faqs.org - Internet FAQ Archives

RFC 4169 - Hypertext Transfer Protocol (HTTP) Digest Authenticat


Or Display the document by number




Network Working Group                                        V. Torvinen
Request for Comments: 4169                             Turku Polytechnic
Category: Informational                                         J. Arkko
                                                              M. Naslund
                                                                Ericsson
                                                           November 2005

     Hypertext Transfer Protocol (HTTP) Digest Authentication Using
            Authentication and Key Agreement (AKA) Version-2

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   HTTP Digest, as specified in RFC 2617, is known to be vulnerable to
   man-in-the-middle attacks if the client fails to authenticate the
   server in TLS, or if the same passwords are used for authentication
   in some other context without TLS.  This is a general problem that
   exists not just with HTTP Digest, but also with other IETF protocols
   that use tunneled authentication.  This document specifies version 2
   of the HTTP Digest AKA algorithm (RFC 3310).  This algorithm can be
   implemented in a way that it is resistant to the man-in-the-middle
   attack.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
       1.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . .  4
   2.  HTTP Digest AKAv2  . . . . . . . . . . . . . . . . . . . . . .  5
       2.1.  Password generation  . . . . . . . . . . . . . . . . . .  6
       2.2.  Session keys . . . . . . . . . . . . . . . . . . . . . .  6
   3.  Example Digest AKAv2 Operation . . . . . . . . . . . . . . . .  7
   4.  Security Considerations  . . . . . . . . . . . . . . . . . . .  7
       4.1.  Multiple Authentication Schemes and Algorithms . . . . .  7
       4.2.  Session Protection . . . . . . . . . . . . . . . . . . .  7
       4.3.  Man-in-the-middle attacks  . . . . . . . . . . . . . . .  8
       4.4.  Entropy  . . . . . . . . . . . . . . . . . . . . . . . .  9
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 10
       5.1.  Registration Information . . . . . . . . . . . . . . . . 10
   6.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 11
       6.1.  Normative References . . . . . . . . . . . . . . . . . . 11
       6.2.  Informative References . . . . . . . . . . . . . . . . . 11

1.  Introduction

   The Hypertext Transfer Protocol (HTTP) Digest Authentication,
   described in [4], has been extended in [6] to support the
   Authentication and Key Agreement (AKA) mechanism [7].  The AKA
   mechanism performs authentication and session key agreement in
   Universal Mobile Telecommunications System (UMTS) networks.  HTTP
   Digest AKA enables the usage of AKA as a one-time password generation
   mechanism for Digest authentication.

   HTTP Digest is known to be vulnerable to man-in-the-middle attacks,
   even when run inside TLS, if the same HTTP Digest authentication
   credentials are used in some other context without TLS.  The attacker
   may initiate a TLS session with a server, and when the server
   challenges the attacker with HTTP Digest, the attacker masquerades
   the server to the victim.  If the victim responds to the challenge,
   the attacker is able to use this response towards the server in HTTP
   Digest.  Note that this attack is an instance of a general attack
   that affects a number of IETF protocols, such as PIC.  The general
   problem is discussed in [8] and [9].

   Because of the vulnerability described above, the use of HTTP Digest
   "AKAv1" should be limited to the situations in which the client is
   able to demonstrate that, in addition to the AKA response, it
   possesses the AKA session keys.  This is possible, for example, if
   the underlying security protocol uses the AKA-generated session keys
   to protect the authentication response.  This is the case, for
   example, in the 3GPP IP Multimedia Core Network Subsystem (IMS),
   where HTTP Digest "AKAv1" is currently applied.  However, HTTP Digest

   "AKAv1" should not be used with tunnelled security protocols that do
   not utilize the AKA session keys.  For example, the use of HTTP
   Digest "AKAv1" is not necessarily secure with TLS if the server side
   is authenticated using certificates and the client side is
   authenticated using HTTP Digest AKA.

   There are at least four potential solutions to the problem:

   1.  The use of the authentication credentials is limited to one
       application only.  In general, this approach is good and can be
       recommended from the security point of view.  However, this will
       increase the total number of authentication credentials for an
       end-user, and may cause scalability problems in the server side.

   2.  The keys used in the underlying security protocols are somehow
       bound to the keys used in the tunneled authentication protocol.
       However, this would cause problems with the current
       implementations of underlying security protocols.  For example,
       it is not possible to use the session keys from TLS at the
       application layer.  Furthermore, this solution would only solve
       the problem when HTTP Digest is used over one hop, and would
       leave the problem of using HTTP Digest via multiple hops (e.g.,
       via proxy servers) unsolved.

   3.  Authentication credentials are used in a cryptographically
       different way for each media and/or access network.  However, it
       may be difficult to know which underlying media is used below the
       application.

   4.  Authentication credentials are used in a cryptographically
       different way for each application.

   This document specifies a new algorithm version for HTTP Digest AKA
   (i.e., "AKAv2").  "AKAv2" specifies a cryptographically different way
   to use AKA credentials in use cases that are based on either HTTP
   Digest authentication or UMTS authentication (cf. approach 4 above).
   The only difference to "AKAv1" is that, in addition to an AKA
   response RES, the AKA related session keys, IK and CK, are also used
   as the password for HTTP Digest.  AKAv2 is immune to the
   man-in-the-middle attack described above.  However, if AKAv2 is used
   in some environment, both with and without some underlying security,
   such as TLS, the problem still exists.

   New HTTP Digest AKA algorithm versions can be registered with IANA,
   based on Expert Review.  Documentation of new algorithm versions is
   not mandated as RFCs.  However, "AKAv2" is documented as an RFC
   because the use of different AKA algorithm versions includes security
   implications of which the implementors should be aware.  The

   extension version and security implications are presented in this
   document.

1.1.  Terminology

   This chapter explains the terminology used in this document.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [3].

   AKA

      Authentication and Key Agreement.

      AKA is a challenge-response based mechanism that uses symmetric
      cryptography.  AKA can be run in a UMTS IM Services Identity
      Module (ISIM) or in UMTS Subscriber Identity Module (USIM), which
      reside on a smart-card-like device that also provides tamper
      resistant storage of shared secrets.

   CK

      Cipher Key.  An AKA session key for encryption.

   CK'

      Cipher Key.  HTTP Digest AKAv2 session key for encryption.  CK' is
      derived from CK using a pseudo-random function.

   IK

      Integrity Key.  An AKA session key for integrity check.

   IK'

      Integrity Key.  HTTP Digest AKAv2 session key for integrity check.
      IK' is derived from IK using a pseudo-random function.

   ISIM

      IP Multimedia Services Identity Module.  Sometimes ISIM is
      implemented using USIM.

   RES

      Authentication Response.  Generated by the ISIM.

   PRF

      Pseudo-random function that is used to construct the AKAv2
      password and related session keys IK' and CK'.  In this document,
      PRF is presented in the format KD(secret, data), denoting a keyed
      digest algorithm (KD) performed to the data ("data") with the
      secret ("secret").

   SIM

      Subscriber Identity Module.  GSM counter part for ISIM and USIM.

   UMTS

      Universal Mobile Telecommunications System.

   USIM

      UMTS Subscriber Identity Module.  UMTS counter part for ISIM and
      SIM.

   XRES

      Expected Authentication Response.  In a successful authentication,
      this is equal to RES.

2.  HTTP Digest AKAv2

   In general, the Digest AKAv2 operation is identical to the Digest
   AKAv1 operation described in [6].  This chapter specifies the parts
   in which Digest AKAv2 is different from Digest AKAv1 operation.  The
   notation used in the Augmented BNF definitions for the new and
   modified syntax elements in this section is as used in SIP [5], and
   any elements not defined in this section are as defined in [6].

   In order to direct the client into using AKAv2 for authentication
   instead of other AKA versions or other HTTP Digest algorithms, the
   AKA version directive of [6] shall have the following new value:

      aka-version         =  "AKAv2"

   The AKA version directive is used as a part of the algorithm field as
   defined in [6].

      Example:  algorithm=AKAv2-MD5

2.1.  Password Generation

   The client shall use base64 encoded [1] parameters PRF(RES||IK||CK,
   "http-digest-akav2-password") as a "password" when calculating the
   HTTP Digest response directive for AKAv2.

   The server shall use base64 encoded [1] parameters PRF(XRES||IK||CK,
   "http-digest-akav2-password") as a "password" when checking the HTTP
   Digest response or when calculating the "response-auth" of the
   "Authentication-Info" header.

   The pseudo-random function (PRF) used to construct the HTTP Digest
   password is equal to HMAC [2] using the hash algorithm that is used
   in producing the digest and the checksum.  For example, if the
   algorithm is AKAv2-MD5, then the PRF is HMAC_MD5.

   The string "http-digest-akav2-password" included in the key
   derivation is case sensitive.

2.2.  Session keys

   Even though the HTTP Digest AKA framework does not specify the use of
   the session keys IK and CK for confidentiality and integrity
   protection, the keys may be used for creating additional security
   within HTTP authentication or some other security mechanism.
   However, the original session keys IK and CK MUST NOT be directly
   re-used for such additional security in "AKAv2".  Instead, session
   keys IK' and CK' are derived from the original keys IK and CK in the
   following way:

      IK' = PRF(IK, "http-digest-akav2-integritykey")

      CK' = PRF(CK, "http-digest-akav2-cipherkey")

   Any application using the HTTP authentication framework is allowed to
   use these masked session keys.  The unmasked session keys MAY also be
   re-used in some other context if application-specific strings other
   than "http-digest-akav2-integritykey" or
   "http-digest-akav2-cipherkey" are used to mask the original session
   keys.

   The pseudo-random function (PRF) used to construct the HTTP Digest
   session keys is equal to HMAC [2] using the hash algorithm that is
   used in producing the digest and the checksum.  For example, if the
   algorithm is AKAv2-MD5, then the PRF is HMAC_MD5.  The algorithm MUST
   be used in the HMAC format, as defined in [2].

   The strings "http-digest-akav2-integritykey" and "http-digest-akav2-
   cipherkey" included in the key derivation are case sensitive.

3.  Example Digest AKAv2 Operation

   This document does not introduce any changes to the operations of
   HTTP Digest or HTTP Digest AKA.  Examples defined in [6] apply
   directly to AKAv2 with the following two exceptions:

   1.  The algorithm directive has a prefix "AKAv2" instead of "AKAv1".

   2.  The HTTP Digest password is derived from base64 encoded PRF(RES||
       IK||CK, "http-digest-akav2-password") or PRF(XRES||IK||CK, "http-
       digest-akav2-password") instead of (RES) or (XRES) respectively.

   3.  The optional session keys are derived from PRF(IK, "http-digest-
       akav2-integritykey") and PRF(CK, "http-digest-akav2-cipherkey")
       instead of IK and CK respectively.

   Note that the password in "AKAv1" is in binary format.  The "AKAv2"
   password is base64 encoded [1].

4.  Security Considerations

4.1.  Multiple Authentication Schemes and Algorithms

   The rules for a user agent for choosing among multiple authentication
   schemes and algorithms are as defined in [6], except that the user
   agent MUST choose "AKAv2" if both "AKAv1" and "AKAv2" are present.

   Since HTTP Digest is known to be vulnerable for bidding-down attacks
   in environments where multiple authentication schemes and/or
   algorithms are used, the system implementors should pay special
   attention to scenarios in which both "AKAv1" and "AKAv2" are used.
   The use of both AKA algorithm versions should be avoided, especially
   if the AKA generated sessions keys or some other additional security
   measures to authenticate the clients (e.g., client certificates) are
   not used.

4.2.  Session Protection

   Even though "AKAv2" uses the additional integrity (IK) and
   confidentiality (CK) keys as a part of the HTTP Digest AKA password,
   these session keys may still be used for creating additional security
   within HTTP authentication or some other security mechanism.  This
   recommendation is based on the assumption that algorithms used in
   HTTP Digest, such as MD5, are sufficiently strong one-way functions,
   and, consequently, HTTP Digest responses leak no or very little

   computational information about IK and CK.  Furthermore, the session
   keys are masked into IK' and CK' before they can be used for session
   protection.

4.3.  Man-in-the-Middle Attacks

   Reference [8] describes a "man-in-the-middle" attack related to
   tunnelled authentication protocols.  The attack can occur in an EAP
   context or any similar contexts where tunnelled authentication is
   used and where the same authentication credentials are used without
   protection in some other context or the client fails to authenticate
   the server.

   For example, the use of TLS with HTTP Digest authentication (i.e.,
   TLS for server authentication, and subsequent use of HTTP Digest for
   client authentication) is an instance of such scenario.  HTTP
   challenges and responses can be fetched from and to different TLS
   tunnels without noticing their origin.  The attack is especially easy
   to perform if the client fails to authenticate the server.  If the
   same HTTP credentials are used with an unsecured connection, the
   attack is also easy to perform.

   This is how the "man-in-the-middle" attack works with HTTP Digest and
   TLS if the victim (i.e., the client) fails to authenticate the
   server:

   1.  The victim contacts the attacker using TLS.  If the attacker has
       a valid server certificate, the client may continue talking to
       the attacker and use some HTTP authentication compatible
       protocol, such as the Session Initiation Protocol (SIP).

   2.  The attacker contacts a real proxy/server also using TLS and an
       HTTP-authentication-compatible protocol.  The proxy/server
       responds to the attacker with the HTTP Authentication challenge.

   3.  The attacker forwards the HTTP Authentication challenge from the
       proxy/server to the victim.  If the victim is not careful, and
       does not check whether the identity in the server certificate in
       TLS matches the realm in the HTTP authentication challenge, it
       may send a new request that carries a valid response to the HTTP
       Authentication challenge.

   4.  The attacker may use the response with the victims HTTP Digest
       username and password to authenticate itself to the proxy/server.

   The man-in-the-middle attack is not possible if the client compares
   the identities in the TLS server certificate and the HTTP Digest
   authentication challenge.  Note that with HTTP Basic, the client
   would send the password to the attacker.

   Another variant of the "man-in-the-middle" attack is the so-called
   "interleaving attack".  This attack is possible if the HTTP Digest
   authentication credentials are used in several contexts, and in one
   of them without protection.

   This is how the attack could proceed:

   1.  The attacker establishes a TLS tunnel to the proxy/server using
       one-way server authentication.  The attacker sends a request to
       the proxy/server.

   2.  The proxy/server challenges the attacker with the HTTP Digest
       challenge.

   3.  The attacker challenges the victim in some other context using
       the challenge carried in the HTTP Digest challenge.  The HTTP
       Digest challenge needs to be modified to the format used in the
       protocol of this other context.

   4.  The victim responds with a response.

   5.  The attacker uses the response from the other context for
       authentication in HTTP Digest.

   6.  The proxy/server accepts the response, and delivers the service
       to the attacker.

   In some circumstances, HTTP Digest AKAv1 may be vulnerable for the
   interleaving attack.  In particular, if ISIM is implemented using
   USIM, the HTTP Digest AKAv1 should not be used with tunneled security
   protocols unless the AKA-related session keys, IK and CK, are somehow
   used with the solution.

   HTTP Digest AKAv2 is not vulnerable to this interleaving attack, and
   it can be used with tunneled security protocols without using the
   related AKA session keys.

4.4.  Entropy

   AKAv1 passwords should only be used as one-time passwords if the
   entropy of the used RES value is limited (e.g., only 32 bits).  For
   this reason, the re-use of the same RES value in authenticating
   subsequent requests and responses is not recommended.  Furthermore,

   algorithms such as "MD5-sess", which limit the amount of material
   hashed with a single key by producing a session key for
   authentication, should not be used with AKAv1.

   Passwords generated using AKAv2 can more securely be used for
   authenticating subsequent requests and responses because the
   concatenation of AKA credentials (i.e., RES||IK||CK) makes the
   passwords significantly longer, and the pseudo-random function
   heuristically provides an entropy equal to the length of this string,
   or the length of the PRF output, whichever is the shortest.  The user
   agent does not need to assume that AKAv2 passwords are limited to
   one-time use only, and it may try to re-use the AKAv2 passwords with
   the server.  However, note that AKAv2 passwords cannot be re-used
   with the HTTP Digest AKAv2 algorithm because such an authentication
   challenge will automatically generate a fresh password.  AKAv2
   passwords can be used with other HTTP Digest algorithms, such as
   "MD5".

   The underlying AKA protocol (e.g., UMTS AKA) has been designed to
   keep CK and IK confidential, but will typically send RES in the
   clear.  We note that, even if (by some unfortunate misuse of AKA) RES
   values were revealed, the inclusion of RES in PRF(RES||IK||CK) is
   still beneficial, as it makes pre-calculated dictionaries of IK||CK
   values rather useless (though such dictionaries are infeasible for
   typical sizes of IK and CK).

5.  IANA Considerations

   This document specifies a new aka-version, "AKAv2", to the
   aka-version namespace maintained by IANA.  The procedure for
   allocation of new aka-versions is defined in [6].

5.1.  Registration Information

   To: ietf-digest-aka@iana.org

   Subject: Registration of a new AKA version

   Version identifier: "AKAv2"

   Contacts for further information: Vesa.Torvinen@turkuamk.fi,
   jari.arkko@ericsson.com, or mats.naslund@ericsson.com

6.  References

6.1.  Normative References

   [1]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
        Extensions (MIME) Part One: Format of Internet Message Bodies",
        RFC 2045, November 1996.

   [2]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
        for Message Authentication", RFC 2104, February 1997.

   [3]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [4]  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
        Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
        Basic and Digest Access Authentication", RFC 2617, June 1999.

   [5]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, June 2002.

   [6]  Niemi, A., Arkko, J., and V. Torvinen, "Hypertext Transfer
        Protocol (HTTP) Digest Authentication Using Authentication and
        Key Agreement (AKA)", RFC 3310, September 2002.

6.2.  Informative References

   [7]  3rd Generation Partnership Project, "Security Architecture
        (Release 4)", TS 33.102, December 2001.

   [8]  Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle in
        Tunnelled Authentication Protocols", Cryptology ePrint Archive,
        http://eprint.iacr.org Report 2002/163, October 2002.

   [9]  Puthenkulam, J., Lortz, V., Palekar, A., and D. Simon, "The
        Compound Authentication Binding Problem", Work in Progress,
        March 2003.

Authors' Addresses

   Vesa Torvinen
   Turku Polytechnic
   Ylhaistentie 2
   Salo  FIN 24130
   Finland

   Phone: +358 10 5536210
   EMail: vesa.torvinen@turkuamk.fi

   Jari Arkko
   Ericsson
   Hirsalantie 1
   Jorvas  FIN 02420
   Finland

   Phone: +358 40 5079256
   EMail: jari.arkko@ericsson.com

   Mats Naeslund
   Ericsson
   Torshamnsgatan 23
   Stockholm  SE 16480
   Sweden

   Phone: +46 8 58533739
   EMail: mats.naslund@ericsson.com

Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

 

User Contributions:

Comment about this RFC, ask questions, or add new information about this topic:

CAPTCHA