|
Top Document: Einstein (1905) Absurdities Previous Document: 16. The "contraction circus" absurdity. Next Document: 17. A straightforward pro-simultaneity argument. See reader questions & answers on this topic! - Help others by sharing your knowledge
Einstein
(a) defined a test for clocks at rest wrt each other
in a stationary system (we'd now say inertial),
to determine that they are synchronized. [At
clock A at time ta send light to clock B which
reflects it at tb to clock A at ta', with observers
at each clock noting the time the clock says at the
three events. If tb-ta=tb-ta' then the clocks are
synchronized.]
(b) had a stationary system thereby synchronize its
clocks.
(c) posited a second inertial - but moving - system
whose clocks at all times and places would show
the first system's times at the immediately
adjacent first system location.
(d) posited the first system running the synchroni-
zation test on the second system clocks; that is, with
a completely non-definition test. With r=distance
between the clocks - per stationary system - he
got tb-ta=r/(c-v) and tb-ta'=r/(c+v).
He concluded that clocks synchronized in one inertial
system cannot satisfy the definitional test for
synchronization in a second inertial frame.
If the second system had indeed run its synchronization
test like the first system had, the times would be
tb-ta=r/c and tb-ta=r/c.
His proof is much like having a stationary pianist
playing a stationary piano and then turning on his
stationary piano stool to play a second piano that
is moving past him, while he stays stationary.
User Contributions:Top Document: Einstein (1905) Absurdities Previous Document: 16. The "contraction circus" absurdity. Next Document: 17. A straightforward pro-simultaneity argument. Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: Thnktank@concentric.net (Eleaticus)
Last Update March 27 2014 @ 02:12 PM
|

Comment about this article, ask questions, or add new information about this topic: