Top Document: [sci.astro] General (Astronomy Frequently Asked Questions) (2/9) Previous Document: B.19 What was the Star of Bethlehem? Next Document: Copyright See reader questions & answers on this topic! - Help others by sharing your knowledge It is possible to locate and observe the Apollo landing "sites," but it is *not* possible with current equipment to see the hardware left there, since their sizes are far too small to be resolved successfully. For example, a common backyard 6 inch aperture telescope can only resolve craters on the moon which are about 1.5 miles or so across. Even telescopes with a resolution comparable to that of the Hubble Space Telescope can only resolve details about 100 meters across (the size of a football or soccer field). Lasers fired from Earth are bounced off special retro-reflectors left at these sites by the astronauts, and the faint return pulse is then detected by Earth-based telescopes equipped with special instruments to measure the Earth-moon distance, but otherwise, we can't see any man-made equipment left at the landing sites. If you wish to see the sites through a telescope for yourself, here are the approximate locations of the Apollo landing sites (see the Project Apollo Web site, <URL:http://www.ksc.nasa.gov/history/apollo/apollo.html>, for more exact locations and descriptions or <URL:http://www.boulder.swri.edu/%7Edurda/Apollo/landing_sites.html> for set of images of the landing sites at increasingly higher resolution): APOLLO 11: 0.67 deg. N, 23.49 deg. E, near southwest edge of Mare Tranquillatis a little northwest of the 6-mile wide crater Moltke. APOLLO 12: 3.20 deg. S, 23.38 deg. W, in Oceanus Procellarum southeast of the crater Lansberg (also the landing site of Surveyor 3). APOLLO 14: 3.67 deg. S, 17.47 deg. W., in Fra Mauro highlands just north of northwestern rim of large shallow Fra Mauro crater. APOLLO 15: 26.10 deg.N., 3.65 deg. E., Next to Hadley Rille and southwest of Mt. Hadley in the lunar Apennine Mountains. APOLLO 16: 8.99 deg. S., 15.52 deg. E., higlands north of the ruined crater Descartes and southeast of the double crater Dolland B/C. APOLLO 17: 20.16 deg. N., 30.77 deg. E., in the southwestern Taurus Mountains roughly between the craters Littrow and Vitruvius. User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: [sci.astro] General (Astronomy Frequently Asked Questions) (2/9) Previous Document: B.19 What was the Star of Bethlehem? Next Document: Copyright Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: jlazio@patriot.net
Last Update March 27 2014 @ 02:11 PM
|
with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP