|
Top Document: [sci.astro] Time (Astronomy Frequently Asked Questions) (3/9) Previous Document: C.08 What is a "blue moon?" Next Document: C.10 Why isn't the earliest Sunrise (and latest Sunset) on the longest day of the year? See reader questions & answers on this topic! - Help others by sharing your knowledge Geoffrey A. Landis <geoffrey.landis@lerc.nasa.gov> When the sun sets, sometimes the last bit of light from the disk itself is an emerald green. The same is true of the first bit of light from the rising sun. This phenomenon is known as the "green flash" or "green ray." It is not an optical illusion. The green flash is common and will be visible any time the sun is rises or sets on a *clear*, *unobstructed*, and *low* horizon. From our observatory at Mt. Hopkins, I (SW) see the sunset green flash probably 90% of the evenings that have no visible clouds on the western horizon. It typically lasts one or two seconds (by estimate, not stopwatch) but on rare occasions much longer (5 seconds??). I've seen the dawn green flash only once, but a) I'm seldom outside looking, b) the topography is much less favorable, and c) it takes luck to be looking in exactly the right place. If you'd like to see the green flash, the higher you can go, the better (see below). The explanation for the green flash involves refraction, scattering, and absorption. First, the most important of these processes, refraction: light is bent in the atmosphere with the net effect that the visible image of the sun at the horizon appears roughly a solar diameter *above* the geometric position of the sun. This refraction is mildly wavelength dependent with blue light being refracted the most. Thus if refraction were the only effect, the red image of the sun would be lowest in the sky, followed by yellow, green, and blue highest. If I've understood the refraction table properly, the difference between red and blue (at the horizon) is about 1/40 of a solar diameter. Now scattering: the blue light is Rayleigh scattered away (not Compton or Thomson scattering). Now absorption: air has a very weak absorption band in the yellow. When the sun is overhead, this absorption hardly matters, but near the horizon, the light travels through something like 38 "air masses," so even a weak absorption becomes significant. The explanation for the green flash is thus, 1) refraction separates the solar images by color; 2) at just the right instant, the red image has set, 3) the yellow image is absorbed; and 4) the blue image is scattered away. We are left with the upper limb of the green image. Because the green flash is primarily a refraction effect, it lasts longer and is easier to see from a mountain top than from sea level. The amount of refraction is proportional to the path length through the atmosphere times the density gradient (in a linear approximation for the atmosphere's index of refraction). This product will scale like 1+(h/a)^(0.5), where h is your height and a the scale height of the atmosphere. The density scale height averaged over the bottom 10 km of the atmosphere is about 9.2 km, so for a 2 km mountain the increase in refraction is about a factor 1.5; a 3 km mountain gives 1.6 and a 4.2 km mountain (e.g., Mauna Kea) gives 1.7. More details can be found in _The Green Flash and Other Low Sun Phenomena_, by D. J. K. O'Connell and the classic _Light and Color in the Open Air_. A refraction table appears in _Astrophysical Quantities_, by C. W. Allen. There's also an on-line resource at <URL:http://mintaka.sdsu.edu/GF>. User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: [sci.astro] Time (Astronomy Frequently Asked Questions) (3/9) Previous Document: C.08 What is a "blue moon?" Next Document: C.10 Why isn't the earliest Sunrise (and latest Sunset) on the longest day of the year? Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: jlazio@patriot.net
Last Update March 27 2014 @ 02:11 PM
|

with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP