLA.  If the throughput test is
   expected to exceed the subscribed customer SLA, then the test SHOULD
   be coordinated with the network provider.

   The TCP Throughput test SHOULD be run over a long enough duration to
   properly exercise network buffers (i.e., greater than 30 seconds) and
   SHOULD also characterize performance at different times of the day.

5.1.  Single versus Multiple TCP Connections

   The decision whether to conduct single- or multiple-TCP-connection
   tests depends upon the size of the BDP in relation to the TCP RWND
   configured in the end-user environment.  For example, if the BDP for

   a Long Fat Network (LFN) turns out to be 2 MB, then it is probably
   more realistic to test this network path with multiple connections.
   Assuming typical host TCP RWND sizes of 64 KB (e.g., Windows XP),
   using 32 TCP connections would emulate a small-office scenario.

   The following table is provided to illustrate the relationship
   between the TCP RWND and the number of TCP connections required to
   fill the available capacity of a given BDP.  For this example, the
   network bandwidth is 500 Mbps and the RTT is 5 ms; then, the BDP
   equates to 312.5 KBytes.

                              Number of TCP Connections
                  TCP RWND   to fill available bandwidth
                  --------------------------------------
                    16 KB             20
                    32 KB             10
                    64 KB              5
                   128 KB              3

           Table 5.1.  Number of TCP Connections versus TCP RWND

   The TCP Transfer Time Ratio metric is useful when conducting
   multiple-connection tests.  Each connection SHOULD be configured to
   transfer payloads of the same size (e.g., 100 MB); then, the TCP
   Transfer Time Ratio provides a simple metric to verify the actual
   versus expected results.

   Note that the TCP transfer time is the time required for each
   connection to complete the transfer of the predetermined payload
   size.  From the previous table, the 64-KB window is considered.  Each
   of the 5 TCP connections would be configured to transfer 100 MB, and
   each one should obtain a maximum of 100 Mbps.  So for this example,
   the 100-MB payload should be transferred across the connections in
   approximately 8 seconds (which would be the Ideal TCP Transfer Time
   under these conditions).

   Additionally, the TCP Efficiency Percentage metric MUST be computed
   for each connection as defined in Section 4.2.

5.2.  Results Interpretation

   At the end, a TCP Throughput Test Device (TCP TTD) SHOULD generate a
   report with the calculated BDP and a set of Window size experiments.
   Window size refers to the minimum of the Send Socket Buffer and TCP
   RWND.  The report SHOULD include TCP Throughput results for each TCP
   Window size tested.  The goal is to provide achievable versus actual
   TCP Throughput results with respect to the TCP Window size when no
   fragmentation occurs.  The report SHOULD also include the results for

   the 3 metrics defined in Section 4.  The goal is to provide a clear
   relationship between these 3 metrics and user experience.  As an
   example, for the same results in regard to Transfer Time Ratio, a
   better TCP Efficiency could be obtained at the cost of higher Buffer
   Delays.

   For cases where the test results are not equal to the ideal values,
   some possible causes are as follows:

   - Network congestion causing packet loss, which may be inferred from
     a poor TCP Efficiency % (i.e., higher TCP Efficiency % = less
     packet loss).

   - Network congestion causing an increase in RTT, which may be
     inferred from the Buffer Delay Percentage (i.e., 0% = no increase
     in RTT over baseline).

   - Intermediate network devices that actively regenerate the TCP
     connection and can alter TCP RWND size, MTU, etc.

   - Rate limiting by policing instead of shaping.

   - Maximum TCP Buffer Space.  All operating systems have a global
     mechanism to limit the quantity of system memory to be used by TCP
     connections.  On some systems, each connection is subject to a
     memory limit that is applied to the total memory used for input
     data, output data, and controls.  On other systems, there are
     separate limits for input and output buffer spaces per connection.
     Client/server IP hosts might be configured with Maximum TCP Buffer
     Space limits that are far too small for high-performance networks.

   - Socket Buffer sizes.  Most operating systems support separate
     per-connection send and receive buffer limits that can be adjusted
     as long as they stay within the maximum memory limits.  These
     socket buffers MUST be large enough to hold a full BDP of TCP Bytes
     plus some overhead.  There are several methods that can be used to
     adjust Socket Buffer sizes, but TCP Auto-Tuning automatically
     adjusts these as needed to optimally balance TCP performance and
     memory usage.

     It is important to note that Auto-Tuning is enabled by default in
     LINUX since kernel release 2.6.6 and in UNIX since FreeBSD 7.0.  It
     is also enabled by default in Windows since Vista and in Mac since
     OS X version 10.5 (Leopard).  Over-buffering can cause some
     applications to behave poorly, typically causing sluggish
     interactive response and introducing the risk of running the system
     out of memory.  Large default socket buffers have to be considered
     carefully on multi-user systems.

   - TCP Window Scale option [RFC1323].  This option enables TCP to
     support large BDP paths.  It provides a scale factor that is
     required for TCP to support window sizes larger than 64 KB.  Most
     systems automatically request WSCALE under some conditions, such as
     when the Receive Socket Buffer is larger than 64 KB or when the
     other end of the TCP connection requests it first.  WSCALE can only
     be negotiated during the 3-way handshake.  If either end fails to
     request WSCALE or requests an insufficient value, it cannot be
     renegotiated.  Different systems use different algorithms to select
     WSCALE, but it is very important to have large enough buffer sizes.
     Note that under these constraints, a client application wishing to
     send data at high rates may need to set its own receive buffer to
     something larger than 64 KBytes before it opens the connection, to
     ensure that the server properly negotiates WSCALE.  A system
     administrator might have to explicitly enable [RFC1323] extensions.
     Otherwise, the client/server IP host would not support TCP Window
     sizes (BDP) larger than 64 KB.  Most of the time, performance gains
     will be obtained by enabling this option in LFNs.

   - TCP Timestamps option [RFC1323].  This feature provides better
     measurements of the Round-Trip Time and protects TCP from data
     corruption that might occur if packets are delivered so late that
     the sequence numbers wrap before they are delivered.  Wrapped
     sequence numbers do not pose a serious risk below 100 Mbps, but the
     risk increases at higher data rates.  Most of the time, performance
     gains will be obtained by enabling this option in Gigabit-bandwidth
     networks.

   - TCP Selective Acknowledgments (SACK) option [RFC2018].  This allows
     a TCP receiver to inform the sender about exactly which data
     segment is missing and needs to be retransmitted.  Without SACK,
     TCP has to estimate which data segment is missing, which works just
     fine if all losses are isolated (i.e., only one loss in any given
     round trip).  Without SACK, TCP takes a very long time to recover
     after multiple and consecutive losses.  SACK is now supported by
     most operating systems, but it may have to be explicitly enabled by
     the system administrator.  In networks with unknown load and error
     patterns, TCP SACK will improve throughput performance.  On the
     other hand, security appliance vendors might have implemented TCP
     randomization without considering TCP SACK, and under such
     circumstances, SACK might need to be disabled in the client/server
     IP hosts until the vendor corrects the issue.  Also, poorly
     implemented SACK algorithms might cause extreme CPU loads and might
     need to be disabled.

   - Path MTU.  The client/server IP host system SHOULD use the largest
     possible MTU for the path.  This may require enabling Path MTU
     Discovery [RFC1191] and [RFC4821].  Since [RFC1191] is flawed, Path
     MTU Discovery is sometimes not enabled by default and may need to
     be explicitly enabled by the system administrator.  [RFC4821]
     describes a new, more robust algorithm for MTU discovery and ICMP
     black hole recovery.

   - TOE (TCP Offload Engine).  Some recent Network Interface Cards
     (NICs) are equipped with drivers that can do part or all of the
     TCP/IP protocol processing.  TOE implementations require additional
     work (i.e., hardware-specific socket manipulation) to set up and
     tear down connections.  Because TOE NIC configuration parameters
     are vendor-specific and not necessarily RFC-compliant, they are
     poorly integrated with UNIX and LINUX.  Occasionally, TOE might
     need to be disabled in a server because its NIC does not have
     enough memory resources to buffer thousands of connections.

   Note that both ends of a TCP connection MUST be properly tuned.

6.  Security Considerations

   Measuring TCP network performance raises security concerns.  Metrics
   produced within this framework may create security issues.

6.1.  Denial-of-Service Attacks

   TCP network performance metrics, as defined in this document, attempt
   to fill the NUT with a stateful connection.  However, since the test
   MAY use stateless IP streams as specified in Section 3.2.2, it might
   appear to network operators to be a denial-of-service attack.  Thus,
   as mentioned at the beginning of Section 3, TCP Throughput testing
   may require cooperation between the end-user customer and the network
   provider.

6.2.  User Data Confidentiality

   Metrics within this framework generate packets from a sample, rather
   than taking samples based on user data.  Thus, our framework does not
   threaten user data confidentiality.

6.3.  Interference with Metrics

   The security considerations that apply to any active measurement of
   live networks are relevant here as well.  See [RFC4656] and
   [RFC5357].

7.  Acknowledgments

   Thanks to Lars Eggert, Al Morton, Matt Mathis, Matt Zekauskas, Yaakov
   Stein, and Loki Jorgenson for many good comments and for pointing us
   to great sources of information pertaining to past works in the TCP
   capacity area.

8.  Normative References

   [RFC1191]   Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
               November 1990.

   [RFC1323]   Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
               for High Performance", RFC 1323, May 1992.

   [RFC2018]   Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
               Selective Acknowledgment Options", RFC 2018,
               October 1996.

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2544]   Bradner, S. and J. McQuaid, "Benchmarking Methodology for
               Network Interconnect Devices", RFC 2544, March 1999.

   [RFC4656]   Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
               Zekauskas, "A One-way Active Measurement Protocol
               (OWAMP)", RFC 4656, September 2006.

   [RFC4821]   Mathis, M. and J. Heffner, "Packetization Layer Path MTU
               Discovery", RFC 4821, March 2007.

   [RFC4898]   Mathis, M., Heffner, J., and R. Raghunarayan, "TCP
               Extended Statistics MIB", RFC 4898, May 2007.

   [RFC5136]   Chimento, P. and J. Ishac, "Defining Network Capacity",
               RFC 5136, February 2008.

   [RFC5357]   Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
               Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
               RFC 5357, October 2008.

Authors' Addresses

   Barry Constantine
   JDSU, Test and Measurement Division
   One Milesone Center Court
   Germantown, MD  20876-7100
   USA

   Phone: +1 240 404 2227
   EMail: barry.constantine@jdsu.com

   Gilles Forget
   Independent Consultant to Bell Canada
   308, rue de Monaco, St-Eustache
   Qc. J7P-4T5  CANADA

   Phone: (514) 895-8212
   EMail: gilles.forget@sympatico.ca

   Ruediger Geib
   Heinrich-Hertz-Strasse 3-7
   Darmstadt, 64295  Germany

   Phone: +49 6151 5812747
   EMail: Ruediger.Geib@telekom.de

   Reinhard Schrage
   Osterende 7
   Seelze, 30926
   Germany
   Schrage Consulting

   Phone: +49 (0) 5137 909540
   EMail: reinhard@schrageconsult.com

 

User Contributions:

Comment about this RFC, ask questions, or add new information about this topic: