Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

[sci.astro] Stars (Astronomy Frequently Asked Questions) (7/9)
Section - G.02 Are there any green stars?

( Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Schools ]


Top Document: [sci.astro] Stars (Astronomy Frequently Asked Questions) (7/9)
Previous Document: G.01.4 What are all those different kinds of stars? Black Holes
Next Document: G.03 What are the biggest and smallest stars?
See reader questions & answers on this topic! - Help others by sharing your knowledge
	Steve Willner <swillner@cfa.harvard.edu>

The color vision of our eyes is a pretty complicated matter.  The
colors we perceive depend not only of the wavelength mix the eye
receives at a perticular spot, but also on a number of other factors.
For instance the brightness of the light received, the brightness and
wavelength mix received simultaneously in other parts of the field
of view (sometimes visible as "contrast effects"), and also the
brightness/wavelength mix that the eye previously received (sometimes
visible as afterimages).

One isolated star, viewed by an eye not subjected to other strong
lights just before, and with very little other light sources in the
field of view, will virtually never look green.  But put the same
star (which we can assume to appear white when viewed in isolation)
close to another, reddish, star, and that same star may immediately
look greenish, due to contrast effects (the eye tries to make the
"average" color of the two stars appear white).

Also, stars generally have very weak colors.  The only exception is
perhaps those cool "carbon" stars with a very low temperature---they
often look quite red, but still not as red as a stoplight.  Very hot
stars have a faint bluish tinge, but it's always faint---"blue" stars
never get as intense in their colors as the reddest stars.  Once the
temperature of a star exceeds about 20,000 K, its temperature doesn't
really matter to the perceived color (assuming blackbody
radiation)---the star will appear to have the same blue-white color no
matter whether the temperature is 20,000, 100,000 or a million degrees K.

Old novae in the "nebular" phase often look green.  This is because
they are surrounded by a shell of gas that emits spectral lines of
doubly ionized oxygen (among other things).  Although these object
certainly look like green stars in a telescope---the gas shell cannot
usually be resolved---the color isn't coming from a stellar
photosphere.

User Contributions:

1
Keith Phemister
Sep 13, 2024 @ 11:23 pm
Copied from above: If the Universe were infinitely old, infinite in extent, and filled
with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP

Comment about this article, ask questions, or add new information about this topic:




Top Document: [sci.astro] Stars (Astronomy Frequently Asked Questions) (7/9)
Previous Document: G.01.4 What are all those different kinds of stars? Black Holes
Next Document: G.03 What are the biggest and smallest stars?

Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page

[ Usenet FAQs | Web FAQs | Documents | RFC Index ]

Send corrections/additions to the FAQ Maintainer:
jlazio@patriot.net





Last Update March 27 2014 @ 02:11 PM