Top Document: [sci.astro] Galaxies (Astronomy Frequently Asked Questions) (8/9) Previous Document: H.08 What about apparent faster-than-light motions? Next Document: Copyright See reader questions & answers on this topic! - Help others by sharing your knowledge Christine Kronberg <smil@lrz.uni-muenchen.de> This is "our" group of galaxies. It was first recognized by Hubble, in the time of the first distance determinations and redshift measurements. The Local Group contains the Andromeda Galaxy (M31) and its satellites M32 and M110, as well as the Triangulum galaxy (M33). Other members (over 30 in all) include our Milky Way Galaxy, the Large and the Small Magellanic Cloud (LMC and SMC), which have been known before the invention of the telescope (as was the Andromeda Galaxy), as well as several smaller galaxies which were discovered more recently. These galaxies are spread in a volume of nearly 10 million light years diameter, centered somewhere between the Milky Way and M31. Membership is not certain for all these galaxies, and there are possible other candidate members. Of the Local Group member galaxies, the Milky Way and M31 are by for the most massive, and therefore dominant members. Each of these two giant spirals has accumulated a system of satellite galaxies, where * the system of the Milky Way contains many (nearby) dwarf galaxies, spread all over the sky, namely Sag DEG, LMC, SMC, and the dwarf galaxies in Ursa Minor, Draco, Carina, Sextans (dwarf), Sculptor, Fornax, Leo I and Leo II; and * the system of the Andromeda galaxy is seen from outside, and thus grouped around its main galaxy M31 in Andromeda, containing bright nearby M32 and M110 as well as fainter and more far-out NGC 147 and 185, the very faint systems And I, And II, And III, and, possibly, And IV. The third-largest galaxy, the Triangulum spiral M33, may or may not be an outlying gravitationally bound companion of M31, but has itself probably the dwarf LGS 3 as a satellite. The other members cannot be assigned to one of the main subgroups, and float quite alone in the gravitational field of the giant group members. The substructures of the group are probably not stable. Observations and calculations suggest that the group is highly dynamic and has changed significantly in the past: The galaxies around the large elliptical Maffei 1 have probably been once part of our galaxy group. As this shows, the Local Group is not isolated, but in gravitational interaction, and member exchange, with the nearest surrounding groups, notably: * the Maffei 1 group, which besides the giant elliptical galaxy Maffei 1 also contains smaller Maffei 2, and is associated with nearby IC 342. This group is highly obscured by dark dust near the Milky Way's equatorial plane. * the Sculptor Group or South Polar Group (with members situated around the South Galactic pole), dominated by NGC 253; * the M81 group; and * the M83 group. In the future, interaction between the member galaxies and with the cosmic neighborhood will continue to change the Local Group. Some astronomers speculate that the two large spirals, our Milky Way and the Andromeda Galaxy, may perhaps collide and merge in some distant future, to form a giant elliptical. In addition, there is evidence that our nearest big cluster of galaxies, the Virgo Cluster, will probably stop our cosmological recession away from it, accelerate the Local Group toward itself so that it will finally fall and merge into this huge cluster of galaxies. A table of the currently known Local Group member galaxies is at <URL:http://www.seds.org/messier/more/local.html>. A (somewhat technical) review of the Local Group is at <URL:http://arXiv.org/abs/astro-ph/?0001040>. User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: [sci.astro] Galaxies (Astronomy Frequently Asked Questions) (8/9) Previous Document: H.08 What about apparent faster-than-light motions? Next Document: Copyright Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: jlazio@patriot.net
Last Update March 27 2014 @ 02:11 PM
|
with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP