# Vinod Kariat, Sunnyvale US

## Vinod Kariat, Sunnyvale, CA US

Patent application number | Description | Published |
---|---|---|

20090006065 | METHOD TO PRODUCE SUBSTRATE NOISE MODEL AND RELATED SYSTEM AND ARTICLE OF MANUFACTURE - A method is provided to produce a model of an integrated circuit substrate, the method comprising: providing a tile definition that specifies an electrical model associated with instances of the tile; mapping a plurality of respective tile instances to respective locations of the substrate; and connecting the mapped tile instances to each other to produce a tile grid that models overall electrical behavior of the substrate. | 01-01-2009 |

20090007032 | METHOD AND APPARATUS FOR SUBSTRATE NOISE ANALYSIS USING SUBSTRATE TILE MODEL AND TILE GRID - A method is provided to evaluate substrate noise propagation in an integrated circuit design, the method comprising: providing a tile definition that specifies an electrical model associated with instances of the tile; mapping a plurality of respective tile instances to respective locations of the substrate; obtaining respective waveforms indicative of digital switching induced power grid fluctuations associated with the respective identified contacts; and associating a voltage with a selected tile instance of the tile grid that is indicative of substrate noise injection due to waveforms associated with contacts encompassed by the selected tile instance. | 01-01-2009 |

20090199140 | METHOD AND APPARATUS FOR THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of an integrated circuit (“IC”) layout that includes numerous circuit modules. In some embodiments, the method initially defines several power dissipation equations that express the temperature dependence of the power dissipation for several circuit modules. In some embodiments, the power dissipation equations express a non-linear relationship between power dissipation and temperature. The method defines a heat flow equation based on the specified power dissipation equations. The method then solves the heat flow equation to identify a temperature distribution for the design layout. | 08-06-2009 |

20090319964 | METHOD AND APPARATUS FOR THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of an integrated circuit (“IC”) design layout that includes numerous circuit modules. The method divides the IC design layout into a set of elements, where at least one element includes several wires. The method computes a set of conductivity groups of values for the set of elements. The method identifies a temperature distribution for the IC design layout based on the set of conductivity groups of values. In some embodiments, each of these elements corresponds to a particular portion of a particular layer of the IC design layout. Each element includes several nodes. Each conductivity group of values is defined by entry values. Each entry value describes how heat flow at a particular node of the element is affected by a temperature change at another particular node of the element. | 12-24-2009 |

20090319965 | METHOD AND APPARATUS FOR THERMAL ANALYSIS OF THROUGH-SILICON VIA (TSV) - Some embodiments of the invention provide a method for performing thermal analysis of an integrated circuit (“IC”) design layout. The IC design layout includes several wiring layers in some embodiments. The IC design layout includes a substrate that has at least one through-silicon via (“TSV”). The method divides the IC design layout into a set of elements. The method identifies a temperature distribution for the IC design layout by using the set of elements. In some embodiments, at least one element includes a metal component and a non-metal component. The non-metal component is silicon in some embodiments, and a dielectric in other embodiments. | 12-24-2009 |

20100023903 | METHOD AND APPARATUS FOR MULTI-DIE THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of a multi-die integrated circuit (IC) design layout. The thermal analysis produces a temperature distribution for analyzing internal properties of each die within the multi-die design and for analyzing thermal interactions between two or more dies of the design based on an internal configuration of the two or more dies. Therefore, in some embodiments, the temperature distribution shows a temperature distribution for each die and the individual temperature distribution show varying temperature across each of the dies. Some embodiments reduce the number of iteration required to perform the thermal analysis by constructing a high quality preconditioner based on thermal conducting segments introduced to model thermal effects at the boundaries between two dies. | 01-28-2010 |

20120102449 | METHOD AND APPARATUS FOR THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of an integrated circuit (“IC”) design layout that includes numerous circuit modules. The method divides the IC design layout into a set of elements, where at least one element includes several wires. The method computes a set of conductivity groups of values for the set of elements. The method identifies a temperature distribution for the IC design layout based on the set of conductivity groups of values. In some embodiments, each of these elements corresponds to a particular portion of a particular layer of the IC design layout. Each element includes several nodes. Each conductivity group of values is defined by entry values. Each entry value describes how heat flow at a particular node of the element is affected by a temperature change at another particular node of the element. | 04-26-2012 |

20120210285 | METHOD AND APPARATUS FOR THERMAL ANALYSIS OF THROUGH-SILICON VIA (TSV) - Some embodiments of the invention provide a method for performing thermal analysis of an integrated circuit (“IC”) design layout. The IC design layout includes several wiring layers in some embodiments. The IC design layout includes a substrate that has at least one through-silicon via (“TSV”). The method divides the IC design layout into a set of elements. The method identifies a temperature distribution for the IC design layout by using the set of elements. In some embodiments, at least one element includes a metal component and a non-metal component. The non-metal component is silicon in some embodiments, and a dielectric in other embodiments. | 08-16-2012 |

20120297357 | METHOD AND APPARATUS FOR MULTI-DIE THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of a multi-die integrated circuit (IC) design layout. The thermal analysis produces a temperature distribution for analyzing internal properties of each die within the multi-die design and for analyzing thermal interactions between two or more dies of the design based on an internal configuration of the two or more dies. Therefore, in some embodiments, the temperature distribution shows a temperature distribution for each die and the individual temperature distributions show varying temperature across each of the dies. Some embodiments reduce the number of iteration required to perform the thermal analysis by constructing a high quality preconditioner based on thermal conducting segments introduced to model thermal effects at the boundaries between two dies. | 11-22-2012 |

20120304137 | METHOD AND APPARATUS FOR MULTI-DIE THERMAL ANALYSIS - Some embodiments of the invention provide a method for performing thermal analysis of a multi-die integrated circuit (IC) design layout. The thermal analysis produces a temperature distribution for analyzing internal properties of each die within the multi-die design and for analyzing thermal interactions between two or more dies of the design based on an internal configuration of the two or more dies. Therefore, in some embodiments, the temperature distribution shows a temperature distribution for each die and the individual temperature distributions show varying temperature across each of the dies. Some embodiments reduce the number of iteration required to perform the thermal analysis by constructing a high quality preconditioner based on thermal conducting segments introduced to model thermal effects at the boundaries between two dies. | 11-29-2012 |