Search the FAQ Archives

3 - A - B - C - D - E - F - G - H - I - J - K - L - M
N - O - P - Q - R - S - T - U - V - W - X - Y - Z
faqs.org - Internet FAQ Archives

[sci.astro] Stars (Astronomy Frequently Asked Questions) (7/9)
Section - G.06 Which nearby stars might become supernovae?

( Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page )
[ Usenet FAQs | Web FAQs | Documents | RFC Index | Houses ]


Top Document: [sci.astro] Stars (Astronomy Frequently Asked Questions) (7/9)
Previous Document: G.05 Where can I get stellar data (especially distances)?
Next Document: G.07 What will happen on Earth if a nearby star explodes?
See reader questions & answers on this topic! - Help others by sharing your knowledge

Obvious candidates are alpha Orionis (Betelgeuse, M1-2 Ia-Iab), alpha
Scorpii (Antares, M1.5 Iab-Ib), and alpha Herculis (Rasalgethi, M5
Ib-II).  Spectral types come from the Bright Star Catalog.  Although
trigonometric parallaxes are listed in the catalog, they will not be
very accurate for stars this far away.  I derive photometric distances
of around 400 light years for the first two and 600 light years for
alpha Her.  (Anybody have better sources, or do we have to wait for
Hipparcos?)  Anybody want to suggest more?

User Contributions:

1
Keith Phemister
Sep 13, 2024 @ 11:23 pm
Copied from above: If the Universe were infinitely old, infinite in extent, and filled
with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP

Comment about this article, ask questions, or add new information about this topic: