Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

Rec.Bicycles Frequently Asked Questions Posting Part 5/5

( Part1 - Part2 - Part3 - Part4 - Part5 - MultiPage )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Zip codes ]
Archive-name: bicycles-faq/part5

See reader questions & answers on this topic! - Help others by sharing your knowledge
[Note:  The complete FAQ is available via anonymous ftp from
draco.acs.uci.edu (128.200.34.12), in pub/rec.bicycles.]


Subject: 9.12 Studded Tires From: Name removed by request [A summary on studded tires compiled by a reader. A complete copy of the responses she received, including some that give directions for making your own studded tires, is in the archive.] Studded tires do help, especially on packed snow and ice. On fresh snow and on water mixed with snow (i.e. slush) they're not significantly different from unstudded knobbies. On dry pavement they are noisy and heavy, but can be used; watch out for cornering, which is degraded compared to unstudded tires. Several people recommend a Mr. Tuffy or equivalent with them; one respondent says he gets more flats with a liner than without. In the U.S. the IRC Blizzard tires are commercially available. They can also be made.
Subject: 9.13 Cycling Myths Following are various myths about cycling and why they are/aren't true. Myth: Wearing a helmet makes your head hotter than if you didn't wear one. Actual measurements under hard riding conditions with ANSI standard helmets show no consistent temperature difference from helmetless riders. Part of the reason is that helmets provide insulated protection from the sun as well as some airflow around the head. (Les Earnest Les@cs.Stanford.edu) Myth: You need to let the air out of your tires before shipping your bike on an airplane - if you don't, the tires will explode. Assume your tire at sea level, pumped to 100 psi. Air pressure at sea level is (about) 15psi. Therefore, the highest pressure which can be reached in the tire is 100+15=115psi. Ergo: There is no need to deflate bicycle tires prior to flight to avoid explosions. (Giles Morris gilesm@bird.uucp) Addendum: The cargo hold is pressurized to the same pressure as the passenger compartment. (Tom ? tom@math.ufl.edu) Myth: You can break a bike lock with liquid nitrogen or other liquified gases Freon cannot cool the lock sufficiently to do any good. Steel conducts heat into the cooling zone faster than it can be removed by a freeze bomb at the temperatures of interest. Liquid nitrogen or other gasses are so cumbersome to handle that a lock on a bike cannot be immersed as it must be to be effective. The most common and inconspicuous way to break these locks is by using a 4 inch long 1 inch diameter commercial hydraulic jack attached to a hose and pump unit. (Jobst Brandt jobst.brandt@stanfordalumni.org) [More myths welcome!]
Subject: 9.14 Descending I From: Roger Marquis <marquis@roble.com> [More up to date copies of Roger's articles can be found at http://www.roble.com/marquis/] Descending ability, like any other fine-motor skill, is best improved with practice. The more time spent on technical descents the more your confidence and speed will develop. The difficulty for bicyclists is that each descent requires a climb. There are hot shots who practice on their motorcycles before races with strategic descents. For most of us the best solution is frequent group rides. Group rides are the best path to developing real bike handling skills, on descents and elsewhere. After experience the second most important component of a fast descent is relaxation. Too much anxiety can impair concentration and cause you to miss important aspects of the road surface. Pushing the speed to the point of fear will not help develop descending skills. Work first on relaxation and smoothness (no sudden movements, braking or turning) and speed will follow. Third in importance is technique. Technique, however, is difficult or impossible to learn from reading about it. For that reason this article touches on just four of the many technical facets of descending: apexing, breaking, lean, and passing. Apexing is the art of straightening out a corner by using the breadth of the lane or roadway. A fast descender will set up his or her line well in advance of a corner, entering it from the outside edge of the road for the widest possible angle. The apex, or mid-point, is crossed at the opposite or inside edge of the road, finally exiting again on the outside (always leaving room for traffic, error and unforeseen hazard). The key is to _gradually_ get into position and _smoothly_ follow the line through the corner. If you find yourself making _any_ quick, jerky movements take that as a sign that you need to slow down and devote a little more attention further up the road. Use the brakes ONLY up to the beginning of a corner. NEVER APPLY THE BRAKES THROUGH A CORNER. At that point any traction used for braking will reduce the traction available for cornering. If you do have to brake after entering a curve make every effort to straighten your line before applying the brakes. If the road surface is good use primarily the front brake. If traction is poor switch to the rear brake and begin breaking earlier. In auto racing circles there are two schools of thought on braking technique. One advocates gradually releasing the brakes upon entering the corner. The other advises hard braking right up to the beginning of the curve and abruptly releasing them just before entering the curve. Cyclists should probably combine these techniques depending on the road surface, rim trueness, brake pad hardness, headset wear and the proximity of other riders. Motorcyclists and bicyclists lean their bikes very differently in a corner. Motorcyclists keep their bikes as upright as possible to avoid scraping the pegs or pipes. Bicyclists on the other hand lean their bikes into the corner and keep the body upright. Both motorcyclists and bicyclists extend the inside knee down to lower the center of gravity. To _pedal_ through a corner make like a motorcyclist and keep the bike upright while the inside pedal is down. One of the most difficult aspects of fast descents is passing. Unfortunately, there are good climbers who are slow descenders. As a result it is not always possible to begin a descent ahead of someone who you may want to pass. If you find yourself behind a slow rider either hang out a safe distance behind or pass quickly but carefully. Passing on a descent is always difficult and can be dangerous. By the same token, if you find yourself ahead of someone who obviously wants to pass, let them by at the earliest safe moment. It's never appropriate to impede someone's progress on a training ride whether they are on a bicycle or in a car. Always make plenty of room for anyone trying to pass no matter what the speed limit is. Keep in mind that downhill racing is not what bicycle racing is all about. There is no need to keep up with the Jones'. This is what causes many a crash. Compete against yourself on the descents. Belgians are notoriously slow descenders due to the consistently rainy conditions there yet some of the best cyclists in the world train on those rainy roads. Don't get caught pushing it on some wet or unfamiliar descent. Be prepared for a car or a patch of dirt or oil in the middle of your path around _every_ blind corner no matter how many times you've been on a particular road. Take it easy, relax, exercise your powers of concentration and hammer again when you can turn the pedals. If you're interested in exploring this further the best books (and videos) on bike handling I've read are the "Twist of The Wrist" series by motorcycle racer Keith Code (http://www.superbikeschool.com). Roger Marquis (marquis@roble.com)
Subject: 9.15 Descending II From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Fri, 11 May 2001 16:35:42 PDT Descending and Fast Cornering Descending on mountain roads, bicycles can reach speeds that are more common on motorcycles. Speeds that are otherwise not attainable, or at least not continuously. Criterium racing also presents this challenge, but not as intensely. Unlike a motorcycle, the bicycle is lighter than the rider and power cannot be applied when banked over when cornering hard. Because narrow bicycle tires inflated hard have little traction margin, a slip on pavement is usually unrecoverable. Drifting a Road Bicycle on Pavement Riders have claimed they can slide a bicycle on dry pavement in curves to achieve greater cornering speed, as in drifting through a turn. A drift, in contrast to a slide, means that both wheels slip, which is even more difficult. This notion may come from observing motorcycles, that can cause a rear wheel slide by applying power when banked over. Besides, when questioned about how this is done, the proponent says that the ability was observed, done by others. A bicycle can be pedaled only at lean angles far less than the maximum without grounding a pedal, so hard cornering is always done coasting, hence, there is no power in hard cornering. Although bicycles with high ground clearance have been built, they showed only that pedaling imbalance has such a disturbing influence on traction, that pedaling at a greater lean angle than that of a standard road racing bicycles has no benefit. That is why road bicycles are built the way they are, no higher than is useful. That bicycle tires have no margin for recovering a slip at maximum lean angle, has been tested in lean-slip tests on roads and testing machines. For smooth tires on pavement, slipout occurs at slightly less than 45 degrees from the road surface and is both precipitous and unrecoverable. Although knobby tires have a less sudden slipout and can be drifted around curves, they begin to side-slip at a more upright angle as their tread fingers walk rather than slip. For this reason, knobby tires cannot achieve lean angles of smooth tires and offer no cornering advantage on pavement. How to Corner Cornering requires estimating the required lean angle before reaching the apex of the turn where the angle with the road surface is the critical parameter rather the angle with the vertical, as is evident from banked curves. Lean angle is limited by the available traction that must be assessed from velocity and appearance of the surface. For good pavement, this angle is about 45 degrees, in the absence of oil, water, or smooth and slick spots. Therefore, a curve banked inward 10 degrees, allows a lean of up to at least 55 degrees from the vertical, while a crowned road with no banking, where the surface falls off about 10 degrees, would allow only up to 35 degrees. Banked curves have a greater effect than just adding to the maximum lean angle, because with a steeper banking, more of the centripetal cornering force goes into increasing traction directly into the banking up to the point of a vertical wall where only the maximum G-forces limit what speed a bicyclists can attain. In contrast, an off banked curve makes cornering progressively more difficult until the bicycle will slip even at zero speed. This effect is more naturally apparent to riders who exceeded these limits early in life and have added the experience to expected natural phenomena. The skill of visualizing effects of speed, traction, braking, and curvature are complex, but is something humans and other creatures do regularly in self propulsion. The difficulty arises in adapting this to higher speeds. When running, we anticipate how fast and sharply to turn on a sidewalk, dirt track, or lawn, to avoid sliding. The method is the same on a bicycle although the consequences of error are more severe. Cornering requires reflexes to dynamics that are easily developed in youth, while people who have not exercised this in a long time find they can no longer summon these skills. A single fall strongly reinforces doubt, so cautious practice is advisable if returning to bicycling after a long time. Countersteer Countersteer is a popular subject for people who belatedly discover or rediscover how to balance. What is not apparent, is that two wheeled vehicles can be controlled ONLY by countersteer, there is no other way. Unlike a car, a bicycle cannot be diverted from a straight path by steering the wheel to one side. The bicycle must first be leaned in that direction by steering it ever so slightly the other way. This is the means by which a broomstick is balanced on the palm of the hand or a bicycle on the road. The point of support is moved beneath the mass, in line with the combined forces of gravity and cornering, and it requires steering, counter and otherwise. It is so obvious that runners never mention it, although football, basketball, and ice hockey players conspicuously do it. Braking Once the basics of getting around a corner are developed, doing it fast involves careful use of the brakes. Besides knowing how steeply to lean in curves, understanding braking makes the difference between the average and the fast rider. When approaching a curve with good traction, the front brake can be used almost exclusively, because it is capable of slowing the bicycle so rapidly that nearly all weight transfers to the front wheel, at which point the rear brake is nearly useless. Once in the curve, more and more traction is used to resist lateral slip as the lean angle increases, but that does not mean the brakes cannot be used. When banked over, braking should be done with both brakes, because now neither wheel has much traction to spare and with lighter braking, weight transfers diminishes. A feel for how hard the front brake must be applied for rear wheel lift-off, can be developed at low speed. Braking in Corners Why brake in the turn? If all braking is done before the turn, speed will be slower than necessary before the apex. Anticipating maximum speed for the apex is difficult, and because the path is not a circular arc, speed must be trimmed all the way to that point. Fear of braking in curves usually comes from an incident of injudicious braking at a point where braking should have been done with a gentle touch to match the conditions. Substantial weight transfer from the rear to the front wheel will occur with strong use of the front brake on good traction just before entering the curve. When traction is poor or the lean angle is great, deceleration cannot be large and therefore, weight transfer will be small, so light braking with both wheels is appropriate. If traction is miserable, only the rear brake should be used, because although a rear skid is recoverable, a front skid is generally not. An exception to this is in deep snow, where the front wheel can slide and function as a sled runner while being steered. Braking at maximum lean For braking in a curve, take the example of a rider cornering with good traction, leaning at 45 degrees, the equivalent of 1G centrifugal acceleration. Braking with 1/10g increases the traction demand by one half percent. The sum of cornering and braking vectors is the square root of the sum of their squares, SQRT(1^2+0.1^2)=1.005 or an increase of 0.005. In other words, there is room to brake substantially during maximum cornering. Because the lean angle changes as the square of the speed, braking can rapidly reduce the angle and allow even more braking. For this reason skilled racers nearly always apply both brakes into the apex of turns. Suspension Beyond leaning and braking, suspension helps substantially in descending. For bicycles without built-in suspension, this is furnished by the legs. Standing up is not necessary on roads with fine ripples, just taking the weight off the pelvic bones is adequate. For rougher roads, enough clearance must be used so the saddle carries no weight. The reason for this is twofold. Vision will become blurred if the saddle is not unloaded, and traction will be compromised if the tires are not bearing with uniform force on the road while rolling over bumps. Ideally the tires should bear on the road at constant load. Besides, if the road has whoop-de-doos, the seated rider will get launched from the saddle and possibly crash. Lean the Bicycle, the Rider, or Both Some riders believe that sticking the knee out or leaning the body away from the bicycle, improves cornering. Sticking out a knee is the same thing that riders without cleats do when they stick out a foot in dirt track motorcycle fashion. On paved roads this is a useless but reassuring gesture that, on uneven roads, even degrades control. Any body weight that is not centered over the bicycle (leaning the bike or sticking out a knee) puts a side load on the bicycle, and side loads cause steering motions over uneven road. Getting weight off the saddle is also made more difficult by such maneuvers. To verify this, coast down a straight but rough road, weight on one pedal with the bike slanted, and note how the bike follows an erratic line. In contrast, if you ride centered on the bike you can ride no-hands perfectly straight over the same road. While leaning off the bike, trail of the front wheel causes steering on rough roads. Outside Pedal Down It is often said that putting the outside pedal down in a curve improves cornering. Although most experienced riders do this, it is not because it has anything to do with traction. The reason is that it enables the rider to unload the saddle while standing with little effort on a locked knee, cushioning his weight on his ankle. This can only be done on the outside pedal because the inside pedal would hit the road. However, standing on one extended leg does not work on rougher roads, because the ankle cannot absorb large road bumps nor raise the rider high enough from the saddle to avoid getting bounced. Rough roads require rising high enough from the saddle to avoid hard contact while the legs supply shock absorbing knee action, with pedals and cranks horizontal. Body Contortions Most of the "body English" riders display is gratuitous gesturing, much like the motorcyclists who stick their butt out in curves while their bikes never get down to 45 degrees (the angle below which hiking out becomes necessary to keep hardware from dragging on the road). In fact, in a series of tight ess bends, there's no time to do any of this. It's done by supporting weight on the (horizontally positioned) pedals, and unless the road is rough, with a light load on the saddle. On rough roads, the cheeks of the saddle, (the ones that went away with the Flite like saddles) are used to hold the bicycle stably between the legs while not sitting. The path through a curve is not symmetrical for a bicycle, because it can slow down much faster than it can regain speed. Thus the trajectory is naturally asymmetric. Brakes are generally used to the apex (that is usually not the middle) of the curve, where pedaling at that lean angle is not possible, nor does pedaling accelerate as fast as braking decelerates. Hairpin Turns Although the railroad term switchback arises from early mountain railroading where at the end of a traverse, a switch is turned to back up the next traverse, after which another switch is turned to head up the next, on roads these are hairpin turns. In such turns trajectory asymmetry is most conspicuous, because braking can be hard enough to raise the rear wheel when entering but one cannot exit with such acceleration. For this reason, riders often find themselves with extra road on the exit of such turns, having slowed down too much. Vision Where to direct vision is critical for fast cornering. Central vision should be focused on the pavement where the tire will track, while allowing peripheral vision, with its low resolution and good sensitivity to motion, to detect obstacles and possible oncoming traffic. Peripheral vision monitors surroundings anyway, so the presence of a car in that "backdrop" does not require additional consideration other than its path. If central vision is directed at the place where an oncoming vehicle might appear, its appearance presents a new problem of confrontation, stopping image processing of the road surface for substantial time. Because the color or model of car is irrelevant, this job can be left to peripheral vision in high speed primitive processing, while concentrating on pavement surface and composition. When following another bicycle or a car downhill, the same technique is even more important, because by focusing on the leading vehicle, pavement and road alignment information is being obscured giving a tendency to mentally become a passenger of that vehicle. Always look ahead of the vehicle, observing it only peripherally. Riders often prefer to keep their head upright in curves, although leaning the head with the bicycle and body is more natural to the motion. Pilots who roll their aircraft do not attempt to keep their head level during the maneuver, or in curves, for that matter. The Line Picking the broadest curve through a corner may be obvious by the time the preceding skills are mastered, but that may not be the best line, either for safety or because the road surface is poor. Sometimes hitting a bump or a "Bott's dot" is better than altering the line, especially at high speed. Tires should be large enough to absorb the entire height of a lane marker without pinching the tube. This means that a minimum of a 25mm actual cross section tire is advisable. At times, the crown of the road is sufficient to make broadening the curve, by taking the curve wide, counterproductive because the crown on the far side gives a restricted lean angle. Mental Speed Mental speed is demanded by all of these. However, being quick does not guarantee success, because judgment is even more important. To not be daring but rather to ride with a margin that leaves a feeling of comfort rather than high risk, is more important. Just the same, do not be blinded by the age old presumption that everyone who rides faster than I is crazy. "He descends like a madman!" is one of the most common descriptions of fast descenders. The comment generally means that the speaker is slower. Braking Heat on Steep Descents Although tandems with their higher weight to wind drag ratio have this problem more often, steep mountain roads, especially ones with poor or no pavement require so much braking that single bicycles blow off tires from overheating. For tubulars the problem is not so much over pressure than rim glue melting as all pressure sensitive glues do with heating. As glue softens, tires slip on the hot rim and pile up on the valve stem. This is the usual indicator that tubular tire wheels are too hot. The next is that the tire arches off the rim in the area just before the stem. This is a serious problem both for tubulars and clinchers because most clincher tires, given enough time on a hot rim will blow off if inflated to recommended pressure. Pressure that gives good rolling performance (hard) while tubulars roll off from lack of adhesion to the rim. The faster the travel, the more descending power goes into wind drag and the better the rims are cooled. Going slowly does not help, unless speed is reduced below walking pace. On steep descents, where rims stay too hot to touch for more than a minute, reducing tire inflation pressure is a sure remedy. However, tires should be re-inflated once the rims cool to normal. The blow-off pressure is the same for small and large tires on the same rim, it being dependent only on the opening of the rim width. Also, tires with a smaller air volume become hot faster than larger ones. There is no way of descending continuously and steeply without reducing inflation pressure, unless there is an insulator between the tube and rim of a clincher. Insulating rim strips are no longer offered because they were an artifact of dirt roads that often required riders to descend so slowly that all potential energy went into the brakes and almost none into wind drag. These rim strips were cloth tubes filled with kapok, their insulating purpose being unknown to most people when they were last offered.
Subject: 9.16 Trackstands From: Rick Smith <ricks@sdd.hp.com> How to trackstand on a road bike. With acknowledgments to my trackstanding mentor, Neil Bankston. Practice, Practice, Practice, Practice, .... 1. Wear tennis shoes. 2. Find an open area, like a parking lot that has a slight grade to it. 3. Put bike in a gear around a 42-18. 4. Ride around out of the saddle in a counter-clockwise circle, about 10 feet in diameter. Label Notation for imaginary points on the circle: 'A' is the lowest elevation point on the circle. 'B' is the 90 degrees counterclockwise from 'A' . 'C' is the highest elevation point on the circle. 'D' is the 90 degrees counterclockwise from 'C' . C / \ D B Aerial View \ / A 5. Start slowing down, feeling the different sensation as the bike transitions between going uphill (B) and downhill (D). 6. Start trying to go real slowly through the A - B region of the circle. This is the region you will use for trackstanding. Ride the rest of the circle as you were in step 5. The trackstanding position (aerial view again): ---| / ------| |----/ |--- / The pedal are in a 3 o'clock - 9 o'clock arrangement (in other words, parallel to the ground). Your left foot is forward, your wheel is pointed left. You are standing and shifting you weight to keep balance. The key to it all is this: If you start to fall left, push on the left pedal to move the bike forward a little and bring you back into balance. If you start to fall right, let up on the pedal and let the bike roll back a little and bring you back into balance. 7. Each time you roll through the A - B region, try to stop when the left pedal is horizontal and forward. If you start to lose your balance, just continue around the circle and try it again. 8. Play with it. Try doing it in various regions in the circle, with various foot position, and various amounts of turn in your steering. Try it on different amounts of slope in the pavement. Try different gears. What you are shooting for is the feel that's involved, and it comes with practice. The why's of trackstanding: Why is road bike specified in the title? A true trackstand on a track bike is done differently. A track bike can be pedaled backwards, and doesn't need a hill to accomplish the rollback affect. Track racing trackstands are done opposite of what is described. They take place on the C - D region of the circle, with gravity used for the roll forward, and back pedaling used for the rollback. This is so that a racer gets the assist from gravity to get going again when the competition makes a move. Why a gear around 42-18? This is a reasonable middle between too small, where you would reach the bottom of the stroke on the roll forward, and too big, where you couldn't generate the roll forward force needed. Why is the circle counter-clockwise? Because I assume you are living in an area where travel is done on the right side of the road. When doing trackstands on the road, most likely it will be at traffic lights. Roads are crowned - higher in the middle, lower on the shoulders - and you use this crown as the uphill portion of the circle (region A-B). If you are in a country where travel is done on the left side of the road, please interpret the above aerial views as subterranial. Why is this done out of the saddle? It's easier!! It can be done in while seated, but you lose the freedom to do weight adjustments with your hips. Why is the left crank forward? If your right crank was forward, you might bump the front wheel with your toe. Remember the steering is turned so that the back of the front wheel is on the right side of the bike. Some bikes have overlap of the region where the wheel can go and your foot is. Even if your current bike doesn't have overlap, it's better to learn the technique as described in case you are demonstrating your new skill on a bike that does have overlap. Why the A - B region? It's the easiest. If you wait till the bike is around 'B', then you have to keep more force on the pedal to hold it still. If you are around the 'A' point, there may not be enough slope to allow the bike to roll back. Questions: What do I do if I want to stop on a downhill? While there are techniques that can be employed to keep you in the pedals, for safety sake I would suggest getting out of the pedals and putting your foot down. Other exercises that help: Getting good balance. Work through this progression: 1. Stand on your right foot. Hold this until it feels stable. 2. Close your eyes. Hold this until it feels stable. 3. Go up on your toes. Hold this until it feels stable. 4. If you get to here, never mind, your balance is already wonderful, else repeat with other foot.
Subject: 9.17 Front Brake Usage From: John Forester <jforester@cup.portal.com> I have dealt for many years with the problem of explaining front brake use, both to students and to courtrooms, and I have reached some conclusions, both about the facts and about the superstitions. The question was also asked about British law and front brakes. I'll answer that first because it is easier. British law requires brakes on both wheels, but it accepts that a fixed gear provides the required braking action on the rear wheel. I think that the requirement was based on reliability, not on deceleration. That is, if the front brake fails, the fixed-gear cyclist can still come to a stop. In my house (in California) we have three track-racing bikes converted to road use by adding brakes. Two have only front brakes while the third has two brakes. We have had no trouble at all, and we ride them over mild hills. The front-brake-only system won't meet the normal U.S. state traffic law requirement of being able to skid one wheel, because that was written for coaster-braked bikes, but it actually provides twice the deceleration of a rear-wheel-braked bike and nobody, so far as I know, has ever been prosecuted for using such a setup. The superstitions about front brake use are numerous. The most prevalent appears to be that using the front brake without using the rear brake, or failing to start using the rear brake before using the front brake, will flip the cyclist. The other side of that superstition is that using the rear brake will prevent flipping the bicycle, regardless of how hard the front brake is applied. The truth is that regardless of how hard the rear brake is applied, or whether it is applied at all, the sole determinant (aside from matters such as bicycle geometry, weight and weight distribution of cyclist and load, that can't practically be changed while moving) of whether the bicycle will be flipped is the strength of application of the front brake. As the deceleration to produce flip is approached, the weight on the rear wheel decreases to zero, so that the rear wheel cannot produce any deceleration; with no application of the rear brake it rolls freely, with any application at all it skids at a force approaching zero. With typical bicycle geometry, a brake application to attempt to produce a deceleration greater than 0.67 g will flip the bicycle. (Those who advocate the cyclist moving his butt off and behind the saddle to change the weight distribution achieve a very small increase in this.) A typical story is that of a doctor who, now living in the higher- priced hilly suburbs, purchased a new bicycle after having cycled to med school on the flats for years. His first ride was from the bike shop over some minor hills and then up the 15% grade to his house. His second ride was down that 15% grade. Unfortunately, the rear brake was adjusted so that it produced, with the lever to the handlebar, a 0.15 g deceleration. The braking system would meet the federal requirements of 0.5 g deceleration with less than 40 pounds grip on the levers, because the front brake has to do the majority of the work and at 0.5 g there is insufficient weight on the rear wheel to allow much more rear brake force than would produce 0.1 g deceleration. (The U.S. regulation allows bicycles with no gear higher than 60 inches to have only a rear-wheel brake that provides only 0.27 g deceleration.) I don't say that the rear brake adjustment of the bicycle in the accident was correct, because if the front brake fails then the rear brake alone should be able to skid the rear wheel, which occurs at about 0.3 g deceleration. The doctor starts down the hill, coasting to develop speed and then discovering that he can't slow down to a stop using the rear brake alone. That is because the maximum deceleration produced by the rear brake equalled, almost exactly, the slope of the hill. He rolls down at constant speed with the rear brake lever to the handlebar and the front brake not in use at all. He is afraid to apply the front brake because he fears that this will flip him, but he is coming closer and closer to a curve, after which is a stop sign. At the curve he panics and applies the front brake hard, generating a force greater than 0.67 g deceleration and therefore flipping himself. Had he applied the front brake with only a force to produce 0.1 g deceleration, even 100 feet before the curve, he would have been safe, but in his panic he caused precisely the type of accident that he feared. He thought that he had a good case, sued everybody, and lost. This is the type of superstition that interferes with the cycling of many people. My standard instruction for people who fear using the front brake is the same instruction for teaching any person to brake properly. Tell them to apply both brakes simultaneously, but with the front brake 3 times harder than the rear brake. Start by accelerating to road speed and stopping with a gentle application. Then do it again with a harder application, but keeping the same 3 to 1 ratio. Then again, harder still, until they feel the rear wheel start to skid. When the rear wheel skids with 1/4 of the total braking force applied to it, that shows that the weight distribution has now progressed as far to the front wheel as the average cyclist should go. By repeated practice they learn how hard this is, and attain confidence in their ability to stop as rapidly as is reasonable without any significant risk.
Subject: 9.18 Slope Wind, the Invisible Enemy From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Wind as well as relative wind caused by moving through still air demands most of a bicyclists effort on level ground. Most riders recognize when they are subjected to wind because it comes in gusts and these gusts can be distinguished from the more uniform wind caused by moving through still air. That's the catch. At the break of dawn there is often no wind as such but cool air near the ground, being colder and more dense than higher air slides downslope as a laminar layer that has no turbulent gusts. Wind in mountain valleys generally blows uphill during the heat of the day and therefore pilots of light aircraft are warned to take off uphill against the morning slope wind. Slope wind, although detectable, is not readily noticed when standing or walking because it has negligible effect and does not come in apparent gusts. The bicyclist, in contrast, is hindered by it but cannot detect it because there is always wind while riding. Slope wind, as such, can be up to 10 mph before it starts to take on the characteristics that we expect of wind. It is doubly deceptive when it comes from behind because it gives an inflated speed that can be mistakenly attributed to great fitness that suddenly vanishes when changing course. If you live near aspen or poplars that tend to fan their leaves in any breeze, you will not be fooled.
Subject: 9.19 Reflective Tape From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Reflective tape is available in most better bike shops in various forms, most of which is pre-cut to some preferred shape and designed for application to some specific part of the bike or apparel. The most effective use of such tape is on moving parts such as pedals, heel of the shoe or on a place that is generally overlooked, the inside of the rim. First, it is appropriate to note that car headlights generally produce white light and a white or, in fact, colorless reflector returns more of this light to its source than ones with color filters or selective reflection. Red, for instance, is not nearly as effective as white. Placing reflective tape on the inside of the rims between the spokes is a highly effective location for night riding because it is visible equally to the front and rear while attracting attention through its motion. It is most effective when applied to less than half the rim in a solid block. Five inter-spoke sections does a good job. One can argue that it isn't visible from the side (if the rim is not an aero cross section) but the major hazard is from the front and rear. Be seen on a bike! It's good for your health.
Subject: 9.20 Nutrition From: Bruce Hildenbrand <bhilden@unix386.Convergent.COM> Oh well, I have been promising to do this for a while and given the present discussions on nutrition, it is about the right time. This article was written in 1980 for Bicycling Magazine. It has been reprinted in over 30 publications, been the basis for a chapter in a book and cited numerous other times. I guess somebody besides me thinks its OK. If you disagree with any points, that's fine, I just don't want to see people take exception based on their own personal experiences because everyone is different and psychological factors play a big role(much bigger than you would think) on how one perceives his/her own nutritional requirements. Remember that good nutrition is a LONG TERM process that is not really affected by short term events(drinking poison would be an exception). If it works for you then do it!!! Don't preach!!!! BASIC NUTRITION PRIMER Nutrition in athletics is a very controversial topic. However, for an athlete to have confidence that his/her diet is beneficial he/she must understand the role each food component plays in the body's overall makeup. Conversely, it is important to identify and understand the nutritional demands on the physiological processes of the body that occur as a result of racing and training so that these needs can be satisfied in the athlete's diet. For the above reasons, a basic nutrition primer should help the athlete determine the right ingredients of his/her diet which fit training and racing schedules and existing eating habits. The body requires three basic components from foods: 1) water; 2) energy; and 3)nutrients. WATER Water is essential for life and without a doubt the most important component in our diet. Proper hydrations not only allows the body to maintain structural and biochemical integrity, but it also prevents overheating, through sensible heat loss(perspiration). Many cyclists have experienced the affects of acute fluid deficiency on a hot day, better known as heat exhaustion. Dehydration can be a long term problem, especially at altitude, but this does not seem to be a widespread problem among cyclists and is only mentioned here as a reminder(but an important one). ENERGY Energy is required for metabolic processes, growth and to support physical activity. The Food and Nutrition Board of the National Academy of Sciences has procrastinated in establishing a Recommended Daily Allowance(RDA) for energy the reasoning being that such a daily requirement could lead to overeating. A moderately active 70kg(155lb) man burns about 2700 kcal/day and a moderately active 58kg(128lb) woman burns about 2500 kcal/day. It is estimated that cyclists burn 8-10 kcal/min or about 500-600 kcal/hr while riding(this is obviously dependent on the level of exertion). Thus a three hour training ride can add up to 1800 kcals(the public knows these as calories) to the daily energy demand of the cyclist. Nutritional studies indicate that there is no significant increase in the vitamin requirement of the athlete as a result of this energy expenditure. In order to meet this extra demand, the cyclist must increase his/her intake of food. This may come before, during or after a ride but most likely it will be a combination of all of the above. If for some reason extra nutrients are required because of this extra energy demand, they will most likely be replenished through the increased food intake. Carbohydrates and fats are the body's energy sources and will be discussed shortly. NUTRIENTS This is a broad term and refers to vitamins, minerals, proteins, carbohydrates, fats, fiber and a host of other substances. The body is a very complex product of evolution. It can manufacture many of the resources it needs to survive. However, vitamins, minerals and essential amino acids(the building blocks of proteins) and fatty acids cannot be manufactured, hence they must be supplied in our food to support proper health. Vitamins and Minerals No explanation needed here except that there are established RDA's for most vitamins and minerals and that a well balanced diet, especially when supplemented by a daily multivitamin and mineral tablet should meet all the requirements of the cyclist. Proper electrolyte replacement(sodium and potassium salts) should be emphasized, especially during and after long, hot rides. Commercially available preparations such as Exceed, Body Fuel and Isostar help replenish electrolytes lost while riding. Proteins Food proteins are necessary for the synthesis of the body's skeletal(muscle, skin, etc.) and biochemical(enzymes, hormones, etc.)proteins. Contrary to popular belief, proteins are not a good source of energy in fact they produce many toxic substances when they are converted to the simple sugars needed for the body's energy demand. Americans traditionally eat enough proteins to satisfy their body's requirement. All indications are that increased levels of exercise do not cause a significant increase in the body's daily protein requirement which has been estimated to be 0.8gm protein/kg body weight. Carbohydrates Carbohydrates are divided into two groups, simple and complex, and serve as one of the body's two main sources of energy. Simple carbohydrates are better known as sugars, examples being fructose, glucose(also called dextrose), sucrose(table sugar) and lactose(milk sugar). The complex carbohydrates include starches and pectins which are multi-linked chains of glucose. Breads and pastas are rich sources of complex carbohydrates. The brain requires glucose for proper functioning which necessitates a carbohydrate source. The simple sugars are quite easily broken down to help satisfy energy and brain demands and for this reason they are an ideal food during racing and training. The complex sugars require a substantially longer time for breakdown into their glucose sub units and are more suited before and after riding to help meet the body's energy requirements. Fats Fats represent the body's other major energy source. Fats are twice as dense in calories as carbohydrates(9 kcal/gm vs 4 kcal/gm) but they are more slowly retrieved from their storage units(triglycerides) than carbohydrates(glycogen). Recent studies indicate that caffeine may help speed up the retrieval of fats which would be of benefit on long rides. Fats are either saturated or unsaturated and most nutritional experts agree that unsaturated, plant-based varieties are healthier. Animal fats are saturated(and may contain cholesterol), while plant based fats such as corn and soybean oils are unsaturated. Unsaturated fats are necessary to supply essential fatty acids and should be included in the diet to represent about 25% of the total caloric intake. Most of this amount we don't really realize we ingest, so it is not necessary to heap on the margarine as a balanced diet provides adequate amounts. WHAT THE BODY NEEDS Now that we have somewhat of an understanding of the role each food component plays in the body's processes let's relate the nutritional demands that occur during cycling in an attempt to develop an adequate diet. Basically our bodies need to function in three separate areas which require somewhat different nutritional considerations. These areas are: 1) building; 2) recovery; and 3) performance. Building Building refers to increasing the body's ability to perform physiological processes, one example being the gearing up of enzyme systems necessary for protein synthesis, which results in an increase in muscle mass, oxygen transport, etc. These systems require amino acids, the building blocks of proteins. Hence, it is important to eat a diet that contains quality proteins (expressed as a balance of the essential amino acid sub units present)fish, red meat, milk and eggs being excellent sources. As always, the RDA's for vitamins and minerals must also be met but, as with the protein requirement, they are satisfied in a well balanced diet. Recovery This phase may overlap the building process and the nutritional requirements are complimentary. Training and racing depletes the body of its energy reserves as well as loss of electrolytes through sweat. Replacing the energy reserves is accomplished through an increased intake of complex carbohydrates(60-70% of total calories) and to a lesser extent fat(25%). Replenishing lost electrolytes is easily accomplished through the use of the commercial preparations already mentioned. Performance Because the performance phase(which includes both training rides and racing)spans at most 5-7 hours whereas the building and recovery phases are ongoing processes, its requirements are totally different from the other two. Good nutrition is a long term proposition meaning the effects of a vitamin or mineral deficiency take weeks to manifest themselves. This is evidenced by the fact that it took many months for scurvy to show in sailors on a vitamin C deficient diet. What this means is that during the performance phase, the primary concern is energy replacement (fighting off the dreaded "bonk") while the vitamin and mineral demands can be overlooked. Simple sugars such a sucrose, glucose and fructose are the quickest sources of energy and in moderate quantities of about 100gm/hr(too much can delay fluid absorption in the stomach) are helpful in providing fuel for the body and the brain. Proteins and fats are not recommended because of their slow and energy intensive digestion mechanism. Short, one day rides or races of up to one hour in length usually require no special nutritional considerations provided the body's short term energy stores (glycogen) are not depleted which may be the case during multi-day events. Because psychological as well as physiological factors determine performance most cyclists tend to eat and drink whatever makes them feel "good" during a ride. This is all right as long as energy considerations are being met and the stomach is not overloaded trying to digest any fatty or protein containing foods. If the vitamin and mineral requirements are being satisfied during the building and recovery phases no additional intake during the performance phase is necessary. IMPLICATIONS Basically, what all this means is that good nutrition for the cyclist is not hard to come by once we understand our body's nutrient and energy requirements. If a balanced diet meets the RDA's for protein, vitamins and minerals as well as carbohydrate and fat intake for energy then everything should be OK nutritionally. It should be remembered that the problems associated with nutrient deficiencies take a long time to occur. Because of this it is not necessary to eat "right" at every meal which explains why weekend racing junkets can be quite successful on a diet of tortilla chips and soft drinks. However, bear in mind that over time, the body's nutritional demands must be satisfied. To play it safe many cyclists take a daily multivitamin and mineral supplement tablet which has no adverse affects and something I personally recommend. Mega vitamin doses(levels five times or more of the RDA) have not been proven to be beneficial and may cause some toxicity problems. GREY NUTRITION "Good" nutrition is not black and white. As we have seen, the body's requirements are different depending on the phase it is in. While the building and recovery phases occur somewhat simultaneously the performance phase stands by itself. For this reason, some foods are beneficial during one phase but not during another. A good example is the much maligned twinkie. In the performance phase it is a very quick source of energy and quite helpful. However, during the building phase it is not necessary and could be converted to unwanted fat stores. To complicate matters, the twinkie may help replenish energy stores during the recovery phase however, complex carbohydrates are probably more beneficial. So, "one man's meat may be another man's poison." NUTRIENT DENSITY This term refers to the quantity of nutrients in a food for its accompanying caloric(energy) value. A twinkie contains much energy but few vitamins and minerals so has a low nutrient density. Liver, on the other hand, has a moderate amount of calories but is rich in vitamins and minerals and is considered a high nutrient density food. Basically, one must meet his/her nutrient requirements within the constraints of his/her energy demands. Persons with a low daily activity level have a low energy demand and in order to maintain their body weight must eat high nutrient density foods. As already mentioned, a cyclist has an increased energy demand but no significant increase in nutrient requirements. Because of this he/she can eat foods with a lower nutrient density than the average person. This means that a cyclist can be less choosy about the foods that are eaten provided he/she realizes his/her specific nutrient and energy requirements that must be met. BALANCED DIET Now, the definition of that nebulous phrase, "a balanced diet". Taking into consideration all of the above, a diet emphasizing fruits and vegetables (fresh if possible), whole grain breads, pasta, cereals, milk, eggs, fish and red meat(if so desired) will satisfy long term nutritional demands. These foods need to be combined in such a way that during the building and recovery phase, about 60-70% of the total calories are coming from carbohydrate sources, 25% from fats and the remainder(about 15%) from proteins. It is not necessary to get 100% of the RDA for all vitamins and minerals at every meal. It may be helpful to determine which nutritional requirements you wish to satisfy at each meal. Personally, I use breakfast to satisfy part of my energy requirement by eating toast and cereal. During lunch I meet some of the energy, protein and to a lesser extent vitamin and mineral requirements with such foods as yogurt, fruit, and peanut butter and jelly sandwiches. Dinner is a big meal satisfying energy, protein, vitamin and mineral requirements with salads, vegetables, pasta, meat and milk. Between meal snacking is useful to help meet the body's energy requirement. CONCLUSION All this jiberish may not seem to be telling you anything you couldn't figure out for yourself. The point is that "good" nutrition is not hard to achieve once one understands the reasons behind his/her dietary habits. Such habits can easily be modified to accommodate the nutritional demands of cycling without placing any strict demands on one's lifestyle.
Subject: 9.21 Nuclear Free Energy Bar Recipe From: Phil Etheridge <phil@massey.ac.nz> Nuclear Free Energy Bars ~~~~~~~~~~~~~~~~~~~~~~~~ Comments and suggestions welcome. They seem to work well for me. I eat bananas as well, in about equal quanities to the Nuclear Free Energy Bars. I usually have two drink bottles, one with water to wash down the food, the other with a carbo drink. You will maybe note that there are no dairy products in my recipe -- that's because I'm allergic to them. You could easily replace the soy milk powder with the cow equivalent, but then you'd definitely have to include some maltodextrin (my soy drink already has some in it). I plan to replace about half the honey with maltodextrin when I find a local source. If you prefer cocoa to carob, you can easily substitute. C = 250 ml cup, T = 15 ml tablespoon 1 C Oat Bran 1/2 C Toasted Sunflower and/or Sesame seeds, ground (I use a food processor) 1/2 C Soy Milk Powder (the stuff I get has 37% maltodextrin, ~20% dextrose*) 1/2 C Raisins 2T Carob Powder Mix well, then add to 1/2 C Brown Rice, Cooked and Minced (Using a food processor again) 1/2 C Peanut Butter (more or less, depending on consistency) 1/2 C Honey (I use clear, runny stuff, you may need to warm if it's thicker and/or add a little water) Stir and knead (I knead in more Oat Bran or Rolled Oats) until thoroughly mixed. A cake mixer works well for this. The bars can be reasonably soft, as a night in the fridge helps to bind it all together. Roll or press out about 1cm thick and cut. Makes about 16, the size I like them (approx 1cm x 1.5cm x 6cm). * Can't remember exact name, dextrose something)
Subject: 9.22 Powerbars Recipe From: John McClintic <johnm@hammer.TEK.COM> Have you ever watched a hummingbird? Think about it! Hummingbirds eat constantly to survive. We lumpish earthbound creatures are in no position to imitate this. Simply, if we overeat we get fat. There are exceptions: those who exercise very strenuously can utilize - indeed, actually need - large amounts of carbohydrates. For example, Marathon runners "load" carbohydrates by stuffing themselves with pasta before a race. On the flip side Long-distance cyclists maintain their energy level by "power snacking". With reward to the cyclist and their need for "power snacking" I submit the following "power bar" recipe which was originated by a fellow named Bill Paterson. Bill is from Portland Oregon. The odd ingredient in the bar, paraffin, is widely used in chocolate manufacture to improve smoothness and flowability, raise the melting point, and retard deterioration of texture and flavor. Butter can be used instead, but a butter-chocolate mixture doesn't cover as thinly or smoothly. POWER BARS ---------- 1 cup regular rolled oats 1/2 cup sesame seed 1 1/2 cups dried apricots, finely chopped 1 1/2 cups raisins 1 cup shredded unsweetened dry coconut 1 cup blanched almonds, chopped 1/2 cup nonfat dry milk 1/2 cup toasted wheat germ 2 teaspoons butter or margarine 1 cup light corn syrup 3/4 cup sugar 1 1/4 cups chunk-style peanut butter 1 teaspoon orange extract 2 teaspoons grated orange peel 1 package (12 oz.) or 2 cups semisweet chocolate baking chips 4 ounces paraffin or 3/4 cup (3/4 lb.) butter or margarine Spread oats in a 10- by 15-inch baking pan. Bake in a 300 degree oven until oats are toasted, about 25 minutes. Stir frequently to prevent scorching. Meanwhile, place sesame seed in a 10- to 12-inch frying pan over medium heat. Shake often or stir until seeds are golden, about 7 minutes. Pour into a large bowl. Add apricots, raisins, coconut, almonds, dry milk, and wheat germ; mix well. Mix hot oats into dried fruit mixture. Butter the hot backing pan; set aside. In the frying pan, combine corn syrup and sugar; bring to a rolling boil over medium high heat and quickly stir in the peanut butter, orange extract, and orange peel. At once, pour over the oatmeal mixture and mix well. Quickly spread in buttered pan an press into an even layer. Then cover and chill until firm, at least 4 hours or until next day. Cut into bars about 1 1/4 by 2 1/2 inches. Combine chocolate chips and paraffin in to top of a double boiler. Place over simmering water until melted; stir often. Turn heat to low. Using tongs, dip 1 bar at a time into chocolate, hold over pan until it stops dripping (with paraffin, the coating firms very quickly), then place on wire racks set above waxed paper. When firm and cool (bars with butter in the chocolate coating may need to be chilled), serve bars, or wrap individually in foil. Store in the refrigerator up to 4 weeks; freeze to store longer. Makes about 4 dozen bars, about 1 ounce each. Per piece: 188 cal.; 4.4 g protein; 29 g carbo.; 9.8 g fat; 0.6 mg chol.; 40 mg sodium.
Subject: 9.23 Calories burned by cycling From: Jeff Patterson <jpat@hpsad.sad.hp.com> The following table appears in the '92 Schwinn ATB catalog which references Bicycling, May 1989: --------- Speed (mph) 12 14 15 16 17 18 19 Rider Weight Calories/Hr 110 293 348 404 448 509 586 662 120 315 375 437 484 550 634 718 130 338 402 469 521 592 683 773 140 360 430 502 557 633 731 828 150 383 457 534 593 675 779 883 160 405 485 567 629 717 828 938 170 427 512 599 666 758 876 993 180 450 540 632 702 800 925 1048 190 472 567 664 738 841 973 1104 200 495 595 697 774 883 1021 1159 (flat terrain, no wind, upright position)
Subject: 9.24 Road Rash Cures From: E Shekita <shekita@provolone.cs.wisc.edu> [Ed note: This is a condensation of a summary of cures for road rash that Gene posted.] The July 1990 issue of Bicycle Guide has a decent article on road rash. Several experienced trainers/doctors are quoted. They generally recommended: - cleaning the wound ASAP using an anti-bacterial soap such as Betadine. Showering is recommended, as running water will help flush out dirt and grit. If you can't get to a shower right away, at the very least dab the wound with an anti-bacteria solution and cover the wound with a non-stick telfa pad coated with bactrin or neosporin to prevent infection and scabbing. The wound can then be showered clean when you get home. It often helps to put an ice bag on the wound after it has been covered to reduce swelling. - after the wound has been showered clean, cover the wound with either 1) a non-stick telfa pad coated with bactrin or neosporin, or 2) one of the Second Skin type products that are available. If you go the telfa pad route, daily dressing changes will be required until a thin layer of new skin has grown over the wound. If you go the Second Skin route, follow the directions on the package. The general consensus was that scabbing should be prevented and that the Second Skin type products were the most convenient -- less dressing changes and they hold up in a shower. (Silvadene was not mentioned, probably because it requires a prescription.) It was pointed out that if one of the above treatments is followed, then you don't have to go crazy scrubbing out the last piece of grit or dirt in the wound, as some people believe. This is because most of the grit will "float" out of the wound on its own when a moist dressing is used. There are now products that go by the names Bioclusive, Tegaderm, DuoDerm, Op-Site, Vigilon, Spenco 2nd Skin, and others, that are like miracle skin. This stuff can be expensive ($5 for 8 3x4 sheets), but does not need to be changed. They are made of a 96% water substance called hydrogel wrapped in thin porous plastic. Two non-porous plastic sheets cover the hydrogel; One sheet is removed so that the hydrogel contacts the wound and the other non-porous sheet protects the wound. These products are a clear, second skin that goes over the cleaned (ouch!) wound. They breathe, are quite resistant to showering, and wounds heal in around 1 week. If it means anything, the Olympic Training Center uses this stuff. You never get a scab with this, so you can be out riding the same day, if you aren't too sore. It is important when using this treatment, to thoroughly clean the wound, and put the bandage on right away. It can be obtained at most pharmacies. Another possible source is Spenco second skin, which is sometimes carried by running stores and outdoor/cycling/ stores. If this doesn't help, you might try a surgical supply or medical supply place. They aren't as oriented toward retail, but may carry larger sizes than is commonly available. Also, you might check with a doctor, or university athletic department people.
Subject: 9.25 Knee problems From: Roger Marquis <marquis@roble.com> [More up to date copies of Roger's articles can be found at http://www.roble.net/marquis/] As the weather becomes more conducive to riding, the racing season gets going, and average weekly training distances start to climb a few of us will have some trouble with our knees. Usually knee problem are caused by one of four things: 1) Riding too hard, too soon. Don't get impatient. It's going to be a long season and there's plenty of time to get in the proper progression of efforts. Successful cycling is a matter of listening to your body. When you see cyclists burning out, hurting themselves and just not progressing past a certain point you can be fairly certain that it is because they are not paying enough attention to what their bodies are saying. 2) Too many miles. The human body is not a machine. It cannot take all the miles we sometimes feel compelled to ride without time to grow and adapt. Keep this in mind whenever you feel like increasing average weekly mileage by more than forty miles over two or three weeks and you should have no problems. 3) Low, low rpms (also excessive crank length). Save those big ring climbs and big gear sprints for later in the season. This is the time of year to develop fast twitch muscle fibers. That means spin, spin, spin. You don't have to spin all the time but the effort put into small gear sprints and high rpm climbing now will pay off later in the season. Mountain bikers need to be especially careful of low rpms. I generally recommend that even full time MTB competitors do most of their training on the road. 4) Improper position on the bike. Unfortunately most bicycle salespeople in this country have no idea how to properly set saddle height, the most common error being to set it too low. This is very conducive to developing knee problems because of excessive bend at the knee when the pedal is at, and just past top dead center. If you've avoided these common mistakes yet are still experiencing knee problems first make sure your seat and cleats are adjusted properly then: 1) Check for leg length differences both below and above the knee. If the difference is between 2 and 8 millimeters you can correct it by putting spacers under one cleat. If one leg is shorter by more than a centimeter or so you might experiment with a shorter crank arm on the short leg side. 2) Use shorter cranks. For some riders this helps keep pedal speed up and knee stress down. I'm over 6 ft. tall and use 170mm cranks for much of the off season. 3) Try the Fit-Kit R.A.D. cleat alignment device and/or a rotating type cleat/pedal system. 4) Cut way back on mileage and intensity (This is a last resort for obvious reasons). Sometimes a prolonged rest is the only way to regain full functionality and is usually required only after trying to "train through" pain. Roger Marquis (www.roble.net/marquis)
Subject: 9.26 Cycling Psychology From: Roger Marquis <marquis@roble.com> [More up to date copies of Roger's articles can be found at http://www.roble.net/marquis/] Motivation, the last frontier. With enough of it any ordinary person can become a world class athlete. Without it the same person could end up begging for change downtown. Even a tremendously talented rider will go nowhere without motivation. How do some riders always seem to be so motivated? What are the sources of their motivation? This has been a central theme of sports psychology since its beginning when Triplett studied the effects of audience and competition on performance in the late nineteenth century. Though a great deal has been written on motivation since Triplett it is still an individual construct. As an athlete you need to identify what motivates you and cultivate the sources of your motivation. Here are a few popular methods. GOALS. One of the best sources of motivation is setting goals. Be specific and put them down on paper. Define your goals clearly and make them attainable. Short term goals are more important than long term goals and should be even more precisely defined. Set short term goals for things like going on a good ride this afternoon, doing five sprints, bettering your time on a known course, etc. Set long term goals such as training at least five days a week, placing in specific races, upgrading... DO NOT STRESS WINNING when defining your goals. Instead stress enjoying the ride and doing your best in every ride and race. GROUP TRAINING. Training with friends, racing as a team, and all the other social benefits of our sport are also great for motivation. This is what clubs should be all about. With or without a club, group training is vastly more effective than individual training. The same intensity that can make solo training a challenge comes naturally in a good group. Ever notice how easy a smooth rotating paceline seems, until you arrive home to find a surprising soreness in the quadriceps? Why beat yourself over the head when a few phone calls (or emails) will generally find plenty of like minded compatriots. As a general rule try to limit solo training to between 10% and 50% of total miles. REGULARITY. It's nice to be regular, in more ways than one ;-) Regularity makes difficult tasks easy. If you make it a point to ride every day, or at least five times a week (to be competitive), making the daily ride will become automatic. Riding at the same time every day can also be helpful but be careful not to become a slave to the schedule. LOCATION. The 3 keys to a successful business, "location, location, and location" are also key to effective cycling. The importance of conveniently located rides, races, coaches, flexible school and employment cannot be underemphasized. Good training partners, good weather, good roads and minimal traffic can also make those long, hard rides both easier AND more productive. RACING. The best European pros actually do very little training. Need I say more? There simply is no better way to improve fitness and skill. Whether racing to place or to train the savvy cyclist will do all the racing his or her motivation allows. AS WELL AS cycling books, magazines and videos, new bike parts, new clothing, new roads, nice weather, losing weight, seeing friends, getting out of the city and breathing fresh air, riding hard and feeling good, and especially the great feeling of accomplishment and relaxation after every ride that makes life beautiful. ---------------- While high levels of excitation (motivational energy) are generally better for shorter rides and track races, be careful not to get over-excited before longer races. Stay relaxed and conserve precious energy for that crosswind section or sprint where you'll need all the strength you've got. Learn how psyched you need to be to do your best and be aware of when you are over or under aroused. It's not uncommon, especially in early season races, to be so nervous before the start that fatigue sets in early or even before the race. Too much stress can make it difficult to ride safely and should be recognized and controlled immediately. If you find yourself becoming too stressed before a race try stretching, talking to friends, finding a quiet place to warm-up, or a crowded place depending on your inclination. Remember that this stress will disappear as soon as the race starts. Racing takes too much concentration to spare any for worrying. Every athlete needs to be adept in stress management. One technique used to reduce competitive anxiety is imagery, also known as visualization. While mental practice has been credited with miraculous improvements in fine motor skills (archery, tennis) its greatest value in gross motor sports like cycling lies in stress reduction. Actually winning a race can also help put an end to excessive competitive anxiety. But if you have never won (like most cyclists) nervousness may be keeping you from that rewarding place on the podium. ---------------- If you find yourself getting overstressed when thinking about winning, or even riding a race try this; Find a quiet, relaxing place to sit and think about racing. Second; Picture yourself driving to the race in a very relaxed and poised state of mind. Continue visualizing the day progressing into the race and going well until you detect some tension THEN STOP. Do not let yourself get excited at all. End the visualization session and try it again the next day. Continue this DAILY until you can picture yourself racing and winning without any stress. If this seems like a lot of work evaluate just how much you want to win a bike race. Visualization is not meant to replace on the bike training but can make that training pay off in a big way. Eastern European research has found that athletes improve most quickly if visual training comprises fifty to seventy-five percent of the total time spent training! Like any training imagery will only pay off if you do it regularly and frequently. My French club coach always used to tell us: believe it and it will become true. (C) 1989, Roger Marquis (www.roble.net/marquis) See also VeloNews, 3-91
Subject: 9.27 Mirrors From: Jobst Brandt <jobst.brandt@stanfordalumni.org> > Mirrors are mandatory on virtually every other type of vehicle on > the road. Competent drivers/riders learn the limitations of the > information available from their mirrors and act accordingly. I suppose the question is appropriate because no one seems to have a good explanation for this. In such an event, when there is much evidence that what would seem obvious is not what is practiced, I assume there are other things at work. I for one don't wear glasses to which to attach a mirror and putting it on a helmet seems a fragile location when the helmet is placed anywhere but on the head. These are not the real reasons though, because I have found that when looking in a head mounted mirror, I cannot accurately tell anything about the following vehicle's position except that it is behind me. That is because I am looking into a mirror whose angular position with respect to the road is unknown. The rear view mirror in a car is fixed with respect to the direction of travel and objects seen in it are seen with reference to ones own vehicle, be that the rear window frame or side of the car. I find the image in a head mounted mirror on a bicycle to be distracting and a source of paranoia if I watch it enough. It does not tell me whether the upcoming car is, or is not, going to slice me. I additionally I find it difficult to focus on objects when my eyeballs are distorted by turning them as much as 45 degrees to the side of straight ahead. You can try this by reading these words with your head turned 45 degrees from the text. I believe these two effects are the prime reasons for the unpopularity of such mirrors. They don't provide the function adequately and still require the rider to look back. I do not doubt that it is possible to rely on the mirror but it does not disprove my contention that the information seen is by no means equivalent to motor vehicle rear view mirrors to which these mirrors have been compared. It is not a valid comparison.
Subject: 9.28 ==> Powerbars NO more ---> homemade -- YES!!! From: econrad@teal.csn.org (Eric Conrad) I don't know about any of you out there in cyber-mtbike-land, but I was getting tired of buying Powerbars and other nutrition supplements to enhance my riding. However, I do understand the benefit of having a quick, nutritious snack that is full of energy on hand during a ride. So I asked around and came up with a recipe for Powerbar-like bars that seem to have a lot of what we need. I'll place the recipe here on the Usenet for all to copy, distribute ... [but please don't market them, cause I'll only kick myself for not doing it first ;-) ]. Please make them and enjoy them before you think about flaming me. Trust me, you'll like them much more than Powerbars, and they're cheaper to make than to buy their counterpart. ALSO, PLEASE POST ANY OTHER RECIPES YOU HAVE FOUND THAT HELP BIKING PERFORMANCE!!! Eric BARS OF IRON :-} 1 Cup dark raisins 1 1/2 teaspoon baking powder 1/2 Cup golden raisins 1/2 teaspoon baking soda 1/3 Cup butter or Margarine 1/2 teaspoon salt 1/2 Cup sugar 1/2 teaspoon ground ginger 1 egg 1/2 Cup liquid milk 1 1/4 Cup Whole Wheat Flour 1 Cup quick cooking oats 1/4 Cup toasted wheat germ 1 Cup sliced almonds (optional) 1/2 Cup golden molasses (dark is ok also) 1/2 Cup Nonfat dry milk Chop raisins (in food processor if possible). Cream butter, sugar, molasses & egg. Combine flour, dry milk, wheat germ, baking powder, baking soda, salt and ginger. Blend into creamed mixture with liquid milk. Stir in oats, raisins, and half the almonds (if desired). Pour into greased 13x9x2 inch pan and spread evenly. Sprinkle with remaining almonds (if desired). Bake at 350 degrees for approx. 30 minutes. Cool in pan and cut into 1x4 inch bars.
Subject: 9.29 Lower back pain From: "David LaPorte (Biochem)" <david-l@lenti.med.umn.edu> I'm not a medical expert, but I've had my share of low back pain and I've learned a few things. When in doubt, go see a medical professional. Low back pain is one of the most common problems afflicting humans. It's been estimated that about 80% of these problems arise because of poor posture. These posture problems occur when we stand but are even more significant when we sit or ride a bike. We tend to round up our low backs, stressing the ligaments and tendons which lie along the spine. It is the irritation and inflammation of these ligaments and tendons which leads to most low back problems. It is important to remember that back pain results from the sum total of ALL the stresses your back experiences. Even if you only experience pain when you're riding, poor riding posture may not be your only problem. For example, you may be sitting poorly at a desk all day or lifting boxes poorly. **Low Back Pain and Posture** Since posture is the problem, it is also the solution. Those of us who suffer from low back pain need to be constantly vigilant. We need to maintain some arch in our backs as much as possible. Sitting is a particular problem. Most chairs, coaches, car seats, etc provide little low back support. You can buy low-back support pads at some drug stores. Try them before you buy them because they are not all comfortable. Alternatively, you can fold a towel and put it behind your low back. The key is to maintain some arch without being uncomfortable. Position on the bike is also important. Get your bike fit checked at a shop that you trust. You should also work on maintaining a flat back when riding. One way to achieve this is to push your belly button toward the top tube. ***Stretching*** Stretching is an important way to achieve flexibility and improve your posture. A very useful stretch is to place you hands on you butt and push your hips forward while standing: o <\ / you should feel this in the front of your hips. Tight hip flexors prevent an upright posture. After a few seconds, arch your back and slide your hands down the back of your thighs: o |) / This movement puts the arch in you low back. You can do this stretch many times a day. It is particularly useful to do it periodically when you have to sit or ride for an extended period of time. A more potent stretch that can be done a couple of times a day starts with you lying on your front. Using your arms, push your shoulders off the floor. Don't lift with your back. Keep your low back as relaxed as possible. Let your hips hang down, staying as close to the floor as possible. o __/| This is a powerful stretch and should be started gradually. Otherwise, it can do more harm than good. However, done properly, it can be enormously helpful. Over a period of weeks, you should gradually increase the height you achieve and the time you hold the position. It is also less stressful to do this stretch for short periods with a little rest than for a long period (for example, 3 X 10 sec with 5 sec rest rather than for 30 sec straight). Once your back starts to heal, you will probably need to stretch it deliberately. This is apparently because of the scar tissue that built up during healing. Keep it gentle, especially at first. You could easily reinjure your back. Here's a good one: lie on your back with your legs straight. Pull your knees up, grasp your thighs by your hamstrings and gently pull your knees to your chest. Stretching the ham strings can also help relieve low back pain. Tight ham strings tend to pull the pelvis out of line. This can stress your low back. The problem with most ham string stretches is that they also tend to stretch the low back by forcing it to round up. The most appropriate stretch I know requires the use of a doorway. Lie in the doorway with your butt near the wall. Gently slide your foot up the wall until you feel the stretch. doorway | |- || || |___|____O / Two ways to make the stretch more gentle are (1) bend the lower leg, keeping only your foot on the floor or (2) move your butt further away from the wall. To make the stretch more intense, loop a cord or towel over your raised foot and gently pull it away from the wall. As with all stretches, this shouldn't hurt. ***Exercises*** Another key to preventing low back pain is to keep your abdominal muscles strong. These muscles help support the back. Do abdominal crunchers, not sit ups. Sit ups emphasize the hip flexors, not the abs, and can be hard on the back. Crunchers are done by lying on your back with your knees bent. Press your low back into the floor and curl your head and shoulders off the floor. Hold for a couple of seconds, then lower back to the floor. Repeat until you can't get your shoulder blades off the floor. Abs can be worked every day. Strengthening the low back muscles can also be helpful. To start, lie on your front with your arms and legs extended in a straight line with your body. Raise your right arm and left leg. Put them down and raise your left arm and right leg. Put them down and continue. As your back strength improves, try raising both arms and legs at the same time, arching your back in a "reverse stomach crunch". There are, of course, more powerful back exercises, but they are also more stressful and shouldn't be considered until your back is 110%. ***Medication*** Antiinflamitory medication can be helpful. Ibuprofen, naproxin and aspirin are all available without a prescription. Acetominophen (eg. Tylanol) is NOT an antiinflamatory. These drugs are most effective if they are taken early since inflamation is hard to get rid of once it's become established. A danger in antiinflamatory drugs is that they are also pain killers. Pain is your body's way of telling you that your doing damage. If you block the pain signals, you can easily aggravate your injury without knowing it. Muscle relaxants are sometime prescribed for back problems. These should only be obtained from a physician. ***Ice, Heat and Massage*** Ice is a great way to reduce pain and inflamation. A good way to apply ice is to freeze water in a paper cup. Peel the cup back to expose the ice and then use the cup as a handle while gently rubbing the ice over the effected area. Ice is particularly good for the first couple of days. Some people find that it's useful to continue ice treatments beyond that. Others find that the ice treatments make their backs tight if they continue beyond a couple of days. Heat, especially moist heat, can be useful. However, it should not be used for a couple of days after injuring your back or after aggravating a current injury. Regardless of the timing, if you feel worse during or shortly after heat treatment, stop doing it. In the later stages of a back problem, I find that my low back muscles get tight. Gentle massage seems to help them relax, promoting the healing process. I suspect that massage could make things worse in some cases, such as when the injury is fresh. ***Book*** An excellent book on this subject is "Treat Your Own Back" by Robin McKenzie, Spinal Publications Ltd., P.O. Box 93, Waikanae, New Zealand ISBN 0-9597746-6-1. They use this book at the Low Back Center of the University of Minnesota Hospital.
Subject: 9.30 Saddle Sores From: greenla@umich.edu (Lee Green MD MPH) > I think I'm developing a couple of saddle sores. I'm curious as to an > effective treatment for them, and effective preventative measures I can It recurs intermittently here. Lots of comments about keeping clean to keep the bugs at bay, all to the good. However, there is more to saddle sores than infection. Skin has several defenses against bacterial invasion, all of which must fail before infection occurs. Abrasion breaks the physical barrier, and preventing it is the reason for good bike shorts. Lubrication is sometimes helpful too. I recommend not Vaseline but Desitin. Yup, the diaper rash stuff. Some advocate bag balm (there seems to be a whole cult of folk medicine around bag balm, actually) but I'd say best avoid it: it softens skin, which is just what you don't want. The point that most posters here seem to miss is probably the most important though: tissue ischemia. That is, the skin and subcutaneous fat between your bones and the saddle get compressed. Blood doesn't flow through them much. Low blood flow is "ischemia", meaning not much oxygen, nutrients, antibodies, white blood cells, and other good things delivered to the area. Ischemic tissue is highly susceptible to infection, heals poorly, and can break down and form a sore just from ischemia, without any infection at all. It's similar to the pressure sores that nursing home patients suffer. Keep clean, use lubricants if they seem to help, but especially wear good bike shorts, *make sure your saddle fits properly*, and *get off the saddle often to allow blood flow through the tissues.* There is more to saddle sores if you're interested in a lot of technical detail regarding oxygen tension, shear forces, etc but e-mail me if you want the gory details.
Subject: 9.31 Group Riding Tips From: Roger Marquis <marquis@roble.com> [More up to date copies of Roger's articles can be found at http://www.roble.com/marquis/] There is no more effective way to become a motivated cyclist than finding a good regular group ride. Here are some group riding techniques common around the world. * Pacelines, Pacelines, Pacelines. Single or double, rotating quickly or slowly but always smooth and tight. This is the single overriding feature common to every experienced group ride. * Accelerate slowly and with an eye to keeping the group together. Attacks, jumps, short-hard pulls and other race-like riding may be fine for certain smaller rides but have no place in a group oriented ride. I'm often surprised that novice riders sometimes think this kind of aggressive riding is better training than a good rotating paceline. * A consistent pace is key. Try establishing a pedaling rhythm before reaching the front, and maintain it until just after pulling off. If you're feeling especially strong accelerate and/or take a longer pull but if you do increase the pace do it gradually. Don't forget to pedal harder on descents to make up for the extra aerodynamic resistance. * Go hard on the hills (and elsewhere) but don't forget to regroup. This doesn't mean waiting for every last straggler but always make a reasonable effort to regroup after the harder sections. * Wheelsitters are always welcome, but please stay at the back. There's nothing more disruptive than someone who rotates to the front only to slow down on hitting the wind. If you're feeling extended, tired, or otherwise not inclined to pull through there's no problem with sitting at the back, just let the riders who are rotating know when they've reached the back of the rotating section. * Don't open gaps! If you find yourself behind a gap close it _slowly_. A skilled group will remain in a tight paceline through 95% of an average ride including stops, corners, short climbs, descents, and traffic by closing the inevitable gaps before they become problems. * Don't point out every single pothole, oncoming car, or other obstacle. Each rider has to take responsibility for themselves. This means that everyone should be paying attention to the traffic and the road, even at the back. The frontmost riders should point out unusual hazards of course, and steer the group gradually around glass, potholes, slower riders and such but don't ever assume that you can leave it up to the other riders to watch the road ahead. * The lead riders are most responsible for the group's behavior and must take this into account at stop signs and lights. Don't accelerate through a yellow light unless you know the back of the group can make it too. If the group does get split ride slow until the rear group has caught back on. If you're at the back please don't run the intersection just to maintain contact unless it is clear that traffic is waiting for the entire group to pass. * Don't accommodate elitist attitudes. Perhaps the best thing about good group rides, aside from training, is socializing. Team affiliation, racing experience, helmet use, type of bicycle, etc. are all matters of individual preference and should be left as such. As long as the rider is safe and able to keep up they should be welcome. * Experienced riders should point out mistakes. This must be done diplomatically of course but it is important to make people aware of unsafe riding, hard braking, cutting blind corners, unnecessarily obstructing traffic, etc. * It's also helpful to meet at a popular, central location. Cafes, plazas, and bike shops are all good places to wait and talk before the ride starts. * Finally, a <a href="http://www.roble.net/marquis/clinic">skills clinic</a> can be an excellent method of helping new riders achieve the safety and proficiency necessary to participate in a paceline. Roger Marquis marquis@roble.com
Subject: 9.32 Riding in echelon From: Kevin metcalfe <metcalfe@ecis.com> Date: Fri, 13 Sep 1996 16:47:03 -0700 (PDT) The "fan" you guys are talking about is called an echelon. It is something that even a lot of good cat 1 and 2 riders can't do properly. It looks something like this: (Each "|" is a rider.) Wind from the left Wind from the right || || || || || || || || || || || || | | | | | | The single file guys at the bottom of the picture are "in the gutter". Though they may be behind another rider they are getting almost no draft and their days are numbered unless they can get into the echelon proper. The riders in the echelon will rotate through from the sheltered side to the front and then back in the windward side. i.e. With wind from the left you rotate counter clockwise and you rotate clockwise when the wind is from the right. If you are riding in a echelon and you want to keep things smooth and together you will NEVER take a big long pull on the front. You will always just rotate through. If you take a big pull at the front, the previously pulling riders will continue to drift back. Especially since the last guy to pull is still in the wind waiting for you to swing over and give him a draft! What you'll end up with is a single file echelon. This is bad because the number of riders that can fit into an echelon is determined by the width of the road. If you go single file, then only half as many can fit into the echelon and you've got a lot of pissed off riders pushing the wind. A strong team (like ONCE) can cause a lot of damage in a cross wind. By putting the whole team on the front and making the echelon just wide enough for the team, they can drive the pace up front hard enough to shatter the field. Smart riders will start forming second and third echelons behind the original. This is the best thing to do. Unfortunately there are two problems. First, as soon as you get close, some moron will try and jump across to the first echelon. This is usually stupid because the reason you are in the second echelon is because they're no room in the first one. So the offending moron will often find himself stuck in the gutter unless he can muscle his way into the echelon. (A lot like trying to knock Abdu off of his leadout man with 300 meters to go.) The second problem is that most of the stronger riders are probably already in the first echelon so you're at a horsepower disadvantage. Often, early in a race, the field might encounter a strong cross wind and break into as many as eight or ten echelons. Each echelon will be within 50 to 100 meters of the next one. They will continue like this until the course turns either into or with the wind and the group will reform. Just because you aren't physically connected to the front group in this situation IS NOT NECESSARILY A REASON TO PANIC. If there are only ten miles to go however, feel free to panic. :) There's nothing about an echelon that makes it faster than a regular pace line. The reason it will break the field up is that only part of the field will fit in an echelon.
Subject: 9.33 Mirrors II From: Richard Moorman <rmoorman@rmii.com> Date: Tue, 8 Oct 96 22:42 MDT Helmet mirrors are very useful for nearsighted people with glasses. I use my mirror to determine what's going to affect my travels in the next ten or fifteen seconds. I don't worry about absolute accuracy, I just want the big picture. If I want that information without a mirror, I have to twist my body and head around so that I can look at the road behind me through my glasses. To do this correctly I have to take my left hand off the bars, disorient myself, and risk wobbling around a lot. It's dangerous. With the mirror, it's just a glance up and to the left for a second or two. Mirrors aren't for everyone, but for some of us they're wonderful. I use a mirror despite the bad design that makes the plastic ones ridiculously breakable. I hope that someone develops a flexible, springy mirror mount. It seems an enormously obvious idea.
Subject: 9.34 Thorns aka Puncture Vine From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Thu, 21 Sep 2000 16:54:00 PDT Not all riders suffer from thorns which seems mainly to be a function of avoidance rather than luck or protective means in the tires. Rather than searching for tires or sealants that will survive thorns, recognizing the plant is a more effective step toward avoiding flats. The plant is not mobile and does not propel its seed pods away from its tendrils. However, some riders think nothing of pulling thorns from their tires and throwing them on the road as they patch their tires. This practice seems to be part of not understanding avoidance. In my experience, riders who suffer most from thorns, have no idea of the plants appearance or its habitat. Most, think the yellow star thistle is puncture vine which it is not and it cannot penetrating a tire. Puncture vine, tribulus terrestris, grows mainly on barren soil, typically on roadsides that have been sprayed with herbicides to prevent grass fires from discarded but burning cigarettes. The plant germinates after the heat of summer has begun and grows from a central tap root that reaches as deep as three meters. It has flesh colored tendrils that radiate 30 to 50 cm with 1 x 3 cm dark green compound filigree leaves that follow the sun. Its 1 cm diameter blossoms with five yellow petals produce spherical seed clusters that separate into five hardwood seed pods when ripe. Each pod or segment has two 6 mm long thorns extending from the top of the arches so that gravity will make one of the two thorns point upward. The plant produces seeds throughout its annual growth. Some examples: http://www.cwma.org/puncturevine.html http://www.or.blm.gov:80/Prineville/weed/puncture.htm http://tinyurl.com/d0xo
Subject: 9.35 Gyroscopic Forces From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Fri, 13 Feb 2004 12:07:59 -0800 What keeps the bicycle upright? The question is often asked and, as often as not, is an introduction to expound on the gyroscopic forces of the rotating wheels that make bicycling possible. This claim is as accurate as the one that authoritatively explains that spokes support the bicycle wheel by hanging the hub from the upper spokes. They don't and it doesn't. Some who propose the gyroscope theory, also explain that the advanced skill of making fast turns on a bicycle involves a technique they call countersteer. In fact, a bicycle cannot be ridden without countersteer, commonly called balance, and it is this balance that is used to keep the bicycle upright, just as one does while walking, running, ice skating or roller skating. To say that the gyroscopic forces of rotating wheels keep the bicycle upright, ignores that roller skates are operated the same way and have so little gyroscopic moment that one cannot detect it. On ice skates the argument fails entirely. Besides, a bicycle can be ridden at less than three miles per hour, at which speeds there is no effective gyroscopic reaction. Those who ride no-hands sense and make use of the small gyroscopic effect of the front wheel to steer. This, together with trail of the steering geometry stabilize steering. Without trail, the bicycle would have poor straight ahead preference and would riding no-hands difficult. Many bicyclists never master riding no-hands because the gyroscopic forces are too small for them to detect. Hands on the handlebars completely obscure these forces. For those who ride no-hands, countersteer should be visible and obvious because the bicycle must be leaned away from the preferred lean angle and direction of a curve so that the turn can be initiated. With hands on the bars, although the opposing lean is unnecessary, countersteer is still needed and can be done without counter-leaning. That there are gyroscopic forces is evident from the riderless bicycle test in which a bicycle is shoved at a brisk speed (from another bicycle) and allowed to coast on its own. If the initial course is straight, the bicycle will continue this path until it slows to a speed where gyroscopic forces are too small to correct steering. Then the bicycle takes a steep turn as it falls. Gyroscopic forces are also used to walk a bicycle, holding it by the saddle and steering it to either side by quickly tilting the bicycle. The effect can be observed by resting a road bicycle (with a horizontal top tube) on the shoulder tilted forward just enough to make the front wheel aim straight ahead. Spinning the front wheel by hand forward will make it steer as one expects, left for a left tilt, right for a right tilt, all moves performed in less than a second. With the wheel spinning backward, all responses are reversed. A good example of a bicycle with no gyroscopic forces is the ski-bob, a "bicycle" with short ski runners in place of wheels. This bicycle, having no rotating parts, is ridden downslope easily by anyone who can ride a bicycle.
Subject: 9.36 Going over the bars From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Fri, 05 Sep 1997 17:31:23 PDT Many bicyclists fear using the front brake because they believe it, in contrast to the rear brake, might cause the bicycle to overturn. What is not apparent, is that overturning a bicycle with the front brake is much harder than it seems, and that braking itself, is not the cause of most pitchovers. The primary cause of bicycle pitchover, is that the bicycle stops and the rider does not, after which the bicycle overturns when the rider's thighs strike the handlebars. Overturning can be simulated by walking next to the bicycle, both hands on the bars, and applying the front brake to raise the rear wheel. This experiment should make apparent how small a force will overturn the bicycle when it stops and the rider does not. Beginners overturn when they use the front brake because they are not aware that, unless they brace with their arms, only the friction on the saddle prevents the bicycle from stopping without them. However, even riders, who don't make this mistake, can pitchover from a front-wheel jam that leaves no time to react. A stopped rear wheel usually does not cause pitchover, because even if the rider moves forward, unloading the rear wheel, effectively releases the brake. Typically, front wheel jams occur from a stick in the spokes, a fender jamming into the fork crown, a front cantilever straddle cable falling onto a knobby tread, or a retaining bolt of a caliper brake releasing from the fork crown. These are unanticipated events for which a rider cannot brace if not already doing so. However, on clean pavement a front wheel jam will overturn the bicycle regardless of rider reaction. That bicycles do not easily overturn by braking becomes apparent by attempting to raise the rear wheel, preferably at modest speed and while bracing with the arms. The front brake, the principal stopping and speed control device on motorcycles and cars, is especially important for bicycles, whose short wheelbase causes even more weight to transfer to the front wheel while braking, thereby making the rear brake less effective. Therefore, the front brake should be understood and used properly rather than being maligned as it is. Formerly bicycles in the USA had their front brake on the right hand as do motorcycles. A concerted effort by right handed safety advocates, moved the "dangerous" front brake to the left hand, where it could do less harm, and there it remains today.
Subject: 9.37 Yet another powerbar recipe From: Dave Blake <dblake@phy.ucsf.edu> Date: 1 Jun 1998 00:51:37 GMT Bikewrkr <bikewrkr@aol.com> wrote: >I'm getting sick of spending what seems to be all of my money on power bars, >gels, etc. > >I know someone out there has their own secret sauce. Here it is again - the Good Biscuit as tested and raved about on rec.bicycles.tech. Also, there is a clip in the FAQ at http://draco.acs.uci.edu/rbfaq I clipped this recipe about 3-4 years ago, from a wreck.bikes newsgroup, and didn't make any of them. The topic came up again recently, so I reposted the recipe. And someone (please forgive me for not remembering who) made them. And they came out well. So then I felt really guilty, and I made some of my own. And they came out well too. Non-cyclists at work kept stopping by my desk to see if I had any more, So here is the recipe. Please let me know how they turn out. 1-1/2 cup whole wheat flour 3/4 cup all purpose flour 1/2 cup brown sugar, firmly packed 1/4 cup wheat germ 0.5 teaspoon baking powder 1 teaspoon cinnamon 1/2 teaspoon salt 2 eggs 1/3 cup corn, safflower, or light olive oil 1/4 cup molasses (or equivalent mix of molasses and honey) (the honey mix is sweeter, I find all molasses a little bitter) 1/4 cup RAW sugar (not white refined sugar) 1 tablespoon finely grated orange peel (California orange NOT Florida) 1 teaspoon vanilla 1 cup orange juice (fresh JUICED from those California oranges) 1 cup chopped dried figs (or 1.5 cups total dried fruit) 1/2 cup golden raisins (I used 1 cup figs, 0.5 dry strawberries) 1/2 cup chopped almonds (or other nuts) Combine flours, sugar, wheat, wheat germ, baking powder, cinnamon, and salt. In smaller bowl, blend eggs, butter, honey, molasses, orange peel, vanilla, and orange juice with wire whip. Add liquid to dry ingredients; whip until smooth. Add figs, raisins, and almonds. Spread in a greased 9 x 13 inch baking pan. Bake at 350 degrees F oven for 35 minutes, until it tests done. Makes about 24 bars. Dave Blake dblake@phy.ucsf.edu
Subject: 9.38 Custom Jerseys From: TKunich@diabloresearch.com Date: Wed, 10 Nov 1999 10:22:48 PST > Does anybody know where I can find someplace that does custom jerseys > for clubs? Any ideas on how much they would cost? Please Email me at > one of the addresses below. Thanks for any help you can give me. There are all sorts of jersey makers that you can find here or there. They can usually be found advertising in the back of various bicycle publications. Let's see if I can do this again: Jerseys can be cheap -- in the neighborhood of $20 in quantities of 100 -- if you are willing to settle for one color (with perhaps some second color trim for the sleeve and waistband piping) with a silk screened club logo. These are the sorts of jerseys that were common in the old days. (Try Pyro Apparel which I used and for this sort of jersey they were fine.) Since the advent of fancy jerseys on professional teams more and more clubs prefer to have the same sort of jerseys which use expensive high tech materials and even more expensive coloring techniques such as sublimation printing (where the jersey is white and the colored patterns and writing is melted into the material permanently.) Jerseys of this sort will run you about $60 apiece in 100's quantities from the top line manufacturers counting all of the charges and shipping. These would have several colors and complex artwork. (You can get this sort of thing from Voler, VO2max, Canari, Castelli, etc.) Top line jerseys require top line designs and if you get amateur designers you could easily get an expensive jersey that looks like crap. So if you don't have some good industrial designers in the club and can't afford to get one, stay with the cheaper end of the chain. Also quantity discounts are substantial so a large club can get very cheap high class jerseys while a small club may actually pay more for much lower quality jerseys. http://www.pyroapparel.com/ (used and recommend) http://www.voler.com/ (used and recommend) http://www.vomax.com/ (Jazzy works for them and that's recommendation enough) http://www.pearlizumi.com/ (Their production jerseys are some of the very best) http://www.cannondale.com/ (They have very high quality stuff but I don't know whether they make custom jerseys but I would imagine so for a large order.) http://www.sugoi.ca/team/ (It's close but these guys get my vote for top quality.) A lot of people pop in and out of this business and its best to stick with people who have shown that they can deliver a product on time and remain there for years. There are also a lot of dorky clothing manufacturers that think they can capitalize on bicycling's perceived popularity beware the baggy shorts crowd since they can't figure out how to sew real lycra and coolmax. >From off of the Urbanek site: (http://www.bicycleapparel.com) What you need to know before you order Team & Club Apparel Printed Jerseys and Team/Club Apparel Most of the printed jerseys that you see on the market are sublimated. Sublimation is a printing process whereby the image on a sheet of paper is transferred onto white fabric through heat and pressure. The heat and pressure cause the ink on the paper to turn to a gas which permanently impregnates the fabric. The benefit of this process is that the image is permanent and will not crack or fade like silk screening. Because the ink impregnates the fabric and does not lay on top of the fabric like silk screen printing, it does not interfere with the wicking properties or breathability of the garment. The down side to this process is the expense. Pricing is based on the number of colors in the garment and the quantity of garments you wish to order. Each company has different minimums and pricing policies so shop around. Pricing is based on the number of colors and the number of garments INFORMATION YOU WANT TO ASK Delivery times (especially important if you have a scheduled event). The average turn around time for a sublimation job is 6-8 weeks from the receipt of deposit. In peak season deliveries can get behind. Order early and allow extra time if you have a scheduled event. Garment fit. If you are buying for a team or club, ask the company to supply you with a size run of the garments that you wish to order and have everyone try them on before you place your order. You will need to give the company a deposit for the samples. The following manufacturers make custom cycling apparel for teams & clubs. Canari 800 929 2925 Castelli 877 324-7448 Giordana 800 366 4482 Hot Shoppe 949 487 2828 Kucharik 310 538 4611 Louis Garneau 802 334 5885 Pearlizumi 800 328 8488 Pace 800 762 7223 Parentini (39) 0571 467543 ST Cyclewear (619) 449-4300 Sugoi 800 432 1335 Voler 800 473 7814 VO Max 800 530 9740 INFORMATION THAT YOU NEED TO GIVE THE MANUFACTURER. Before you shop... have the following information ready! 1) Quantity and style of garments that you want to order. 2) Do you have art work completed, or do you want the company to do the art work for you? 3) How many colors are in your art work? 4) Do you want to have different art work on the front and back?
Subject: 9.39 Iliotibial Band Syndrome and Patelar Tendonitis From: Tom Kunich <elizabethannk@home.com> Date: Thu, 25 Nov 1999 22:21:41 -0800 > I missed discussion earlier regarding Iliotibial Band Syndrome. I have been > having leg pain lately & the doc. told me this could be causing it. What > can other cyclists tell me about this ie, symptoms, causes, cure, avoidance > in the future? Illiotibial Band Syndrome is caused by the bike fit all right. But it is an overuse injury and your bike fit may not be the direct cause, but instead be a factor contributing to retaining the injury. The people most in danger of contracting this RARELY serious but painful problem are short women with wide hips. However, there have been reports from both sexes and all sizes upon occasion. It is caused when the illiotibial band is stretched across the bony ridge on the outside of the knee joint. Bend your knee and feel the outside edge of your leg at the knee and that is where the pain should be if it is am illiotibial band problem. Another problem in the immediate area is patelar tendonitis. The pain for this is associated more with the knee cap (patelar) than the side of the leg/knee. PT pain is usually more towards the center of the kneecap though mine was to the outside top of the knee cap. Normally people who contract IBS from bike fit simply have the seat down too low. This is also the cause of much Patelar Tendonitis. Both problems are usually associated with a major jump in the amount of riding or the level of riding that you have performed. The cure for either is pretty much the same regiment: 1) As long as you have the pain do not ride hard. It is usually recommended that you stay in the small ring. But many people can strain just as hard in the little ring as the big. The main thing is to ride, but to ride easy. 2) Start your ride easy and ride for about 15-20 minutes then stop and stretch. Stretching is normally something like holding your left foot in your right hand for 30 seconds, releasing and resting for about a minute then repeating three times. If you can feel ANYTHING stretching you are pulling too hard. Proper stretching is designed to return tendons to their NORMAL length not pull them over your shoulder. Do both sides regardless that only one is bothered. The other side will be carrying more load than usual because you will favor the painful side. 3) Directly after your ride you must again stretch. Don't put it off till later. There is no later in stretching. You must stretch when your muscles are warmed up and the tendons are ready for it. 4) Immediately after you get back from your ride ice the painful area. I just put a few ice cubes into a zip-lock plastic bag, sat down and watched a 1/2 hour TV show. You need at least 20 minutes of icing. Some people are sensitive to ice and then need to use a regular ice back or wrap the plastic bag in a face cloth or some such. As long as you aren't burning your skin, more icing is better than less. 5) As an OPTION but one I recommend, you can take over-the-counter anti-inflammatories such as aspirin or ibuprophen. NEVER MIX pain relievers. NEVER, NEVER mix them with Tylenol or other acetylmenophen mixtures. Kidney failures have been known to happen when mixing these things at package dosages. People, even doctors, are often pretty cavalier about aspirin and the like but you should always follow the package directions for maximum dosage and you should always consume a lot of water when using these things. These things are dangerous to your health if mishandled. 6) If you don't stretch you will not get better. If you don't ice you may not get better. The important thing in fit is to get the seat height and the handlebar reach appropriate for your body. There are other factors in a fit that can lead to problems but you need to know something about bike fit and this isn't the appropriate forum. Remember that it's easier to hurt yourself stretching than just about any other way so always use care when stretching. 7) Finally, I said that this rarely becomes serious -- but sometimes it does. If you allow this pain to persist for a very long time it can cause scarring of the tendon on the tibial ridge area and fixing this can require surgery. This is not the sort of pain the you can 'ride off' such as when you're hardening up your sit bones for longer rides. Or when your neck hurts from bending it up in a tight aero tuck. This pain requires you to do something about it. IF IT PERSISTS DEFINITELY GO TO A DOCTOR SPECIALIZING IN SPORTS INJURIES OF THIS NATURE. 8) Bike fit to prevent the problem in the first place. Stretch as a preventative measure if you are in the most likely group -- short, wide hipped women. Stretch, ice and ani-inflammatory to rid yourself of the problem. Ride easy until the pain is gone. In some people the pain goes away in a week while in others it takes months of hard work. And remember that in 99.99% of the cases the simplest measures are the most effective.
Subject: 9.40 Staying up in a crash From: "John F Tomlinson" <jt@jt10000.com> Date: Tue, 22 May 2001 07:37:41 -0400 I just barely avoided falling in the largish crash on the last lap of a race a few weeks ago, and that got me thinking about the key elements in avoiding crashing. The first is to convince yourself of something that isn't completely true -- that you are one hundred percent responsible for staying upright and avoiding crashes. Sure, in reality another rider might take your front wheel out from under you or cause a big pile-up but, whenever you are on the bike, you've got to believe that you are responsible for yourself. That's the only way you can ensure you'll do your best not to fall. I crashed in Central Park about five years ago. Another rider slammed me from the side and we both fell off. I was vaguely aware that he was next to me and knew he was a bad rider. So while he "caused" the crash, I simply should not have been near him. That was my mistake. The second element also involves attitude -- it's learning to not give up when a crash is happening and instead to do whatever it takes to find a way around or through it. Bikes might be falling all around you, but you've got to have the confidence to keep fighting to find a way out. Don't accept that you will fall. Most importantly, don't look into a crash as it happens -- instead look for open space and get your bike through that space. You tend to steer your bike where you look and if your concentration is on falling riders, you're going to get caught up in their trouble. Too many riders see a crash, stare at it, jam on their brakes and then ride into the crash. Instead, as soon as a crash starts you want to try to get around it as fast as possible. It's sometimes OK to touch your brakes for a split second to give yourself some time to find a way around, but at racing speeds you're rarely going to actually avoid a crash by stopping. Instead just look for open space on either side of the crash and go for it. You might even want to accelerate into the open space before the crash spreads. I really can recall almost nothing about the crash a few weeks ago. Bikes started flying around in front of me and the next thing I knew I was looking for clear space. At first that space seemed to get farther and farther away as the crash got bigger and bigger but, eventually, I got through at the very edge of the road. I never looked at the actual crash. It's possible to practice focusing on open space by using a similar technique to deal with potholes on training rides -- as soon as you see one, don't look at it. Look for smooth road. With time this will become second nature. Fourth, whenever riding, keep a broad focus and stay aware of what's going on around you. Don't stare at the rider in front of you but instead look further ahead. The faster you're going, the further ahead your focus should be. This broad focus will often enable you to deal with trouble before it even starts. You'll see people getting squirrelly or the road clogging up on one side and be prepared to deal with it. Recognize too that in much the same way as you want to accelerate around crashes, you often should accelerate around trouble. Move up in the field before the road gets narrow. Get to a difficult corner at the head of the group rather than in the middle. Try to rely less on your brakes. Don't ride around in group rides or races with your hands on the brakes. Learn to deal with trouble by getting past it, not by just slowing down. This sort of "aggression" is important not only to placing well but also to your safety. Fifth is what lots of people talk about, but too few do -- work to improve your bike handling skills while on training rides. Some of these skills are to make you a smoother, more predictable rider. Others are to enable you to deal with situations in races where other riders, intentionally or not, try to take your space. Both types of skills are important. Learn to keep your upper body relaxed. Gain an understanding of how you use your hands, butt and feet to steer the bike. Practice cornering, riding on bad roads and bunny-hopping so you'll be lighter on the bike. Practice pacelines and ride closer and closer to other riders. Practicing bumping into other riders and touching wheels is good too -- you might want to start learning this while riding slowly on a grassy field. Learn about protecting your front wheel and handlebars. Riding off-road, on any kind of bike, can improve your bike handling. Elizabeth races cyclo-cross in the off-season, which is great for skills. There are a lot of details to bike handling that I won't go into here; formal coaching sessions or club rides are a good place to start. You can also use other sports to improve your balance and body awareness. Skiing, skating, soccer, basketball and dance are good. (Motorcycling is supposedly great.) Sixth, make sure your bike is in good working order. It should be reliable and fit your body well. Your weight should be properly distributed over the two wheels -- with just slightly more weight on the back wheel than the front when riding in the drops. Finally -- be aware of your limits. Crashes often happen when riders are tired and get sloppy. They don't pay attention to what's going on around them and their reactions slow. If you find yourself fighting with the bike and riding with your head down, make a conscious effort to relax and keep your eyes up. If you can't do that, back off from the race -- you're a danger to yourself and others. As you improve as a racer you'll find you get better at staying alert and in control even when very tired. Your limits are not only physical, but technical and mental too. Learning and improvement come from pushing the boundaries of what you're comfortable and proficient at. Bike racing is supposed to be difficult and a small amount of fear is normal. But if you're consistently stressed about crashing, or spending time constantly riding your brakes due to fear, it might be worth backing off in the race and giving yourself some space, even if you get dropped. A lot of times when I'm scared I ride right at the front, or go way to the back where there is more space until things calm down. Later, you can work on your skills and confidence so that in the next race, you'll be more in control.
Subject: 9.41 Applying Merlin Decals From: Mark Hickey <mark@habcycles.com> Remove the old decals completely (including any residue). There shouldn't be any clear coat on top of the decals (hey, it's a ti bike). I'd suggest cleaning the tube with acetone or other solvent to make sure it's clean. Peel the heavy paper backing (I'll bet it's green) off the decal. Place the decal VERY CAREFULLY in place, starting with the top making contact. VERY CAREFULLY rub down the decal so it makes contact with the frame (you'll be able to see where this is happening). Once the decal is placed on the frame, vigorously rub the decal with a clean rag to create some heat (start slowly to keep from wrinkling the decal). When you're done, lightly "squeegee" over the decal with the edge of a credit card or something similar. You'll see the decal release from the backing as this happens. If you end up with an air bubble, you can usually pierce the decal and squeeze the air out (with the backing still in place, or "reapplied". It takes a few days for the decals to reach full strength (they dry from the outside in). Be careful with 'em during that period. Mark Hickey Habanero Cycles http://www.habcycles.com
Subject: 9.42 Flats from beer and cigarettes From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Tue, 16 Sep 1997 11:10:32 PDT Flat tires are caused by beer in winter and by cigarettes in summer. As odd as this may seem, there is a direct link. Glass is visible on roads by its shiny splinters and shards as well as not being the same color as the road. When wet from rain, these characteristics vanish and leave glass looking like any bit of gravel. Not only is it "invisible" but it is lubricated and cuts through rubber effortlessly. A convincing experiment is to cut a thick rubber band with a razor, first dry, then wet. In summer flats are caused by puncture vine thorns, a plant that grows only on barren soil. There isn't much of that around except peculiarly on roadsides that have been sprayed to prevent grass from growing, grass that when dry presents a fire hazard for cigarettes discarded from cars. Puncture vine grows on these barren roadsides that have been created for safer cigarette disposal. If roadsides were not sprayed, puncture vine would be a rare occurrence along roads where bicyclists most often ride. http://www.cwma.org/puncturevine.html http://www.or.blm.gov:80/Prineville/weed/puncture.htm http://tinyurl.com/d0xo
Subject: 9.42 Riding on Ice From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Fri, 13 Feb 2004 12:07:59 -0800 Ice riding is best done with studded tires of which there are a few suppliers, mainly in northern Europe, such as Nokian: http://www.nokiantyres.fi/bike/winter/index.html Riding on ice, especially frozen lakes, requires a few practical tricks. This applies to slick as well as studded tires. Ice, in contrast to fresh snow, is slick no matter whether it is frozen water or firmly compacted snow. It offers poor traction. Therefore, riding on ice should be done in top gear to avoid rear wheel spin. This is similar to driving cars with manual transmissions where starting in second gear helps avoid wheel spin. For bicycling on level ice, top gear is best for both starting and cruising, because while starting, acceleration is the main force while once rolling, wind drag, even at low speeds, readily exceeds traction. In the absence of studded tires for frozen lakes without a snow crust, slick tires are better than ones with miniature automobile tread because they give more contact surface, thereby reducing contact pressure and slip. Braking with the front wheel is impractical for two reasons. Skidding the front wheel usually causes a fall, and there is no way to detect that the front wheel is skidding except by falling. In contrast, rear wheel skidding is benign and it can be easily detected. By continuing to pedal while braking enables a precise ABS. When the rear wheel skids, the pedals stop suddenly, to which one can respond almost instantly by letting up the brake. The response speed and precision of this method is surprising. Good gloves help not only against the cold, but with inevitable falling, they protect the hands from the ice. Frozen lakes are a wonderful way to appreciate landscapes where there is no alternate route and is safer than riding with traffic on icy streets. Thin ice, a term heard often with risky adventures, is a hazard that occurs from currents and from convection caused by gas bubbling to the surface in marshy areas. Stay away from reeds and swamps. Water in a frozen lake is at 4C (39F), its greatest density because colder water rises to the surface and begins to freeze while warmer water rises to the surface and cools. Marsh gas bubbling to the surface brings 4C water to the surface to melt ice causing thin hollow domes that no longer contact the water. Thin spots can be detected if the surface is clear ice but they present a hazard just the same. The bubble method is used to protect boats too large to be lifted from the water. It keeps an opening in the ice from an under water bubbler pipe in the shape of the hull. http://tinyurl.com/ttp6
Subject: 10 Off-Road
Subject: 10.1 Suspension Stems From: Brian Lee <brian_lee@cc.chiron.com> by Brian Lee & Rick Brusuelas, 1994 ABSTRACT: Discussion of the differences between suspension stems and suspension forks, and a listing of the pros & cons of suspension stems. DESCRIPTION: The suspension stem discussed here is the Allsop-type, which employs a linkage parallelogram and a spring mechanism to effect shock-absorption. Two models on the market using this mechanism are the Allsop Softride, and a version produced by J.P. Morgen, a machinist based in San Francisco. There is also a version put out by J.D Components of Taiwan (advertised in Mountain Bike Action), however judging from illustrations, this unit does not employ the parallelogram design shared by Allsop & Morgen. Other Taiwanese models may also exist. The Girvin-type stem, which uses a simpler hinge and bumper, will not be directly addressed here, although some of the comments may also apply. The Allsop-type suspension stem (suspension stem) works on a different principal than a telescopic shock fork. Instead of only the front wheel moving to absorb shock, a stem allows the entire front end of the bike to move with obstacles while the rider's position does not change. All suspension requires some form of "inertial backstop" to operate. A theoretical suspension (stem or fork) loaded with zero mass will not function regardless of the size of obstacle encountered. This is because there is nothing to force the compression of the spring mechanism. It is essentially locked out. In a fork system, the weight of the bike & rider both provide the inertial backstop. In a stem system, the rider's weight on the handlebars provides the backstop. Because of this, the two systems "ride" differently. Since most of the weight comes from the pressure of the rider's hands, the stem system encourages a more weight-forward style of riding. Or perhaps placing the stem on a frame with a shorter top tube so the rider's weight is distributed more on the front end. (Shortening the front end has also been applied by frame builders on frames intended for use with suspension forks. Ex: Bontrager.) What does this mean to you and me? It means the suspension stem requires a certain amount of the rider's weight to be on it at all times in order to remain completely active. For the majority of riding, it's just fine. The only difference is in extremely steep descents, where you are forced to keep the weight back in order to keep from going over the bars. In this situation, much less weight is on the bars to activate the stem. Further, if one were to encounter a largish rock on such a descent, what does one do? The instinctive thing is to pull back a bit to unweight the front and help the front wheel over. This removes all the weight from the stem area, and you are now riding a rigid bike again. A fork system is also affected by weight shifts, but not quite to the extent that a stem is affected, because of the weight of bike & rider coming through the head tube to be distributed into the fork. Even if you were to remove your hands from the bars on a gnarly descent and hang with butt brushing the rear wheel, you are still applying weight to the bike through the pedals. All this, of course, is theoretical and YMMV. I, for one, am not always able to react to obstacles coming at me and leave the front end weighted. When that happens, I'm very glad I have suspension. Now enough theory stuff, here's a summary of the advantages & disadvantages of suspension stems: PROs 1) Lighter than a suspension fork. This depends on the existing stem/fork combination. If the current stem and rigid fork are heavy, then a suspension fork may be a better choice. For example, I've chosen the following items for comparison, as they represent the lightest and heaviest of commercially available stems & forks (weights for all stems are for conventional types - non-Aheadset): Litespeed Titanium 211g Ritchey Force Directional 375g Allsop Stem 625g Fat Chance Big One Inch 680g Tange Big Fork 1176g Manitou 3 1360g Lawwill Leader 1588g So say you have a Litespeed stem and a Fat Chance fork. The combined weight would be 891 g. Switching to an Allsop would change the combined weight to 1305 g, while a Manitou 3 would bring it to 1571 g. The Allsop has a weight advantage of 266 g (9.4 oz). OTOH, if you have a Ritchey stem & Tange Big Fork, the original weight would be 1551 g. Allsop stem => 1801 g. Manitou 3 => 1735 g. In this case, keeping the boat anchor of a fork and switching to the Allsop would be a weight penalty of 66 g (2.3 oz.). Of course, YMMV depending on your original equipment. 2) Does not affect frame geometry. A suspension fork retrofitted to a frame, *not* designed for suspension, raises the front end - sometimes as much as 1". This reduces the effective head angle and slackens the steering, slowing it down. This is especially true for smaller sized frames which, with their shorter wheel base, are affected to a greater degree by the raising of the head tube. A suspension stem provides suspension while preserving the handling of the bike. 3) Torsionally rigid fork. Telescopic forks all have a certain amount of flex to them, and the sliders are able to move up & down independently. This aspect of front suspension forks has spawned a new line of suspension enhancing products: stiffer fork braces, and bigger, heavier suspension hubs. All to stiffen up the fork. This is one reason suspension stems are favored by some riders who ride lots of tight, twisting single track. 4) No stiction. Stiction, or static friction, is friction that exists as the fork sliders rub against the stanchion tubes. This friction is an extra force that must be overcome for a fork system to activate. Not a problem on large hits. But more of a problem on small- and medium-size impacts. Because the stem has none, the stem responds better to small, high-frequency bumps (washboard) than many air-oil forks. 5) More boing for the buck. The Allsop stem provides up to 3" of stiction-free travel, at a cost of about $250, depending where you go. The majority of forks in this price range only offer 1" - 2" of travel, and are often heavy, flexy, and fraught with stiction. The fork could be stiffened, but at the additional cost of a stiffer fork brace or perhaps a suspension hub and a rebuilt wheel (e.g. fork brace - $90; hub - $80; rebuild - $100. Plus the original $350 for the fork. YMMV). 6) Better "feel". The stem allows you to have a rigid fork, which transmits more "information" back to the rider. This is a benefit when riding through creeks where you cannot see where your wheel is. 7) Less exposed to the environment. The stem is higher, more out of the way than suspension forks. Thus you can ride through creeks and mud without having to worry about your fork seals, or about contaminating the innards of the fork. Even if mud splashes on a suspension stem, the pivots are less sensitive to grit than sliders and stanchion tubes. 8) Ease of maintenance. There are no seals to replace or service, no oil to replace, no air pressure to adjust, and no bumpers to wear out. An occasional lube of the pivots is all that is needed. An extension of this is the ease of initial set up. For best results, you have to set suspension (fork or stem) to react according to your weight and riding style. With air/oil forks you may have to change oil, adjust pressure or change damping settings (if the fork has them). With bumper forks you may need to swap out bumper stacks and mix-n-match bumpers until you get what works for you. With the stem, the only adjustment is to increase or decrease the spring tension with an allen wrench. CONs 1) No damping. This is one of the main complaints from proponents of suspension forks. The suspension stem will give way to absorb shock, but the return is not controlled and cannot be adjusted. JP Morgen currently makes a suspension stem which employs oil-damping, but Allsop does not. 2) Requires adjustment to riding style. As mentioned above, the stem requires weight to be applied to it to function. This is also one of the complaints applied to the Softride rear suspension beam. The flip-side to this, according to riders of the Beam, is once the adjustment is made to "plant your butt on the saddle" the ride is extremely comfortable and affords excellent control by sticking the rear tire to the ground. 3) Stem "clunks" on rebound. The feeling is about the same as suspension bottoming out, except it happens on the rebound. This is not as much a problem on the Allsop as on the Morgen stem, which uses a hard plastic top-out bumper. This is a subjective complaint, as some riders claim not to notice it. 4) Stem not torsionally rigid. Another trade off. The stem is not proof to twisting forces and may be noticeable in hard, out-of-the-saddle efforts. Allsop has redesigned the top beam of their aluminum stem for 1994 to address this problem. Instead of the aluminum "dog bone" structure for the top linkage member, they've substituted a machined aluminum beam, reminiscent of a cantilever bridge. SUMMARY: In my opinion, a suspension stem is an excellent choice if one is retrofitting an existing bike, which has not been designed around a suspension fork. A suspension stem is also a very good choice if one's primary riding is twisty singletrack, where you need the sharp, precise steering of a rigid fork. There are undoubtedly situations for which a stem may not be ideal, but stems should not be dismissed as a viable form of suspension. The best thing to do is to try both types of suspension if you can, and see what you like better.
Subject: 10.2 MTB FAQ available From: Vince Cheng <vccheng@gpu.srv.ualberta.ca> The MTB FAQ from the above author is no longer available.
Subject: 10.3 Installing new rear derailleur spring From: Alan C Fang <jsbach@uclink2.berkeley.edu> Date: Tue, 20 May 1997 12:27:07 -0700 (PDT) leave the derailler on the bike. first, check the orientation of the old spring so that you will know how to put in the new one. taking out the old spring shouldn't be too hard- just yank on it. if you can't do it, use the reverse of what i'm about to tell you for getting the new spring in. one end of the spring is open. that open end has to hook onto this bar on the derailler body. to get it up and over this bar, get a piece of brake or shifter cable (or a strong string) and bend it in half, putting a kink in it. put the spring inside the derailler in the proper orientation. thread this kink through the derailler where the bar is, making it go on the side of the bar opposite the open side of the spring's hook. hook the kink in the cable around the open end of the spring, and yank on the cable. that should pull the open end of the spring past the bar. now you can stuff the tip of the hook back over the bar, thus hooking the derailler spring onto the bar. the closed end of the spring is much easier to get in. what i use is a bottom bracket tool, the kind with the pins for adjusting older style bb's. use one of the pins to grab the closed end of the spring, and lift it up so that it hooks onto that [other thing]. you are done. voila! or as a dyslexic would say, viola!
Subject: 10.4 A Brief History of the Mountain Bike From: Jobst Brandt <jobst.brandt@stanfordalumni.org> Date: Fri, 13 Feb 2004 12:07:59 -0800 The first -successful- high quality fat-tire bicycle was built in Marin County, California by Joe Breeze, who recognized a demand for such a bicycle while riding with friends on the rocky trails of nearby Mt Tamalpais. They used balloon-tire one-speed bicycles from the 1930s, 1940s and 1950s (Schwinn Excelsior) with New Departure and Bendix coaster brakes. These brakes were the origin of the name "Repack" for one of the trails, because one descent was enough to overheat the hub brake, requiring it to be re-packed. They referred to their Mt. Tamalpais downhill bicycles as "my mountain bike" in contrast to "my road bike" without giving the term generic significance. According to Joe Breeze, riders around Santa Barbara also used the term for their fat tired trail bicycles. Joe Breeze, Otis Guy, and Gary Fisher, all still in the bicycle business today, were top category USCF riders. Many of the Tamalpais riders were members of road racing Velo Club Tamalpais, whose blue and gold jersey carried the Mt. Tamalpais silhouette logo. In October of 1977, Joe built a fat-tire bicycle of lightweight tubing that was previously found only on better road racing bicycles. It had all new, high-quality parts and 26" x 2.125" Uniroyal "Knobby" tires on Schwinn S2 rims and Phil Wood hubs. Joe built ten of these first Breezers by June 1978. Breezer #1 has been on display at various places, including the Oakland Museum, where it has been on permanent display since 1985. However the first Breezer was predated by a frame built for Charlie Kelly by Craig Mitchell earlier in 1977. As the Breezer frames that followed, it was made of 4130 chrome-molybdenum airframe tubing. Charlie equipped it with the parts from his Schwinn Excelsior including SunTour derailleurs and thumb shifters, TA aluminum cranks, Union drum brake hubs, motorcycle brake levers, Brooks B-72 saddle, Schwinn S-2 rims and UniRoyal Knobby tires (essentially, the best parts found on clunkers of that day). In spite of this, he chose to switch back to his Schwinn frame, which he rode until June of 1978, when he got himself a Breezer, and for one reason or another the Mitchell frame was not further developed. In January 1979, Joe and Otis, who were planning another tandem transcontinental record attempt, visited Tom Ritchey, who was building the frame, and brought along Joe's Breezer mountain bike. Peter Johnson, another noted frame builder who happened to be present, was impressed with its features, as was Tom, sensing the significance of the concept, both being veteran road bike trail riders in the Santa Cruz mountains. Gary Fisher got wind of Tom's interest in fat tire bikes and asked Tom to build him one. Tom built one for himself, one for Gary, and one for Gary to sell. After building nine more frames later in 1979, Tom couldn't find buyers for them in nearby Palo Alto, so he asked Fisher if he could sell them in Marin. Fisher and Charlie Kelly pooled a few hundred dollars and started "MountainBikes" which became today's Gary Fisher Bicycles. It was the first exclusively mountain bike business. It was Tom's bikes, and Fisher and Kelly's business that made the introduction of the mountain bike take hold. This was an obvious gap in the bicycle market, most builders focusing on road bikes, left this as an open field for innovation. Fisher and Kelly tried to trademark the name Mountainbike, but through procedural or definition errors the application was finally rejected. Meanwhile in the 1980's Bicycling Magazine had a "name that bike" contest that excluded the name "Mountainbike", that name being before the trade mark board at the time. ATB was the winner but it didn't hold ground against the much more natural "Mountain Bike" name that spread rapidly after the trade mark application failed. If anyone's name stands out as the builder of the earliest viable mountain bike, it is Joe Breeze, who today still produces Breezers. The marketing push first came from Tom Ritchey, Gary Fisher, and Charlie Kelly and the ball was rolling. At first the USCF felt it below their dignity, as did the UCI, to include these bicycles, but after NORBA racers began to outnumber USCF racers, they relented and absorbed these upstarts, as they certainly would recumbents if they had similar public appeal.
Subject: 10.5 The Mike Vandeman FAQ Date: Tue, 29 Jul 1997 20:49:05 PDT The old Mike Vandeman FAQ is no longer available.
Subject: 10.6 Ode to a Usenet Kook From: trekkiedad@yahoo.com (Trekkie Dad) Date: Mon, 30 Nov 1998 16:10:38 -0800 [previously posted on alt.mountain-bike] Ode to a Usenet Kook Do you like my mountain-bike? Do you like it? Do you, Mike? I do not like your mountain-bike. Leave it home! Go for a hike! Too many gears! Enormous treads! You rip my favorite trails to shreds! You may not ride it here or there, You may not ride it anywhere! May I ride on single-track with all my gear in camelbak? You may not ride on single-track with mountain bike or camelbak And do not ride on fire-road, It cannot take the overload. You may not ride it here or there, You may not ride it anywhere! Where may I ride my new hardtail; The one that's made by Cannondale? You may not ride your new hardtail, be it Trek or Cannondale. You may not ride on single-track With mountain bike or camelbak. I do not like your mountain-bike. Leave it home! Go for a hike! Where may I ride my plush GT With seven cogs and chainrings three? You may not ride that plush GT, in habitat that's human-free It never will be allowed, you see I want to save the woods! (for ME) Stay off the trails for heaven's sakes, Your knobby tires are killing snakes. It's known to all biologists, And famous herpetologists. We do not like your mountain-bike! Leave it home! Go for a hike! You may not ride it here or there, You may not ride it anywhere! But, mikey, you don't understand Enlightened people manage land. So I will ride my mountain-bike, I'll go on wheels. You take a hike! And I will ride it here and there, And I will ride it everywhere. I will ride on single-track With fully-loaded Camelbak. And I will ride on fire-road, It isn't such a heavy load! I will ride that new hardtail; the one that's made by Cannondale, And I will ride my plush GT (There is no place that's "human-free") A little skill is all it takes To keep from killing whippersnakes. And we all know your PhD Is NOT in herpetology. -- Trekkie Dad | ICQ #14818568 | trekkiedad@yahoo.com World Without Cars Dictionary (updated November 27, 1998) at http://www.geocities.com/yosemite/rapids/2356/wwc.html ------------------------------

User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA




Part1 - Part2 - Part3 - Part4 - Part5 - MultiPage

[ Usenet FAQs | Web FAQs | Documents | RFC Index ]

Send corrections/additions to the FAQ Maintainer:
iglesias@draco.acs.uci.edu (Mike Iglesias)





Last Update March 27 2014 @ 02:11 PM