|
Top Document: Sci.chem FAQ - Part 3 of 7 Previous Document: News Headers Next Document: 13. Illicit and Government Controlled Substances See reader questions & answers on this topic! - Help others by sharing your knowledge
12.1 What are CAS Registry Numbers?
When chemicals are first encountered by the Chemical Abstracts Service, they
are assigned a unique number when they are registered. These numbers are not
related to any structure or property of the molecule, they are arbitrarily
assigned. It should be remembered that occasionally a compound may be
accidentally assigned two or more numbers - especially industrial products
that have not been completely characterised. When this is discovered, one of
the numbers is no longer used. The numbers usually take the form of
[xx-yy-z to xxxxxx-yy-z] and square brackets are often used in monographs to
identify the CAS Registry Number [RN]. The easiest way to locate the CAS RN
for commercially-available chemicals is to look in suppliers catalogues
( eg Aldrich) or compilations ( eg Merck or Hawley ), almost all chemical
texts now list the RN, and several ( eg Merck Index and Aldrich ) have a
cross-reference Index. The RN is extremely useful for on-line searching of
Chemical Abstracts and several other popular chemistry-related databases,
but is not particularly useful for the hardcopy version, except to confirm
compound identity.
12.2 What are the correct names of recently-discovered elements?
The Transfermium Working Group was established in 1986 by the International
Union of Pure and Applied Chemistry (IUPAC) and the International Union of
Pure and Applied Physics (IUPAP). The working group published several
reports, and then recommended that elements should not be named after living
persons [1]. This greatly upset the USA - who wanted to name an element after
G. Seaborg. After protracted negotiations, a compromise selection of names
was finally approved by the IUPAC Commission on Nomenclature in Inorganic
Chemistry, the IUPAC Inorganic Division, the IUPAC Bureau, and the selection
was eventually ratified by the IUPAC Council meeting in Geneva during August
1997 [2].
101 Mendelevium Md D. Mendeleev (Russia)
102 Nobelium No Nobel Institute (Sweden)
103 Lawrencium Lr E. Lawrence (USA)
104 Rutherfordium Rf E. Rutherford (NZ)
105 Dubnium Db Dubna = Russian Research Centre
106 Seaborgium Sg G. Seaborg (USA)
107 Bohrium Bh N. Bohr (Denmark)
108 Hassium Hs Latin name for German state of Hesse
109 Meitnerium Mt L. Meitner (Austria)
Note that Hesse is where the German heavy-element laboratory is based.
The Gesellschaft fur Schwerionenforschung (GSI) was responsible for the
first man-made creation of elements 107-110. The compromise will now move
attention to the naming the recently-discovered elements 110-112.
12.3 What is the nomenclature system for CFCs/HCFCs/HFCs?
The CFC naming system was developed by T.Midgley,Jr. and A.L.Henne in 1929,
and further refined by J.D.Park. Originally, organic molecules that contained
Chlorine and Fluorine were all referred to as CFCs. Today, the group is
subdivided into CFCs, HCFCs, and HFCs. The naming system consists of:-
CFC-01234a where 0 = number of double bonds ( omitted if zero )
1 = Carbon atoms - 1 ( omitted if 0 )
2 = Hydrogen atoms + 1
3 = Fluorine atoms
4 = Chlorine atoms replaced by Bromine ("B" prefix added )
a = letter added to identify isomers, the "normal" isomer
in any number has the smallest mass difference on each
carbon, and a, b, or c are added as the masses diverge
from normal.
If the compound is cyclic, then the number is prefixed with "C". There are
several other refrigerants, some of which are hydrocarbons, hydrocarbon
blends, or CFC blends. Full details of the nomenclature system are specified
in ANSI/ASHRAE Standard 34-1992 with additional annual supplements. Chemical
names are frequently used in place of the numbers for common materials
- such as trichloroethylene and chloroform. The specified ANSI/ASHRAE
prefixes were FC ( FluoroCarbon ), or R ( Refrigerant ), but today most are
prefixed by more specific classifications - such as CFC, HCFC, and HFC.
CFC-11 CCl3F trichlorofluoromethane [75-69-4]
CFC-12 CCl2F2 dichlorodifluoromethane [75-71-8]
CFC-113 CCl2F-CClF2 1,1,2-trichlorotrifluoroethane [76-13-1]
HCFC-22 CHClF2 chlorodifluoromethane [75-45-6]
HCFC-123 CHCl2-CF3 2,2-dichloro-1,1,1-trifluoroethane [306-83-2]
HCFC-123a CHClF-CClF2 1,2-dichloro-1,1,2-trifluoroethane [354-23-4]
HFC-23 CHF3 trifluoromethane [75-46-7]
HFC-134 CHF2-CHF2 1,1,2,2-tetrafluoroethane [359-35-3]
HFC-134a CH2F-CF3 1,2,2,2-tetrafluoroethane [811-97-2]
R-20 CHCl3 chloroform [67-66-3]
R-22B1 CHBrF2 bromodifluoromethane [1511-62-2]
R-1120 CHCl=CCl2 trichloroethylene [79-01-6]
R-1150 CH2=CH2 ethylene [74-85-1]
R-C316 C4Cl2F6 1,2-dichlorohexafluorocyclobutane
Another technique for naming CFCs uses the addition of 90 to the CFC number
to produce a "def" number which corresponds to the CHF composition. If
(e + f) < (2d + 2), then additional atoms are required for saturation. This
technique has been described in detail in the Journal of Chemical Education
[3].
ASHRAE +90 Empirical Composition Formula
C H F (+Cl)
CFC-11 101 1 - 1 3 CCl3F
CFC-12 102 1 - 2 2 CCl2F2
HCFC-22 112 1 1 2 1 CHClF2
HCFC-123 213 2 1 3 2 CHCl2-CF3
HFC-134a 224 2 2 4 - CH2F-CF3
Halons are numbered according to a totally different system developed by
the US Army Corps of Engineers, and the prefix term is always "Halon".
Hydrogen is not numbered, and terminal zeros are not expressed.
Halon-0123 where 0 = number of carbon atoms
1 = number of fluorine atoms
2 = number of chlorine atoms
3 = number of bromine atoms
Halon-1211 CBrClF2 bromochlorodifluoromethane [353-59-3]
Halon-1301 CBrF3 bromotrifluoromethane [75-63-8]
Halon-2402 CBrF2-CBrF2 1,2-dibromo-1,1,2,2-tetrafluoroethane [124-73-2]
12.4 How can I get the IUPAC chemical name from traditional names?
It depends. Usually the quickest way is to look the name up in a chemical
supplier's catalog, MSDS, or a standard text like Merck or Hawley. You can
also often find the correct name if you refer to an old chemistry text that
lists both the traditional and IUPAC naming conventions. Some traditional
or common names also refer to mixtures of chemicals, eg aqua regia, piranha
solution.
One reason why traditional names have been replaced is because the same name
could be used for different compounds. An example is the use of caprylic to
describe 1-Octanol and 2-Octanol, and attempts to qualify the name with
"primary" and "secondary" were less than successful. Octyl alcohol has been
used to describe both 1-octanol and 2-ethylhexanol, thus explaining why the
well known dioctyl phthalate (DOP) is actually bis(2-ethylhexyl) phthalate.
The following examples highlight the diversity of names often encountered.
Carbon Alkane Alcohol Aldehyde Acid
1 methane methanol form- formic
carbinol
2 ethane ethyl acet- acetic
methyl carbinol
3 n-propane n-propyl propion- propionic
ethyl carbinol
4 n-butane n-butyl n-butyr- n-butyric
propyl carbinol
5 n-pentane n-amyl n-valer- n-valeric
butyl carbinol
6 n-hexane hexyl capro- caproic
amyl carbinol caproic
7 n-heptane enanthyl enanth- enanthic
enanthic
hexyl carbinol
8a n-octane capryl capryl- caprylic
primary caprylic caprylic
heptyl carbinol
1-octanol
8b capryl
secondary caprylic
methyl hexyl carbinol
2-octanol
9 n-nonane pelargonic pelargonic pelargonic
octyl carbinol
10 n-decane capric capr- capric
nonyl carbinol capric
12 n-dodecane lauryl laur- lauric
lauric lauryl
14 n-tetradecane myristyl myrist- myristic
16 n-hexadecane cetyl palmit- palmitic
cetane
18 n-octadecane stearyl stearic
20 n-eicosane arachidyl arachidic
Primary
- alcohol R1CH2OH
- amine R1NH2
eg normal straight chain normal octane n-octane
normal butanol 1-butanol
iso branched chain iso-butane 2-methylpropane
iso-butanol 2-methyl-1-propanol
iso-octane 2,2,4-trimethylpentane
Secondary
- alcohol R1R2CHOH
- amine R1R2NH
eg sec-butanol 2-butanol
iso-propanol 2-propanol
Tertiary
- alcohol R1R2R3COH
- amine R1R2R3N
eg tert-butanol 2-methyl-2-propanol
- substitution onto the benzene ring
1,2 = ortho ortho-xylene
1,3 = meta meta-xylene
1,4 = para para-xylene
However other names get more tricky, especially historical names, where
several names may be used for the same chemical and, even worse, different
chemicals can be described by the same name. Examples include:-
- calcium carbonate = limestone, chalk, calcite.
- calcium hydroxide = slaked lime, hydrated lime, caustic lime.
- calcium oxide = calx, lime, quicklime, unslaked lime, burnt lime.
- hydrochloric acid = muriatic acid, spirits of salts.
- nitric acid = aqua fortis.
- potassium carbonate = potash, artificial alkali, vegetable alkali.
- potassium hydroxide = caustic potash, lye.
- sodium carbonate - any form = soda, natural alkali, mineral alkali.
- anhydrous = soda ash.
- dodecahydrate = sal soda, washing soda.
- monohydrate = soda crystals.
- sodium chloride = rock salt.
- sodium hydroxide = caustic soda, lye, soda lye.
- sulfuric acid = oil of vitriol
Some old chemical terms are seldom encountered these days, but have very
specific meanings, eg
" flowers " described any product of sublimation, hence "flowers of sulfur".
" specific " in front of any quantity means " divided by mass ", hence
"specific gravity".
" ether " described a volatile liquid, not only compounds with the Cx-O--Cy
structure, and also often known today as "spirit".
" aromatic " described a liquid that had an aroma, not only those derived
from benzene, or which benzene ring structure.
" oil " described a liquid that was not miscible with water, thus it
described different products in different chemical industries :-
- Essential oils = volatile and odoriferous liquid plant extracts.
Essential oils can be obtained by extraction or distillation ( steam ),
often contain terpenes ( based on the isoprene structure ), are usually
smelly ( aromatic ), and are used for perfumes, flavours and aromas, eg
lemon oil and pine oil.
- Triglyceride oils = fats and oils based on the glycerol molecule that
can be obtained from plant and animal material, frequently by melting or
cold pressing. They are a significant, and important, component in our
diet, eg soya oil, lard, fish oils, and anhydrous milk fat.
- Petroleum oil = a mixture of a large number of hydrocarbons that are
usually derived from 0.1 to 3 billion-year-old organic matter. Crude oil
can contain hundreds of hydrocarbons with one to sixty carbon atoms, and
the hydrocarbons are usually grouped and reported by type, eg alkane
( paraffin ), alkene ( olefin ), or arene ( aromatic ).
Almost all old industries had easy-to-remember names for chemicals they
commonly encountered, but today many of those names can cause confusion
if used outside the industry. Some common examples, just from the petroleum
industry alone are:-
- " ether " is a volatile hydrocarbon fraction that does not contain the
Cx-O-Cy structure, eg petroleum ether ( aka petroleum spirit ).
- " naphthene " is a cyclic paraffin, does not contain naphthalene, and is
not a major component of naphtha ( refer Section 27.5 ).
- Benzene, toluene and xylene are often called benzol, toluol, and xylol,
even though they do not contain an -OH group.
- Benzine ( ligroin ) was a saturated hydrocarbon fraction that boiled
between 20C and 135C. Gasoline/petrol fractions are still called benzine
by some older people.
- Diesel fuel is often called "gas oil", which is a historical term for
hydrocarbon distillate fractions. Atmospheric gas oil has a boiling
range between 220C - 450C, and vacuum gas oil boils from 350C to 550C.
12.5 What does "omega-3 fatty acids" mean?
Chemists recognise that they should always number carbon chains from the
end with the functional group, so the location of double bonds in
unsaturated fatty acids are numbered from the carboxylic acid end, and
are usually designated by "delta" in their abbreviated names.
Biochemists are more interested in the actual role that chemicals play,
consequently they will consider the position from the end that is important.
In the case of natural fatty acids the double bonds are usually cis
configured, and it is the distance of the first double bond from the
terminal end of the carbon chain that is important. They use "omega" to
signify that the double bond is cis, and they are counting from the other
end. The great advantage is that chain length can be ignored, and compounds
that are subjected to the same biochemical processes are grouped together.
In 1967, the IUPAC/IUB commission responsible for lipid nomenclature
recommended that for unsaturated fatty acids with cis double bonds, that
the "omega" symbol be replaced with "n-x", where n = the length of the
carbon chain, and x is the distance from the terminal end.
Some examples:-
Common Chemical Chemical Biochemical
Name Name d = delta o = omega
Oleic cis-9-octadecenoic c-C18:1d9 C18:1o9
Elaidic trans-9-octadecenoic t-C18:1d9 -
Ricinoleic D-(+)-12-hydroxy-octadec-cis-9-enoic c-C18:1d9-12OH -
Linoleic cis-9,12-octadecadienoic c-C18:2d9 C18:2o6
alpha Linolenic cis-9,12,15-octadecatrienoic c-C18:3d9 C18:3o3
gamma Linolenic cis-6,9,12-octadecatrienoic c-C18:3d6 C18:3o6
Arachidonic cis-5,8,11,14-eicosatetraenoic c-C20:4d5 C20:4o6
EPA cis-5,8,11,14,17-eicosapentaenoic c-C20:5d5 C20:5o3
Erucic cis-13-docosenoic c-C22:1d13 C22:1o9
DHA cis-4,7,10,13,16,19-docosahexaenoic c-C22:6d4 C22:6o3
EPA and DHA are widely known as the omega-3 fatty acids present in high
concentrations in marine lipids, and are considered beneficial in diet,
although research is not complete [4,5].
12.6 What is Conjugated Linoleic Acid?
Conjugated linoleic acid describes the group of positional and geometric
isomers of linoleic acid ( cis-9,12-octadecadienoic acid ) that have a
conjugated double bond system starting at carbon 9, 10, or 11. They can be
either cis or trans, or various combinations of them. The more abundant
isomers in food are believed to be the cis-9, trans-11, and the trans-10,
cis-12 isomers. It's very difficult to separate the cis-9, trans-11 and
trans-9, cis-11 isomers, however the cis-9, trans-11 form is usually
considered the important and usually dominant isomer.
They are typically produced by bacteria in the rumen of ruminants because
the hydrolysis of fats in the rumen produces more unesterified linoleic
acid than is available to bacteria in other digestive systems. Plants
also contain conjugated linoleic acid, but there is much less of the
cis-9, trans-11 isomer, which is believed to be the biologically active
isomer. Foods that contain CLA are lamb, beef, turkey and dairy fat products,
ranging from 2.5 - 11 mg/g of fat - of which 75% or more is the cis-9,
trans-11 ( or trans-9, cis-11 ) isomer. CLA is of interest because it has
displayed antimutagenic activity in animals and human cell tests [6,7].
12.7 What are "heavy" metals?
There appears to be no standard definition, however the general consensus
appears to be all metals with a density greater than 4 or 5 [8,9,10]. If
you also consider the conventional analytical chemistry definition of "heavy
metals" ( precipitation of sulfides from acidic solutions ), you obtain
quite a diverse mixture of possible candidates. Moving the density limit
from 4 to 5 really only just impacts on Ti, Y and Se. Some other texts use
more complex definitions that may also include accepted "light" metals with
densities less than 4, eg Hawley uses "A metal of atomic weight greater
than sodium (22.9) that forms soaps on reaction with fatty acids. e.g.,
aluminum, lead, cobalt". The term " heavy-element " is commonly used to
describe the transfermium elements, - elements with an atomic number
greater than 100.
12.8 What is the difference between Molarity and Normality?.
A Molar solution contains one gram molecular weight ( aka mole ) of the
reagent in one litre of solution, and is represented by " M ". In modern
usage, "molar" is intended to only mean " divided by amount of substance",
and is not supposed to be used to describe 1M solutions. There are already
exceptions to the rule ( molar conductivity, molar extinction coefficient ),
so I would only worry about correct usage in exams, as in the real world
most chemists use Molar to describe 1M solutions.
A Molal solution is one gram molecular weight of the reagent in 1 kilogram
of solvent, and is usually represented by "m". This concentration unit is
relatively uncommon in the real world, so it's worth checking that the "m"
is not a "M" typo.
A Normal solution contains one gram equivalent weight ( aka equivalent )
of the reagent in one litre of solution, and is represented by " N ".
The equivalent weight of a reagent may vary according to the reaction, but
if considering just acid and base moles and equivalents, then:-
1M H2SO4 + 2M NaOH -> 2H2O + Na2SO4
1N H2SO4 + 1N NaOH -> H20 + 0.5Na2SO4
1N HCl + 1N NaOH -> H2O + NaCl
So you can see that the equivalent weight of an acid is that which contains
1.0078 grams of replaceable hydrogen which, in the case of sulfuric acid,
would be half the mole weight, but, in the case of hydrochloric acid, would
be the mole weight.
The equivalent weight of a base is that which contains one replaceable
hydroxyl group ( ie 17.008g of ionisable hydroxyl ). Thus the equivalent
weight of sodium hydroxide ( NaOH ) and potassium hydroxide ( KOH ) would
be the mole weight, but for calcium hydroxide ( Ca(OH)2 ) it would be half
the mole weight.
The equivalent weight of an oxidising or reducing agent is that weight of
the reagent that reacts with or contains 1.008 grams of available hydrogen
or 8.000 grams of available oxygen. "Available" means being able to be
utilised in oxidation or reduction reactions. The equivalent weight of an
oxidising agent is determined by the change in oxidation number which the
reduced element experiences, eg the reduction of potassium permanganate in
dilute H2SO4 gives;-
K Mn O4 --> Mn S O4
(Oxidation Number) +1 +7 -8 +2 +6 -8
This results in a change of the manganese from +7 to +2, so the equivalent
weight is 1/5 of a mole. However, in neutral solution the change would only
be 3 because the product is MnO2, giving an equivalent weight of 1/3 of a
mole. If reacted in strongly alkaline solution the product is MnO4--, giving
an equivalent weight of one mole.
The equivalent weight of a reducing agent is determined by the change in
oxidation number that the oxidised element undergoes. For the conversion of
ferrous sulfate into ferric sulfate;-
2 (Fe SO4) --> Fe2 (SO4)3
(Oxidation Number) 2x(+2 -2 ) (+3)x2 (-2)x3
The change in oxidation number per atom of iron is 1, so the equivalent
weight of ferrous sulfate is 1 mole.
There are wide range of rules about the determination of the oxidation
number, but if you have been taught to use molarity, I would not bother too
much about normality, as it is mainly used these days by analytical
chemists - because it is convenient for many common titrations. Analysts
assume that 1 ml of 1N reagent will react with 1 ml of 1N reagent. However,
there has been a recent Journal of Chemical Education article that claims
using normality and equivalent weight does help students understand
chemistry, but those concepts are unlikely to become widespread again [11].
12.9 Where can I find the composition of common named reagents?.
Often the best place to start are MSDS sheets or catalogues from commercial
suppliers. Some textbooks include a list of named reagents and their
composition that are mentioned in the text. The very common reagents are
usually also detailed in Hawley or the Merck Index. One chemistry field that
has a lot of named reagents is analytical chemistry, especially in Thin Layer
Chromatography, where many of the spray detection reagents have common names.
Merck produces a handy guide describing the composition and production of
common TLC spray reagents [12].
Some common reagents include:-
- aqua regia = 1 part nitric acid and 3 or 4 parts hydrochloric acid.
- piranha solution = highly dangerous ( explodes on contact with traces of
organics ), warm (65C), 70:30 mixture of 100% sulfuric acid and 30%
hydrogen peroxide. It is used, with comprehensive safety precautions,
in the semiconductor industry, and also in some laboratories to clean
glassware [13,14,15]. Many chemical laboratories prohibit it, and there
are much safer, equally effective, alternatives available - refer
Section 16.7.
User Contributions:Top Document: Sci.chem FAQ - Part 3 of 7 Previous Document: News Headers Next Document: 13. Illicit and Government Controlled Substances Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: B.Hamilton@irl.cri.nz
Last Update March 27 2014 @ 02:12 PM
|

Comment about this article, ask questions, or add new information about this topic: