faqs.org - Internet FAQ Archives

RFC 5371 - RTP Payload Format for JPEG 2000 Video Streams


Or Display the document by number




Network Working Group                                         S. Futemma
Request for Comments: 5371                                    E. Itakura
Category: Standards Track                                       A. Leung
                                                                    Sony
                                                            October 2008

             RTP Payload Format for JPEG 2000 Video Streams

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   This memo describes an RTP payload format for the ISO/IEC
   International Standard 15444-1 | ITU-T Rec. T.800, better known as
   JPEG 2000.  JPEG 2000 features are considered in the design of this
   payload format.  JPEG 2000 is a truly scalable compression technology
   allowing applications to encode once and decode many different ways.
   The JPEG 2000 video stream is formed by extending from a single image
   to a series of JPEG 2000 images.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Conventions Used in This Document  . . . . . . . . . . . .  6
   2.  JPEG 2000 Video Features . . . . . . . . . . . . . . . . . . .  6
   3.  Payload Design . . . . . . . . . . . . . . . . . . . . . . . .  6
   4.  Payload Format . . . . . . . . . . . . . . . . . . . . . . . .  7
     4.1.  RTP Fixed Header Usage . . . . . . . . . . . . . . . . . .  7
     4.2.  RTP Payload Header Format  . . . . . . . . . . . . . . . .  8
   5.  RTP Packetization  . . . . . . . . . . . . . . . . . . . . . . 10
   6.  Media Type Registration  . . . . . . . . . . . . . . . . . . . 11
   7.  SDP Parameters . . . . . . . . . . . . . . . . . . . . . . . . 14
     7.1.  SDP Mapping  . . . . . . . . . . . . . . . . . . . . . . . 14
     7.2.  Usage with the SDP Offer/Answer Model  . . . . . . . . . . 15
       7.2.1.  Examples . . . . . . . . . . . . . . . . . . . . . . . 16
       7.2.2.  Examples: Non-90kHz Timestamp  . . . . . . . . . . . . 16
   8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 17
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 17
   10. Congestion Control . . . . . . . . . . . . . . . . . . . . . . 18
   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19
     11.1. Normative References . . . . . . . . . . . . . . . . . . . 19
     11.2. Informative References . . . . . . . . . . . . . . . . . . 19
   Appendix A.  Informative Appendix  . . . . . . . . . . . . . . . . 21
     A.1.  Recommended Practices  . . . . . . . . . . . . . . . . . . 21
     A.2.  Sample Headers in Detail . . . . . . . . . . . . . . . . . 22
       A.2.1.  Sample 1: Progressive Image with Single Tile, 3500
               Bytes (i.e., thumbnail)  . . . . . . . . . . . . . . . 22
       A.2.2.  Sample 2: Image with 4 Tiles . . . . . . . . . . . . . 24
       A.2.3.  Sample 3: Packing Multiple Tiles in Single
               Payload, Fragmented Header . . . . . . . . . . . . . . 25
       A.2.4.  Sample 4: Interlace Image, Single Tile . . . . . . . . 27

1.  Introduction

   This document specifies a payload format for JPEG 2000 video streams
   over the Real-time Transport Protocol (RTP).  JPEG 2000 is an ISO/IEC
   International Standard and ITU-T Recommendation (ISO/IEC
   International Standard 15444-1 | ITU-T Rec. T.800) developed for
   next-generation, still-image compression.  JPEG stands for the Joint
   Photographers Experts Group, an international group made of academia
   and industry to develop image compression standards.  JPEG 2000 basic
   compression technology is defined in detail in ISO JPEG 2000 Part 1:
   Core Coding System [JPEG2000Pt_1], with motion defined in ISO JPEG
   2000 Part 3: Motion JPEG 2000 [JPEG2000Pt_3].

   Part 3 of the JPEG 2000 standard defines Motion JPEG 2000
   [JPEG2000Pt_3].  However, Motion JPEG 2000 defines a file format, not
   a transmission format for the network.  This document specifies a
   transmission format for the network for a series of JPEG 2000 images.

   JPEG 2000 supports many powerful features [JPEG2000Pt_1]
   [JPEG2000Pt_3] that are not supported in the current JPEG standard,
   such as:

   o  Higher compression efficiency than JPEG with less visual
      distortion especially at extreme compression ratios.

   o  A single codestream that offers both lossy and lossless
      compression.

   o  Better error resiliency than JPEG.

   o  Progressive transmission by pixel accuracy (Signal-to-Noise Ratio
      (SNR) scalability) and resolution (resolution scalability).

   o  Random codestream access and processing.

   The JPEG 2000 algorithm is briefly explained.  Figure 1 shows a block
   diagram of the JPEG 2000 encoding method.

                                                    +-----+
                                                    | ROI |
                                                    +-----+
                                                       |
                                                       V
                  +----------+   +----------+   +------------+
                  |DC, comp. |   | Wavelet  |   |            |
   Raw Image  ==> |transform-|==>|transform-|==>|Quantization|==+
                  |  ation   |   |  ation   |   |            |  |
                  +----------+   +----------+   +------------+  |
                                                                |
                 +-----------+   +----------+   +------------+  |
                 |           |   |          |   |            |  |
    JPEG 2000 <==| Data      |<==| Rate     |<==| EBCOT      |<=+
    codestream   | Ordering  |   | Control  |   |            |
                 +-----------+   +----------+   +------------+

             Figure 1: Block diagram of the JPEG 2000 encoder

   The image is first transformed into wavelet coefficients.  The image
   is sampled into various levels, vertically and horizontally, from
   high frequencies (which contain sharp details) to low frequencies
   (which contain smooth areas).  Quantization is performed on the
   coefficients within each sub-band.

   After quantization, code blocks are formed from within the precincts
   within the tiles.  (Precincts are a finer separation than tiles, and
   code blocks are the smallest separation of the image data.)  EBCOT
   coding (Embedded Block Coding Optimized for Truncation) is performed
   within each code block and arithmetically encoded by bit plane.  Rate
   control is performed to achieve the highest quality image for a
   specified rate.

   As a result, for a given tile, data units called JPEG 2000 packets
   are generated, which contain data from a specific layer, specific
   component, specific resolution, or specific precinct, depending on
   the data ordering.

   Finally, the JPEG 2000 packets are interleaved according to the
   progression along four axes: layer, resolution, component, and
   precinct.  A JPEG 2000 header is added to become a fully compliant
   JPEG 2000 codestream.

   To decompress a JPEG 2000 codestream, one would follow the reverse
   order of the encoding order, without the rate control.

   It is outside the scope of this document to further describe in
   detail this procedure.  Please refer to various JPEG 2000 related
   texts for further details [JPEG2000Pt_1].

   Figure 2 shows a JPEG 2000 codestream in detail.  A JPEG 2000
   codestream is structured from the main header, beginning with the SOC
   (Start Of Codestream) marker, one or more tiles, and the EOC (End Of
   Codestream) marker to indicate the end of the codestream.  Each tile
   consists of a tile-part header that starts with the SOT (Start of
   Tile) marker and ends with a SOD (Start of Data) marker, and
   bitstream (a series of JPEG 2000 packets).

           +--  +------------+
     Main  |    |    SOC     |  Required as the first marker
     header|    +------------+
           |    |    main    |  Main header marker segments
           +--  +------------+
           |    |    SOT     |  Required at the beginning of each
     Tile- |    +------------+    tile-part header
     part  |    |   T0,TP0   |  Tile 0, tile-part 0 header marker
     header|    +------------+    segments
           |    |    SOD     |  Required at the end of each tile-part
           +--  +------------+    header
                | bitstream  |  Tile-part bitstream
           +--  +------------+
           |    |    SOT     |
     Tile- |    +------------+
     part  |    |   T1,TP0   |
     header|    +------------+
           |    |    SOD     |
           +--  +------------+
                | bit stream |
                +------------+
                      .
                      .
                      .
                +------------+
                |    EOC     |  Required as the last marker in the
                +------------+  codestream

         Figure 2: Basic construction of the JPEG 2000 codestream

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  JPEG 2000 Video Features

   JPEG 2000 video streams are formed as a continuous series of JPEG
   2000 still images.  Previously described features of JPEG 2000 may be
   used effectively in streaming applications for a JPEG 2000 video.  A
   JPEG 2000 video stream has the following qualities:

   o  At low bit rates, the SNR is improved dramatically over JPEG and
      Motion JPEG.

   o  This is a full intra-frame format -- each frame is independently
      compressed -- and therefore has a low encoding and decoding delay.

   o  JPEG 2000 has flexible and accurate rate control.

   o  This is suitable for traffic control and congestion control during
      network transmission.

   o  JPEG 2000 can provide its own codestream error resilience markers
      to aid in codestream recovery outside of this specification.

3.  Payload Design

   To design a payload format that maximizes JPEG 2000 features, the
   following are taken into consideration:

   o  Provisions for packet loss:

      On the Internet, 5% packet loss is common and this percentage may
      vary up to 20% or more.  To split JPEG 2000 video streams into RTP
      packets, efficient packetization of the codestream is required to
      minimize problems in decoding due to missing packets.  If the main
      header is lost, the image cannot be decoded.

   o  JPEG 2000 Scalability

      JPEG 2000 has powerful scalability features and markers in the
      payload header to indicate the specific meaning of the payload,
      such as:

      *  Special markers for the headers, fragments of headers, etc.

      *  Tile numbering for association of packets.

      *  Since this is primarily for video applications, special markers
         are used to indicate format (i.e., interlace odd/even fields).

      *  Priority importance of the packet using methods described in
         RFC 5372 [RFC5372].

      *  Main header recovery using methods described in RFC 5372
         [RFC5372].

      Additional usage of the payload header is described in RFC 5372
      [RFC5372].

4.  Payload Format

4.1.  RTP Fixed Header Usage

   For each RTP packet, the RTP fixed header is followed by the JPEG
   2000 RTP payload header, which is followed by the payload, a piece of
   a JPEG 2000 codestream, which is usually a JPEG 2000 packet.

   The RTP header fields that have a meaning specific to a JPEG 2000
   video stream are described as follows:

   Marker bit (M):  The marker bit of the RTP fixed header MUST be set
      to 1 for the last RTP packet of a video frame; otherwise, it MUST
      be 0.  When transmission is performed by multiple RTP sessions,
      this bit is 1 in the last packet of the frame in each session.

   Payload type (PT):  The payload type is dynamically assigned by means
      outside the scope of this document.  A payload type in the dynamic
      range shall be chosen by means of an out-of-band signaling
      protocol (i.e., Real Time Streaming Protocol (RTSP), SIP, etc.).

   Timestamp:  Timestamp indicates the presentation time of the frame
      contained in the RTP packet.  The same timestamp value MUST appear
      in each RTP packet carrying a fragment of a given frame.  When a
      JPEG 2000 image is in interlace format, the odd field and the
      corresponding even field MUST have the same timestamp value.
      Following the RTP specification [RFC3550], the initial value of
      the timestamp should be randomly chosen.

      As for the clock rate, senders and receivers MUST support the
      90kHz RTP timestamp rate, and MAY support other rates.  RTP
      timestamp rates below 1000 Hz SHOULD NOT be used because they will
      result in insufficient resolution for RTP Control Protocol (RTCP)
      measurements based on the RTP timestamp, such as the interarrival

      jitter.  The clock rate MUST be negotiated at the start of the
      session.  When using the Session Description Protocol (SDP), it
      MUST be expressed using the "rtpmap" attributes.  If a non-90kHz
      clock rate is to be used, it is RECOMMENDED to present not only a
      preferable clock rate but also 90kHz clock rate with a different
      RTP payload type.

4.2.  RTP Payload Header Format

   The RTP payload header format for JPEG 2000 video stream is as
   follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |tp |MHF|mh_id|T|     priority  |           tile number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |reserved       |             fragment offset                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: RTP payload header format for JPEG 2000

   tp (type): 2 bits

      This field indicates how a JPEG 2000 image is scanned (progressive
      or interlace).

         0: The payload is progressively scanned.

         1: The payload is part of an odd field of an interlaced video
         frame.  The height specified in the JPEG 2000 main header is
         half of the height of the entire displayed image.  In a
         receiver, an odd field should be de-interlaced with the even
         field following it so that lines from each image are displayed
         alternately.

         2: The payload is part of an even field of an interlaced video
         signal.

   MHF (Main Header Flag): 2 bits

      MHF indicates whether a main header or packet of a main header is
      in the RTP packet.

       If there is no header, MHF has a value of 0.  If there is just a
       part of a fragmented header, MHF has a value of 1.  If there is
      the last part of a fragmented header, MHF has value of 2.  If the
             whole header is in the packet, MHF has a value of 3.

             +-----------+----------------------------------+
             | MHF Value | Description                      |
             +-----------+----------------------------------+
             |     0     | no main header in the payload    |
             |     1     | piece of fragmented header       |
             |     2     | last part of a fragmented header |
             |     3     | a whole main header              |
             +-----------+----------------------------------+

                          Table 1: MHF Usage Values

   mh_id (Main Header Identification): 3 bits

      Main header identification value.  This is used for JPEG 2000 main
      header recovery.

      For implementations following only this specification, the sender
      SHOULD set this value to 0 and the receiver SHOULD ignore this
      field on processing.

   T (Tile field invalidation flag): 1 bit

      The T bit indicates whether the tile number field is valid or
      invalid.  A sender MUST set the T bit to 1 when invalid and 0 when
      valid.

      There are two cases where the tile number field is invalid:

      *  When an RTP packet holds only the main header.  A sender cannot
         set any number in the tile number field, as no JPEG 2000 tile-
         part bitstream is included in the RTP packet.

      *  Multiple tile-parts are packed together in a single payload.
         If there are multiple tiles packed into a single payload, there
         is no meaning to assign a number to the tile number field.

   priority: 8 bits

      The priority field indicates the importance of the JPEG 2000
      packet included in the payload.  Typically, a higher priority
      value is set in the packets containing JPEG 2000 packets that
      contain the lower sub-bands.

      For implementations following only this specification, the sender
      SHOULD set this value to 255 and the receiver SHOULD ignore this
      field on processing.

   tile number: 16 bits

      This field shows the tile number of the payload.  This field is
      only valid when the T bit is 0.  If the T bit is set to 1, the
      receiver MUST ignore this field.

   R (Reserved): 8 bits

      This bit is reserved for future use.  Senders MUST set this to 0.
      Receivers MUST ignore this field.

   fragment offset: 24 bits

      This value MUST be set to the byte offset of the current payload
      in relation to the very beginning of each JPEG 2000 codestream
      (JPEG 2000 frame).

      Byte offsets are calculated from the start of each JPEG 2000
      codestream up to the current position where the current payload
      would fit into the complete JPEG 2000 codestream.

      To perform scalable video delivery by using multiple RTP sessions,
      the offset value from the first byte of the same frame is set for
      fragment offset.  It is then possible to deliver layered video
      using multiple RTP sessions; the fragment offset might not start
      from 0 in some RTP sessions even if the packet is the first one
      received in the RTP session.

5.  RTP Packetization

   The sender must packetize the JPEG 2000 appropriately according to
   initial media type parameters and/or details from SDP offer/answer
   parameters.

   A "packetization unit" is defined as either a JPEG 2000 main header,
   a tile-part header, or a JPEG 2000 packet.

   First, a sender divides the JPEG 2000 codestream into packetization
   units by parsing the codestream or by getting information from the
   encoder, and packs the packetization units into RTP packets.  A
   sender can put an arbitrary number of packetization units into an RTP
   packet, but it MUST preserve the codestream order.  An example of
   this kind of RTP packet format is shown in Figure 4:

   +------+-------+---------------+---------------+
   |RTP   |payload| packetization | packetization |
   |header|header | unit          | unit          |
   +------+-------+---------------+---------------+

          Figure 4: An example with multiple packetization units

   If a packetization unit with headers (IP header, RTP header, and
   payload header) is larger than the MTU size, it MAY be fragmented.
   To pack a fragmented packetization unit, the fragmented unit MUST NOT
   be packed with the succeeding packetization unit within the same RTP
   packet.  An example of this kind of RTP packet format is shown in
   Figure 5:

   +------+-------+-------------------------------------------------+
   |RTP   |payload| packetization unit fragment                     |
   |header|header |                                                 |
   +------+-------+-------------------------------------------------+
   +------+-------+-------------------------------------------------+
   |RTP   |payload| packetization unit fragment                     |
   |header|header |                                                 |
   +------+-------+-------------------------------------------------+
              .
              .
              .
   +------+-------+------------------------------------+
   |RTP   |payload| end of packetization unit fragment |
   |header|header |                                    |
   +------+-------+------------------------------------+

         Figure 5: An example with a fragmented packetization unit

6.  Media Type Registration

   This registration uses the template defined in [RFC4288] and follows
   [RFC4855].

   Type name: video

   Subtype name: jpeg2000

   Required parameters:

      rate:  The RTP timestamp clock rate.  The default rate is 90000,
         but other rates MAY be specified.  Rates below 1000 Hz SHOULD
         NOT be used.

      sampling:  A list of values specifying the color space of the
         payload data.

         Acceptable values:

            RGB:  standard Red, Green, Blue color space.

            BGR:  standard Blue, Green, Red color space.

            RGBA:  standard Red, Green, Blue, Alpha color space.

            BGRA:  standard Blue, Green, Red, Alpha color space.

            YCbCr-4:4:4:  standard YCbCr color space; no subsampling.

            YCbCr-4:2:2:  standard YCbCr color space; Cb and Cr are
               subsampled horizontally by 1/2.

            YCbCr-4:2:0:  standard YCbCr color space; Cb and Cr are
               subsampled horizontally and vertically by 1/2.

            YCbCr-4:1:1:  standard YCbCr color space; Cb and Cr are
               subsampled vertically by 1/4.

            GRAYSCALE:  basically, a single component image of just
               multilevels of grey.

            EXTENSION VALUE:  Additional color samplings can be
               registered with the current listing of registered color
               samplings at: Color Sampling Registration Authority.
               Please refer to RTP Format for Uncompressed Video
               [RFC4175].

   Optional parameters:

      interlace:  Interlace scanning.  If the payload is in interlace
         format, the acceptable value is "1"; otherwise, the value
         should be "0".  Each complete image forms, vertically, half the
         display.  The tp value MUST properly specify the field the
         image represents: odd(tp=1) or even(tp=2).  If this option is

         not present, the payload MUST be in progressive format and the
         tp MUST be set to 0.

      width:  A parameter describing the maximum width of the video
         stream.  This parameter MUST appear when height is present.
         Acceptable values: -- an integer value between 0 --
         4,294,967,295.

      height:  A parameter describing the maximum height of the video
         stream.  This parameter MUST appear when width is present.
         Acceptable values: -- an integer value between 0 --
         4,294,967,295.

   The receiver MUST ignore any unspecified parameters.

   Encoding considerations:

      This media type is framed and binary, see Section 4.8 of
      [RFC4288].

   Security considerations: See Section 9 of this document.

   Interoperability considerations:

      The JPEG 2000 video stream is a sequence of JPEG 2000 still
      images.  An implementation compliant with [JPEG2000Pt_1] can
      decode and attempt to display the encoded JPEG 2000 video stream.

   Published specification: ISO/IEC 15444-1 | ITU-T Rec. T.800

   Applications that use this media type:

      video streaming and communication

   Person and email address to contact for further information:

      Eisaburo Itakura, Satoshi Futemma, Andrew Leung
      Email: itakura@sm.sony.co.jp, satosi-f@sm.sony.co.jp,
      andrew@ualberta.net

   Intended usage: COMMON

   Restrictions on Usage:

      This media type depends on RTP framing, and hence is only defined
      for the transfer via RTP [RFC3550].  Transport within other
      framing protocols is not defined at the time.

   Author/Change Controller:

      Author:

         Eisaburo Itakura, Satoshi Futemma, Andrew Leung
         Email: itakura@sm.sony.co.jp, satosi-f@sm.sony.co.jp,
         andrew@ualberta.net

      Change controller:

         IETF Audio/Video Transport Working Group delegated from the
         IESG.

7.  SDP Parameters

7.1.  SDP Mapping

   The media type video/jpeg2000 string is mapped to fields in the
   Session Description Protocol (SDP) [RFC4566] as follows:

   o  The media name in the "m=" line of SDP MUST be video.

   o  The encoding name in the "a=rtpmap" line of SDP MUST be jpeg2000
      (the subtype).

   o  The clock rate in the "a=rtpmap" line is set according to the
      "rate" parameter.  Senders that wish to use a non-90kHz rate
      SHOULD also offer the same stream using a 90kHz timestamp rate
      with a different RTP payload type, allowing graceful fallback to
      90kHz for compatibility.

   o  The REQUIRED parameter, "sampling", MUST be included in the
      "a=fmtp" line of SDP.

   o  The OPTIONAL parameters, if presented, MUST be included in the
      "a=fmtp" line of SDP.

   These parameters are expressed as a media type string, in the form of
   a semicolon separated list of parameter=value pairs.

   Therefore, an example of media representation in SDP using typical
   parameters is as follows:

      m=video 49170/2 RTP/AVP 98
      a=rtpmap:98 jpeg2000/90000
      a=fmtp:98 sampling=YCbCr-4:2:0;width=128;height=128

   An example for using non-90kHz timestamp is as follows:

      m=video 49170/2 RTP/AVP 98 99
      a=rtpmap:98 jpeg2000/27000000
      a=rtpmap:99 jpeg2000/90000
      a=fmtp:98 sampling=YCbCr-4:2:0;width=128;height=128
      a=fmtp:99 sampling=YCbCr-4:2:0;width=128;height=128

7.2.  Usage with the SDP Offer/Answer Model

   When offering JPEG 2000 over RTP using SDP in an Offer/Answer model
   [RFC3264], the following rules and limitations apply:

   o  All parameters MUST have an acceptable value for the parameter.

   o  All parameters MUST correspond to the parameters of the payload.

   o  The parameter "sampling" with an acceptable answer MUST appear in
      the offer and in the answer if accepted by the receiver.  The
      receiver SHOULD do its best to handle the received codestream in
      the color space offered.  If the receiver cannot handle the
      offered color space for whatever reason, it should reply with its
      preferred color space in the answer and gracefully end the
      session.  Senders do not need to conform to the color space in the
      answer, but they should take note that the session ended due to
      color sampling issues.

   o  For optional parameter "interlace", if this option is used, it
      MUST appear in the offer and, if accepted, it SHOULD appear in the
      answer.  Receivers should do their best to handle interlace or
      progressive codestreams but, if for some reason, receivers cannot
      accommodate, receivers should reply with preferred settings in the
      answer, then gracefully end the session.  Senders do not need to
      adjust settings upon this answer, but they should take note that
      the session ended due to interlace or progressive issues.

   o  For optional parameters "width" and "height", the following
      applies:

      *  if "width" appears in the offer or answer, "height" MUST be
         present.

      *  if "height" appears in the offer or answer, "width" MUST be
         present.

   o  Width and height should appear in the offer as the maximum
      dimensions the sender can offer.  In the answer, it SHOULD
      represent the maximum the receiver can accommodate.  If there is a

      difference between the offer and answer, the sender should re-
      offer a new width and height and appropriately scale down the
      codestream for the receiver.

   o  In a multicast environment, [RFC1112] receivers should do their
      best to conform to parameters in the offer from the sender.
      Senders should use recommended settings in multicast environments
      and take note of answers.  For width and height, the sender should
      accommodate to the lowest values it receives from all answers.

   o  Any unknown options in the offer should be ignored and deleted
      from the answer.

7.2.1.  Examples

   Example offer/answer exchanges are provided.

   Alice offers YCbCr 4:2:2 color space, interlace image with 720-pixel
   width and 480-pixel height as below:

      v=0
      o=alice 2890844526 2890844526 IN IP4 host.example
      s=
      c=IN IP4 host.example
      t=0 0
      m=video 49170 RTP/AVP 98
      a=rtpmap:98 jpeg2000/90000
      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480

   Bob accepts YCbCr-4:2:2 color space, interlace image and replies:

      v=0
      o=bob 2890844730 2890844731 IN IP4 host.example
      s=
      c=IN IP4 host.example
      t=0 0
      m=video 49920 RTP/AVP 98
      a=rtpmap:98 jpeg2000/90000
      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480

7.2.2.  Examples: Non-90kHz Timestamp

   Example offer/answer exchanges, where an offerer wishes to use non-
   90kHz timestamp, are provided.

   Alice offers an RTP payload type with 27MHz clock rate as well as
   with 90kHz clock rate, and each payload type includes: YCbCr 4:2:2
   color space, interlace image, 720-pixel width and 480-pixel height.

   She puts 27MHz clock rate attributes prior to 90kHz because she wants
   to use 27 MHz rather than 90kHz.

      v=0
      o=alice 2890844526 2890844526 IN IP4 host.example
      s=
      c=IN IP4 host.example
      t=0 0
      m=video 49170 RTP/AVP 98 99
      a=rtpmap:98 jpeg2000/27000000
      a=rtpmap:99 jpeg2000/90000
      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480
      a=fmtp:99 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480

   If Bob can accept 27MHz clock rate, he replies as below:

      v=0
      o=bob 2890844730 2890844731 IN IP4 host.example
      s=
      c=IN IP4 host.example
      t=0 0
      m=video 49920 RTP/AVP 98
      a=rtpmap:98 jpeg2000/27000000
      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480

   If Bob doesn't accept 27MHz clock rate, he replies as below:

      v=0
      o=bob 2890844730 2890844731 IN IP4 host.example
      s=
      c=IN IP4 host.example
      t=0 0
      m=video 49920 RTP/AVP 99
      a=rtpmap:99 jpeg2000/90000
      a=fmtp:99 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480

8.  IANA Considerations

   A new media subtype (video/jpeg2000) has been registered by IANA.
   For details, see Section 6 of this document.

9.  Security Considerations

   RTP packets using the payload format defined in this specification
   are subject to the security considerations discussed in the RTP
   specification [RFC3550], and in any applicable RTP profile.  The main
   security considerations for the RTP packet carrying the RTP payload
   format defined within this memo are confidentiality, integrity, and

   source authenticity.  Confidentiality is achieved by encryption of
   the RTP payload.  Integrity of the RTP packets is through the use of
   suitable cryptographic integrity protection mechanism.  A
   cryptographic system may also allow the authentication of the source
   of the payload.  A suitable security mechanism for this RTP payload
   format should provide confidentiality, integrity protection, and at
   least a source authentication method capable of determining whether
   or not an RTP packet is from a member of the RTP session.

   Note that the appropriate mechanism to provide security to RTP and
   payloads following this memo may vary.  It is dependent on the
   application, the transport, and the signaling protocol employed.
   Therefore, a single mechanism is not sufficient, although if
   suitable, the usage of SRTP [RFC3711] is recommended.  Other
   mechanism that may be used are IPsec [RFC4301] and Transport Layer
   Security (TLS) [RFC5246] (RTP over TCP), but other alternatives may
   also exist.

10.  Congestion Control

   If Quality of Service (QoS) enhanced service is used, RTP receivers
   SHOULD monitor packet loss to ensure that the service that was
   requested is actually being delivered.  If it is not, then they
   SHOULD assume that they are receiving best-effort service and behave
   accordingly.

   If best-effort service is being used, users of this payload format
   MUST monitor packet loss to ensure that the packet loss rate is
   within acceptable parameters.  Packet loss is considered acceptable
   if a TCP flow across the same network path, experiencing the same
   network conditions, would achieve an average throughput, measured on
   a reasonable timescale, that is not less than the RTP flow is
   achieving.  This condition can be satisfied by implementing
   congestion control mechanisms to adapt the transmission rate (or the
   number of layers subscribed for a layered multicast session), or by
   arranging for a receiver to leave the session if the loss rate is
   unacceptably high.

11.  References

11.1.  Normative References

   [JPEG2000Pt_1]  ISO/IEC JTC1/SC29, ISO/IEC 15444-1 | ITU-T Rec.
                   T.800, "Information Technology - JPEG 2000 Image
                   Coding System - Part 1: Core Coding System",
                   December 2000.

   [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                   Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3550]       Schulzrinne, H., Casner, S., Frederick, R., and V.
                   Jacobson, "RTP: A Transport Protocol for Real-Time
                   Applications", STD 64, RFC 3550, July 2003.

   [RFC3711]       Baugher, M., McGrew, D., Naslund, M., Carrara, E.,
                   and K. Norrman, "The Secure Real-time Transport
                   Protocol (SRTP)", RFC 3711, March 2004.

   [RFC4288]       Freed, N. and J. Klensin, "Media Type Specifications
                   and Registration Procedures", BCP 13, RFC 4288,
                   December 2005.

   [RFC4855]       Casner, S., "Media Type Registration of RTP Payload
                   Formats", RFC 4855, February 2007.

   [RFC4566]       Handley, M., Jacobson, V., and C. Perkins, "SDP:
                   Session Description Protocol", RFC 4566, July 2006.

   [RFC3264]       Rosenberg, J. and H. Schulzrinne, "An Offer/Answer
                   Model with Session Description Protocol (SDP)",
                   RFC 3264, June 2002.

11.2.  Informative References

   [JPEG2000Pt_3]  ISO/IEC JTC1/SC29, ISO/IEC 15444-1 | ITU-T Rec.
                   T.800, "Information Technology - JPEG 2000 Image
                   Coding System -  Part 3: Motion JPEG 2000",
                   July 2002.

   [RFC5372]       Leung, A., Futemma, S., and E. Itakura, "Payload
                   Format for JPEG 2000 Video: Extensions for
                   Scalability and Main  Header Recovery", RFC 5372,
                   October 2008.

   [RFC4301]       Kent, S. and K. Seo, "Security Architecture for the
                   Internet Protocol", RFC 4301, December 2005.

   [RFC5246]       Dierks, T. and E. Rescorla, "The Transport Layer
                   Security (TLS) Protocol Version 1.2", RFC 5246,
                   August 2008.

   [RFC4175]       Gharai, L. and C. Perkins, "RTP Payload Format for
                   Uncompressed Video", RFC 4175, September 2005.

   [RFC1112]       Deering, S., "Host extensions for IP multicasting",
                   STD 5, RFC 1112, August 1989.

Appendix A.  Informative Appendix

A.1.  Recommended Practices

   As the JPEG 2000 coding standard is highly flexible, many different
   but compliant data streams may be produced and still be compliant
   JPEG 2000 codestreams.

   The following is a set of recommendations set forth from our
   experience in developing JPEG 2000 and this payload specification.
   Implementations of this standard must handle all possibilities
   mentioned in this specification.  The following is a listing of items
   an implementation may optimize.

   Error Resilience Markers:  The use of error resilience markers in the
      JPEG 2000 data stream is highly recommended in all situations.
      Error recovery with these markers is helpful to the decoder and
      saves external resources (e.g., markers such as RESET, RESTART,
      and ERTERM).

   YCbCr Color Space:  The YCbCr color space provides the greatest
      amount of compression in color with respect to the human visual
      system.  When used with JPEG 2000, this color space can provide
      excellent visual results at low bit rates.

   Progression Ordering:  JPEG 2000 offers many different ways to order
      the final code stream to optimize the transfer with the
      presentation.  We have found that the most useful codestream
      ordering is layer progression and resolution progression ordering.

   Tiling and Packets:  JPEG 2000 packets are formed regardless of the
      encoding method.  The encoder has little control over the size of
      these JPEG 2000 packets as they may be large or small.
      Tiling splits the image into smaller areas and each is encoded
      separately.  With tiles, the JPEG 2000 packet sizes are also
      reduced.  When using tiling, almost all JPEG 2000 packet sizes are
      an acceptable size for transmission (i.e., smaller than the MTU
      size of most networks).

   Sender Processing:  There are no limitations as to how the sender
      should pack the payload.  In general, the sender should pack
      headers separately from the rest of the codestream to make header
      recovery simple.  Payloads should generally begin with a Start of
      Packet (SOP) marker and end with an End of Packet Header (EPH)
      marker for easier decoder processing.

A.2.  Sample Headers in Detail

   This section has various sample headers in various configurations for
   reference.

   For reference, the payload header is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |tp |MHF|mh_id|T|     priority  |           tile number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |reserved       |             fragment offset                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 6: JPEG 2000 Payload Header

A.2.1.  Sample 1: Progressive Image with Single Tile, 3500 Bytes (i.e.,
        thumbnail)

   First Packet: This packet will have the whole main header 210 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 3 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                       0                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF4F FF51 002F 000 ....                                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 7: Header Sample 1-1 (First Packet)

   Second Packet: This packet will have a tile header and the first tile
   part LLband 1500 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 3 |  0  |0|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                      210                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0000 0000 2DB3 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 8: Header Sample 1-2 (Second Packet)

   Third Packet: This packet will have the next part in the tile, no
   tile header 1500 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     1710                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E841 4526 4556 9850 C2EA ...                                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 9: Header Sample 1-3 (Third Packet)

   Fourth Packet: Last packet for the image 290 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     3210                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |A55D 8B73 3B25 25C7 B9EB ...                          2FBE B153|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 10: Header Sample 1-4 (4th Packet)

A.2.2.  Sample 2: Image with 4 Tiles

   First Packet: This packet will have the whole main header. 210 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 3 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                       0                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF4F FF51 002F 000 ...                                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 11: Header Sample 2-1 (First Packet)

   Second Packet: This packet will have a first tile part (tile 0) 1400
   bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                      210                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0000 0000 0578 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 12: Header Sample 2-2 (Second Packet)

   Third Packet: This packet will have a second tile part (tile 1) 1423
   bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               1               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     1610                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0001 0000 058F 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 13: Header Sample 2-3 (Third Packet)

   Fourth Packet: This packet will have a third tile part (tile 2) 1355
   bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               2               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     3033                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0002 0000 054B 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 14: Header Sample 2-4 (4th Packet)

   Fifth Packet: This packet will have a fourth tile part (tile 3) 1290
   bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               3               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     4388                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0003 0000 050A 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 15: Header Sample 2-5 (5th Packet)

A.2.3.  Sample 3: Packing Multiple Tiles in Single Payload, Fragmented
        Header

   First Packet: This packet will have the first part of the main header
   110 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 1 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                       0                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF4F FF51 002F 000 ...                                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 16: Header Sample 3-1 (First Packet)

   Second Packet: This packet has the second part of the header 1400
   bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 2 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                      110                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF64 00FF ...                                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 17: Header Sample 3-2 (Second Packet)

   Third Packet: This packet has two tiles, tile 0 and tile 1 1400 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     1510                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0000 0000 02BC 0001 FF93 ...                         |
   //                                                             //
   |FF90 000A 0001 0000 02BC 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 18: Header Sample 3-3 (Third Packet)

   Fourth Packet: This packet has one tile, tile 2 1395 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0 | 0 |  0  |0|      255      |               2               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     2910                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0002 0000 0573 0001 FF93 ...                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 19: Header Sample 3-4 (4th Packet)

A.2.4.  Sample 4: Interlace Image, Single Tile

   First packet: This packet will have the whole main header for the odd
   field 210 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 1 | 3 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                       0                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF4F FF51 002F 000 ...                                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 20: Header Sample 4-1 (First Packet)

   Second packet: This packet will have the first part of the odd
   field's tile 1400 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 1 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                      210                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0000 0000 0578  0001 FF93 ...                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 21: Header Sample 4-2 (Second Packet)

   Third packet: This packet will have the second part of the odd
   field's tile 1400 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 1 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     1610                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |7F04 E708 27D9 D11D 22CB ...                                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 22: Header Sample 4-3 (Third Packet)

   Fourth packet: This packet will have the third part of the odd
   field's tile 1300 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 1 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     3010                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |98BD EC9B 2826 DC62 D4AB ...                                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 23: Header Sample 4-4 (4th Packet)

   Fifth packet: This packet will have the whole main header for the
   even field 210 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 2 | 3 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                       0                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF4F FF51 002F 000 ...                                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 24: Header Sample 4-5 (5th Packet)

   Sixth packet: This packet will have the first part of the even
   field's tile 1400 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 2 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                      210                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |FF90 000A 0000 0000 0578  0001 FF93 ...                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 25: Header Sample 4-6 (6th Packet)

   Seventh packet: This packet will have the second part of the even
   field's tile 1400 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 2 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     1610                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |626C 42F0 166B 6BD0 F8E1 ...                                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 26: Header Sample 4-7 (7th Packet)

   Eighth packet: This packet will have the third part of the even
   field's tile 1300 bytes

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 2 | 0 |  0  |1|      255      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |                     3010                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |8114 41D5 18AB 4A1B ...                                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 27: Header Sample 4-8 (8th Packet)

Authors' Addresses

   Satoshi Futemma
   Sony Corporation
   1-7-1 Konan
   Minato-ku
   Tokyo  108-0075
   Japan

   Phone: +81 3 6748-2111
   EMail: satosi-f@sm.sony.co.jp
   URI:   http://www.sony.net/

   Eisaburo Itakura
   Sony Corporation
   1-7-1 Konan
   Minato-ku
   Tokyo  108-0075
   Japan

   Phone: +81 3 6748-2111
   EMail: itakura@sm.sony.co.jp
   URI:   http://www.sony.net/

   Andrew Leung
   Sony Corporation

   EMail: andrew@ualberta.net

Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

 

User Contributions:

Comment about this RFC, ask questions, or add new information about this topic: