# Peter Lablans, Morris Township US

## Peter Lablans, Morris Township, NJ US

Patent application number | Description | Published |
---|---|---|

20080244274 | Methods and Systems for Processing of n-State Symbols with XOR and EQUALITY Binary Functions - Multi-valued or n-state with n=2 | 10-02-2008 |

20090045988 | Methods and Systems for Modifying the Statistical Distribution of Symbols in a Coded Message - A method for coding a message of a plurality of m-state symbols into a coded message of n-state symbols wherein n>m is disclosed. A method to make the distribution of states of n-state symbols a uniform distribution is also disclosed. A coding rule is initiated based on a distribution of states of m-state symbols. A method of coding the coding rule by transposition is also provided. In one embodiment a coded message of n-state symbols has symbols that each have a unique state. A system for executing the coding and decoding methods is also disclosed. | 02-19-2009 |

20090060202 | Ternary and Higher Multi-Value Digital Scramblers/Descramblers - Ternary (3-value) and higher, multi-value digital scramblers/descramblers in digital communications. The method and apparatus of the present invention includes the creation of ternary (3-value) and higher value truth tables that establish ternary and higher value scrambling functions which are its own descrambling functions. The invention directly codes by scrambling ternary and higher-value digital signals and directly decodes by descrambling with the same function. A disclosed application of the invention is the creation of composite ternary and higher-value scrambling devices and methods consisting of single scrambling devices or functions combined with ternary or higher value shift registers. Another disclosed application is the creation of ternary and higher-value spread spectrum digital signals. Another disclosed application is a composite ternary or higher value scrambling system, comprising an odd number of scrambling functions and the ability to be its own descrambler. | 03-05-2009 |

20090077151 | Multi-Input, Multi-State Switching Functions and Multiplications - Methods to create an implementation for a multi-input n-state logic function with at least one inverter at an input by modifying the truth table according to the inverter into a reduced truth table are provided. Implementations of the reduced truth table by gates and inverters are also disclosed. Applying reduced truth tables in n-state multiplications are also provided. N-state multiplications may be used in filters, Digital Signal Processing or in Linear Feedback Shift Registers (LFSRs). Using implementations of reduced truth tables in n-state multiplications are disclosed. | 03-19-2009 |

20090092250 | Methods and Systems for N-State Signal Processing with Binary Devices - Linear Feedback Shift Registers (LFSRs) based 2 | 04-09-2009 |

20090128190 | Implementing Logic Functions with Non-Magnitude Based Physical Phenomena - An n-valued switch with n≧2, with an input enabled to receive a signal in one of n states, an output enabled to provide a signal in one of at least 2 states, under control of a control signal having one of at least 2 states is disclosed. Signals are instances of a physical phenomenon, an instance representing a state. N-valued inverters are also disclosed. Different types of signals are disclosed, including optical signals with different wavelengths, electrical signals with different frequencies and signals represented by a presence of a material. A kit including an n-valued switch is also disclosed. | 05-21-2009 |

20090138535 | Novel Binary and n-State Linear Feedback Shift Registers (LFSRs) - N-state with n equal or greater than 2 modified Linear Feedback Shift Registers (mLFSRs) having a non-reversible n-state switching function have been disclosed. An mLFSR can also contain a device that implements an n-state logic function of which one input is provided with a signal external to the mLFSR. The mLFSR can be in Fibonacci or in Galois configurations. N-state scramblers and corresponding descramblers applying an mLFSR are provided. N-state coding boxes apply non-reversible switching functions connected to n-state scrambling or descrambling functions. Sequence generators and detectors are also disclosed. | 05-28-2009 |

20090146851 | N-State Ripple Adder Scheme Coding with Corresponding N-State Ripple Adder Scheme Decoding - Methods and apparatus for implementing an n-state ripple-adder scheme coder with n≧2 using an n-state reversible switching function and a non-reversible n-state switching function acting upon a first and a second word of at least 2 n-state symbols are disclosed. Corresponding decoding methods and apparatus are also disclosed. A resulting codeword may be a codeword which can be decoded by using the identical or different n-state switching functions in a corresponding ripple adder scheme decoder. Feistel networks and LFSRs apply the coding and decoding. Systems using the coding and decoding methods may be communication, storage and/or financial systems. | 06-11-2009 |

20090172501 | Multi-State Symbol Error Correction in Matrix Based Codes - Methods and apparatus create codewords of n-state symbols having one of 3 or more states with n-state check symbols. Check symbols are created from independent expressions. Codewords are associated with a matrix for detection of one or more symbols in error and the location of such symbols in error. Symbols in error are reconstructed from symbols not in error, error syndromes and check symbols not in error. Deliberately created errors that can be corrected are used as nuisance errors. | 07-02-2009 |

20090284620 | Systems and Methods for Concurrently Playing Multiple Images From a Storage Medium - Methods for storing on a storage or memory medium, and retrieving, and displaying of multiple images in a registered manner, the images have been recorded concurrently. The images may comprise at least 2 video programs. A camera system for recording multiple concurrent images is also disclosed. Lenses and corresponding image sensors are calibrated to have calibrated and associated settings for recording multiple images that are substantially registered images. A registered image may be displayed on a single display. It may also be displayed on multiple displays. A camera for recording and displaying registered multiple images may be part of a mobile phone. | 11-19-2009 |

20090285326 | Generation and Detection of Non-Binary Digital Sequences - Method and apparatus for generating ternary and multi-valued Gold sequences, are disclosed. Also methods to detect ternary and multi-valued sequences are disclosed. The detection can be performed by a ternary or multi-valued LFSR descrambler when the sequences are generated by an LFSR based sequence generator. A wireless system which can assign additional sequences to designated users is also disclosed. The wireless system can also transfer information to user equipment that enables methods for sequence generation and sequence detection. | 11-19-2009 |

20100085802 | Multi-State Latches From n-State Reversible Inverters - N-valued re-circulating latches using n-valued reversible inverters with n>3 are disclosed. Latches using n-valued self-reversing inverters are provided; latches using n-valued universal inverters are provided; and latches using inverters which are not self-reversing or universal are also provided. A latch may use two individually controlled gates. It may also use one individually controlled gate. N-valued latches are provided wherein a state is represented by a signal being an independent instance of a physical phenomenon. A latch not using absence-of-signal as a state is also provided. | 04-08-2010 |

20100097442 | Controller in a Camera for Creating a Panoramic Image - Methods and apparatus to create and display panoramic images on a mobile device are disclosed. Such a mobile device can be a mobile phone. Apparatus is provided to control the position of a lens in relation to a reference lens. Methods and apparatus are provided to generate multiple images that are combined into a panoramic image. A panoramic image may be a static image. It may also be a video image. A controller provides correct camera settings for different conditions. An image processor creates a panoramic image from the correct settings provided by the controller. A panoramic camera is applied in a computer gaming system. | 04-22-2010 |

20100097443 | Controller in a Camera for Creating a Panoramic Image - Methods and apparatus to create and display panoramic images on a mobile device are disclosed. Such a mobile device can be a mobile phone. Apparatus is provided to control the position of a lens in relation to a reference lens. Methods and apparatus are provided to generate multiple images that are combined into a panoramic image. A panoramic image may be a static image. It may also be a video image. A controller provides correct camera settings for different conditions. An image processor creates a panoramic image from the correct settings provided by the controller. A panoramic camera is applied in a computer gaming system. | 04-22-2010 |

20100097444 | Camera System for Creating an Image From a Plurality of Images - Methods and apparatus to create and display stereoscopic and panoramic images are disclosed. Apparatus is provided to control the position of a lens in relation to a reference lens. Methods and apparatus are provided to generate multiple images that are combined into a stereoscopic or a panoramic image. An image may be a static image. It may also be a video image. A controller provides correct camera settings for different conditions. An image processor creates a stereoscopic or a panoramic image from the correct settings provided by the controller. A panoramic video wall system is also disclosed. | 04-22-2010 |

20100109922 | Methods and Systems for Modifying the Statistical Distribution of Symbols in a Coded Message - A method for coding a message of a plurality of m-state symbols into a coded message of n-state symbols wherein n>m is disclosed. A method to make the distribution of states of n-state symbols a uniform distribution is also disclosed. A coding rule is initiated based on a distribution of states of m-state symbols. A method of coding the coding rule by transposition is also provided. In one embodiment a coded message of n-state symbols has symbols that each have a unique state. A system for executing the coding and decoding methods is also disclosed. | 05-06-2010 |

20100164548 | Implementing Logic Functions With Non-Magnitude Based Physical Phenomena - An n-valued switch with n≧2 and n>2 and n>7, with an input enabled to receive a signal in one of n states, an output enabled to provide a signal in one of at least 2 states, under control of a control signal having one of at least 2 states is disclosed. Signals are instances of a physical phenomenon, an instance representing a state. N-valued inverters are also disclosed. Different types of signals are disclosed, including optical signals with different wavelengths, electrical signals with different frequencies and signals represented by a presence of a material. A kit including an n-valued switch is also disclosed. | 07-01-2010 |

20100180097 | Generation and Self-Synchronizing Detection of Sequences Using Addressable Memories - Methods and apparatus to implement LFSRs and LFSR based sequence generators, detectors, scramblers and descramblers by addressable memory are disclosed. The methods and apparatus may be processing binary or n-valued symbols, with n>2. Methods to uniquely characterize n-valued Gold sequence are also disclosed. Self-synchronizing methods to detect sequences which can be decomposed into unique words are also disclosed. Methods and apparatus to implement Fibonacci and Galois LFSRs are disclosed. | 07-15-2010 |

20100211803 | Multi-Valued Scrambling and Descrambling of Digital Data on Optical Disks and Other Storage Media - Method and apparatus for writing scrambled multi-value data to a physical media and for reading scrambled multi-value data from a physical media, are disclosed. The physical media can be an optical disk. The scrambling can be performed by a multi-valued LFSR scrambler and the descrambling can be performed by a multi-valued LFSR descrambler. Further, the multi-valued data that is scrambled can include synchronization data and/or user data. Error correction coding can be used during the writing process and processing to correct for errors can be used during the reading process. Also, methods and apparatus for synchronizing multi-valued data written to and read from physical media are disclosed. Multi-value correlation methods and apparatus are also disclosed. | 08-19-2010 |

20100271243 | N-State Ripple Adder Scheme Coding with Corresponding N-State Ripple Adder Scheme Decoding - Methods and apparatus for implementing an n-state ripple-adder scheme coder with n≧2 using an n-state reversible switching function and a non-reversible n-state switching function acting upon a first and a second word of at least 2 n-state symbols are disclosed. Corresponding decoding methods and apparatus are also disclosed. A resulting codeword may be a codeword which can be decoded by using the identical or different n-state switching functions in a corresponding ripple adder scheme decoder. Feistel networks and LFSRs apply the coding and decoding. Systems using the coding and decoding methods may be communication, storage and/or financial systems. | 10-28-2010 |

20100299579 | Methods and Systems for Error-Correction in Convolutional and Systematic Convolutional Decoders in Galois Configuration - Convolutional coders having an n-state with n≧2 Linear Feedback Shift Registers (LFSR) in Galois configuration with k shift register elements with k>1 are provided. Corresponding decoders are also provided. A convolutional coder generates a sequence of coded n-state symbols. A content of a starting position of an LFSR in a decoder is determined when sufficient error free coded symbols are available. Up to k symbols in error are corrected. A systematic convolutional coder and decoder are also provided. | 11-25-2010 |

20100322414 | TERNARY AND HIGHER MULTI-VALUE DIGITAL SCRAMBLERS/DESCRAMBLERS - Ternary (3-value) and higher, multi-value digital scramblers/descramblers in digital communications. The method and apparatus of the present invention includes the creation of ternary (3-value) and higher value truth tables that establish ternary and higher value scrambling functions which are its own descrambling functions. The invention directly codes by scrambling ternary and higher-value digital signals and directly decodes by descrambling with the same function. A disclosed application of the invention is the creation of composite ternary and higher-value scrambling devices and methods consisting of single scrambling devices or functions combined with ternary or higher value shift registers. Another disclosed application is the creation of ternary and higher-value spread spectrum digital signals. Another disclosed application is a composite ternary or higher value scrambling system, comprising an odd number of scrambling functions and the ability to be its own descrambler. | 12-23-2010 |

20110064214 | Methods and Apparatus in Alternate Finite Field Based Coders and Decoders - Methods and apparatus for coding and decoding n-state symbols with n≧2 and n>2 and n>3 and n>4 are provided wherein at least one implementation of an addition over an alternate finite field GF(n) and an inverter defined by a multiplication over the alternate finite field GF(n) are provided. Encoders and decoders implementing a single n-state truth table that is a truth table of an addition over an alternate finite field GF(n) modified in accordance with at least one inverter defined by a multiplication over the alternate finite field GF(n) are also provided. Encoders include scramblers, Linear Feedback Shift Register (LFSR) based encoders, sequence generator based encoders, block coders, streaming cipher encoders, transposition encoders, hopping rule encoders, Feistel network based encoders, check symbol based encoders, Hamming coder, error correcting encoders, encipherment encoders, Elliptic Curve Coding encoders and all corresponding decoders. Systems applying encoders and decoders also are provided. | 03-17-2011 |

20110098083 | Large, Ultra-Thin And Ultra-Light Connectable Display For A Computing Device - Methods and apparatus to create and display screen stereoscopic and panoramic images are disclosed. Methods and apparatus are provided to generate multiple images that are combined into a stereoscopic or a panoramic image. An image may be a static image. It may also be a video image. A controller provides correct camera settings for different conditions. An image processor creates a stereoscopic or a panoramic image from the correct settings provided by the controller. A plurality of lens/sensor units is placed on a carrier. Lens/sensor units are rotationally aligned. A controller rotationally aligns images of lens/sensor units that are rotationally misaligned. The camera is enabled to communicate via a wired or via a wireless connection, with a separate, mobile, ultrathin, ultralight, display with a large display screen not smaller than 25 by 20 cm in a first embodiment of the present invention and not smaller than 20 by 15 cm in a second embodiment of the present invention to provide color images including video images in real-time. A compact controllable platform to hold and rotate a device with a lens/sensor unit is also provided. | 04-28-2011 |

20110170697 | Ternary and Multi-Value Digital Signal Scramblers, Decramblers and Sequence Generators - Reversible and self reversing multi-value scrambling functions created by applying multi-value inverters are disclosed. The generation of possible multi-value inverters is also presented. Corresponding multi-value descrambling functions are also disclosed. The multi-value functions are used in circuits that scramble and descramble multi-value signals. The multi-value functions can also be used in signal generators. Such signal generators do not require the use of multipliers. The auto-correlation of the signals generated by the signal generators is also presented. Electronic circuits that implement the multi-value functions are also described. | 07-14-2011 |

20110182421 | ENCIPHERMENT OF DIGITAL SEQUENCES BY REVERSIBLE TRANSPOSITION METHODS - Methods for transposing elements of a sequence according to a rule, wherein the rule is derived from pseudo-noise or pseudo-noise like binary and non-binary sequences are disclosed. Sequences of transposed symbols can be recovered by applying a reversing rule. Sets of orthogonal hopping and transposition rules are created by applying transposition rules upon themselves. Sets of orthogonal hopping and transposition rules are also created from binary and non-binary Gold sequences. | 07-28-2011 |

20110182423 | Data Encryption and Decryption with a Key by an N-state Inverter Modified Switching Function - Methods and apparatus for implementing an n-state ripple-adder scheme coder with n≧2 using an n-state reversible switching function and a non-reversible n-state switching function acting upon a first and a second word of at least 2 n-state symbols are disclosed. Corresponding decoding methods and apparatus are also disclosed. A resulting codeword may be a codeword which can be decoded by using the identical or different n-state switching functions in a corresponding ripple adder scheme decoder. Feistel networks and LFSRs apply the coding and decoding. Systems using the coding and decoding methods may be communication, storage and/or financial systems. | 07-28-2011 |

20110214038 | Methods and Systems for Rapid Error Correction of Reed-Solomon Codes - An encoder creates an (p,k,n) n-state codeword with p n-state symbols of which k n-state symbols are data symbols, an n-state symbol being represented by a signal with n>2, p>2 and k>(p−k). Intermediate states of an encoder in forward and in reverse direction are provided in a comparative n-state expression and implemented on a processor. A plurality of signals representing a codeword with at least one n-state symbol in error is processed by the processor by evaluating the comparative n-state expression. A partial result of an expression is determined after a symbol has been received. An error location and an error magnitude are determined. The error is corrected by the processor. | 09-01-2011 |

20110276854 | Methods and Systems for Rapid Error Correction by Forward and Reverse Determination of Coding States - An encoder creates an (p,k,n) n-state codeword with p n-state symbols of which k n-state symbols are data symbols, an n-state symbol being represented by a signal with n>2, p>2 and k>(p-k). Intermediate states of an encoder in forward and in reverse direction are provided in a comparative n-state expression and implemented on a processor. A plurality of signals representing a codeword with at least one n-state symbol in error is processed by the processor by evaluating the comparative n-state expression. A partial result of an expression is determined after a symbol has been received. An error location and an error magnitude are determined. The error is corrected by the processor. | 11-10-2011 |

20110293062 | Method and Apparatus for Rapid Synchronization of Shift Register Related Symbol Sequences - A sequence generator implemented on a receiver is synchronized with a sequence generator at a transmitter. The receiver receives k n-state symbols, with k>1 and n>1 wherein each of the k n-state symbols is associated with a generating state of the sequence generator at the transmitter. A processor in the receiver evaluates an n-state expression that generates an n-state symbol that is associated with a synchronized state of the receiver. Coefficients related to the n-state expression are stored on a memory and are retrieved by the processor. The synchronized state in one embodiment is part of a code hop. The sequence generator in the receiver may be part of a descrambler, of a communication device, of a data storage device and/or of an opening mechanism. | 12-01-2011 |

20120149432 | Systems and Methods for Concurrently Playing Multiple Images from a Storage Medium - Methods for storing on a storage or memory medium, and retrieving, and displaying of multiple images in a registered manner, the images have been recorded concurrently. The images may comprise at least 2 video programs. A camera system for recording multiple concurrent images is also disclosed. Lenses and corresponding image sensors are calibrated to have calibrated and associated settings for recording multiple images that are substantially registered images. A registered image may be displayed on a single display. It may also be displayed on multiple displays. A camera for recording and displaying registered multiple images may be part of a mobile phone. | 06-14-2012 |

20120170738 | Methods and Apparatus in Alternate Finite Field Based Coders and Decoders - Methods and apparatus for coding and decoding n-state symbols with n≧2 and n>2 and n>3 and n>4 are provided wherein at least one implementation of an addition over an alternate finite field GF(n) and an inverter defined by a multiplication over the alternate finite field GF(n) are provided. Encoders and decoders implementing a single n-state truth table that is a truth table of an addition over an alternate finite field GF(n) modified in accordance with at least one inverter defined by a multiplication over the alternate finite field GF(n) are also provided. Encoders include scramblers, Linear Feedback Shift Register (LFSR) based encoders, sequence generator based encoders, block coders, streaming cipher encoders, transposition encoders, hopping rule encoders, Feistel network based encoders, check symbol based encoders, Hamming coder, error correcting encoders, encipherment encoders, Elliptic Curve Coding encoders and all corresponding decoders. Systems applying encoders and decoders also are provided. | 07-05-2012 |

20120233527 | Methods and Systems for Rapid Error Location in Reed-Solomon Codes - An encoder creates an (p,k,n) n-state codeword with p n-state symbols of which k n-state symbols are data symbols, an n-state symbol being represented by a signal with n>2, p>2 and k>(p−k). Intermediate states of an encoder in forward and in reverse direction are provided in a comparative n-state expression and implemented on a processor. A plurality of signals representing a codeword with at least one n-state symbol in error is processed by the processor by evaluating the comparative n-state expression. A partial result of an expression is determined after a symbol has been received. An error location and an error magnitude or error value are determined. The error is corrected by the processor. | 09-13-2012 |

20130135429 | Controller in a camera for creating a registered video image - Methods and apparatus to create and display panoramic images on a mobile device are disclosed. Such a mobile device can be a mobile phone. Apparatus is provided to control the position of a lens in relation to a reference lens. Methods and apparatus are provided to generate multiple images that are combined into a panoramic image. A panoramic image may be a static image. It may also be a video image. A controller provides correct camera settings for different conditions. An image processor creates a panoramic image from the correct settings provided by the controller. A panoramic camera is applied in a computer gaming system. | 05-30-2013 |

20130145237 | Methods and Systems for Rapid Error Location in Reed-Solomon Codes - An encoder creates an (p,k,n) n-state codeword with p n-state symbols of which k n-state symbols are data symbols, an n-state symbol being represented by a signal with n>2, p>2 and k>(p−k). Intermediate states of an encoder in forward and in reverse direction are provided in a comparative n-state expression and implemented on a processor. A plurality of signals representing a codeword with at least one n-state symbol in error is processed by the processor by evaluating the comparative n-state expression. A partial result of an expression is determined after a symbol has been received. An error location and an error magnitude or error value are determined. The error is corrected by the processor. | 06-06-2013 |

20130229529 | Camera to Track an Object - Methods and apparatus to create and display screen stereoscopic and panoramic images are disclosed. Methods and apparatus are provided to generate multiple images that are combined into a stereoscopic or a panoramic image. A controller provides correct camera settings for different conditions. A controller rotationally aligns images of lens/sensor units that are rotationally misaligned. A compact controllable platform holds and rotates a camera. A remote computing device with a camera and a digital compass tracks an object causing the camera in the platform to track the object. | 09-05-2013 |

20130230172 | Novel binary and n-state Linear Feedback Shift Registers (LFSRs) - N-state with n equal or greater than 2 modified Linear Feedback Shift Registers (mLFSRs) having a non-reversible n-state switching function have been disclosed. An mLFSR can also contain a device that implements an n-state logic function of which one input is provided with a signal external to the mLFSR. The mLFSR can be in Fibonacci or in Galois configurations. N-state scramblers and corresponding descramblers applying an mLFSR are provided. N-state coding boxes apply non-reversible switching functions connected to n-state scrambling or descrambling functions. Sequence generators and detectors are also disclosed. | 09-05-2013 |

20140032623 | Methods and Systems for Determining Characteristics of a Sequence of n-state Symbols - Maximum length properties of n-state sequences of n-state symbols with n=2 or n>2 are tested. Checkwords are generated from p consecutive n-state symbols in a sequence of n-state symbols which may overlap by (p−1) n-state symbols. If a sequence has n | 01-30-2014 |