# Hallquist, US

## Aaron Hallquist, Hiawatha, IA US

Patent application number | Description | Published |
---|---|---|

20140212027 | SINGLE IMAGE POSE ESTIMATION OF IMAGE CAPTURE DEVICES - Methods for image based localization using an electronic computing device are presented, the methods including: capturing a local image with an image capture device; associating metadata with the local image; causing the electronic computing device to receive the local image; causing the electronic computing device to match the local image with a database image, where the database image is three-dimensional (3D); and calculating a pose of the image capture device based on a pose of the database image and metadata associated with the local image. In some embodiments, the metadata includes at least pitch and roll data corresponding with the image capture device at a time of image capture. | 07-31-2014 |

## Aaron T. Hallquist, Berkeley, CA US

Patent application number | Description | Published |
---|---|---|

20130120181 | OBJECT DETECTION WITH A MULTISTATIC ARRAY USING SINGULAR VALUE DECOMPOSITION - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present. | 05-16-2013 |

## Allan E. Hallquist, Morning View, KY US

Patent application number | Description | Published |
---|---|---|

20110244503 | System and Method for Anti-Cancer Drug Candidate Evaluation - The disclosure provides a method of evaluating the ability of an anti-cancer drug candidate to induce apoptosis in a known cancer cell line by placing a single-cell suspension of a known cancer cell line in a well of a plate, adding at least one drug candidate to the well in an amount sufficient to achieve a target drug candidate concentration, measuring the optical density at selected time intervals for a selected duration of time, determining a kinetic units value from the optical density and time measurements, and correlating the kinetic units value with an ability of the anti-cancer drug candidate to induce apoptosis in the cancer cell line if the kinetic units value is positive. A similar method may be used to evaluate the ability of an anti-cancer drug candidate to induce apoptosis in a cancer type. | 10-06-2011 |

20130071874 | SYSTEM AND METHOD FOR ANTI-CANCER DRUG CANDIDATE EVALUATION - The disclosure provides a method of evaluating the ability of an anti-cancer drug candidate to induce apoptosis in a known cancer cell line by placing a single-cell suspension of a known cancer cell line in a well of a plate, adding at least one drug candidate to the well in an amount sufficient to achieve a target drug candidate concentration, measuring the optical density at selected time intervals for a selected duration of time, determining a kinetic units value from the optical density and time measurements, and correlating the kinetic units value with an ability of the anti-cancer drug candidate to induce apoptosis in the cancer cell line if the kinetic units value is positive. A similar method may be used to evaluate the ability of an anti-cancer drug candidate to induce apoptosis in a cancer type. | 03-21-2013 |

20140141462 | System and Method for Automated Determination of the Relative Effectiveness of Anti-Cancer Drug Candidates - A computer system is provided for determining the relative effectiveness of anti-cancer drugs. The interface has selectable options, including an option to manage drug testing parameters, and enables user selection of desired drug testing parameters in relation to a virtual well plate associated with a physical well plate of a spectrophotometer. The computer system causes the spectrophotometer to start a drug test, wherein the physical well plate includes at least one test well containing viable cancer cells; and at least one drug candidate in a predetermined concentration; and at least one control well containing the viable cancer cells alone. The system records the optical density of the well at a predetermined wavelength at selected time intervals for a selected duration of time, and stores the optical density and time measurements in the database. An activity value is calculated from the optical density and time measurements, and a correlation is displayed between the activity value and the drug candidate's ability to induce apoptosis in the cancer cells. | 05-22-2014 |

## Aron Edward Hallquist, Houston, TX US

Patent application number | Description | Published |
---|---|---|

20100042458 | METHODS AND SYSTEMS FOR PERFORMING OILFIELD PRODUCTION OPERATIONS - Methods and systems for performing well network production optimizations are described. For example, in one embodiment, a method of allocating an applied resource throughout a well network includes receiving topological data into an analytical model of a well network having one or more wells. The topological data includes a plurality of performance curves that relate well performance to one or more levels of an applied resource. The method also includes determining an optimum allocation of the applied resource using the analytical model to maximize an operating parameter of the well network, including converting a portion the analytical model having one or more wells and a linear inequality relationship to a modified portion having a single variable and a linear equality constraint. | 02-18-2010 |

## David R. Hallquist, River Falls, WI US

Patent application number | Description | Published |
---|---|---|

20150096832 | Acoustic Panel - An acoustic panel device includes a panel member and a mount. The panel member includes a porous material. The mount is arranged to captively support the panel member. The mount can be a frame that surrounds the panel member. The frame can define a channel, and a portion of the panel member is disposed in the channel. | 04-09-2015 |

## John O. Hallquist, Livermore, CA US

Patent application number | Description | Published |
---|---|---|

20100010782 | Systems and Methods of Selecting a CAE Analysis Solver with Appropriate Numerical Precision in Each of a Series of Hierarchically Related Engineering Simulations - Systems and methods of selecting a solver with appropriate numerical precision in each of a series of hierarchically related engineering simulations are described. According to an exemplary embodiment of the present invention, a series of hierarchically related engineering simulations comprises a sequence of finite element analyses for designing and analyzing a structural product. An input file describing the structural product and type of engineering simulation is received. Each different type of engineering simulations is checked to determine which solver with appropriate numerical precision (i.e., single or double precision) is used. A corresponding executable module (e.g., Finite Element Analysis software module) is then used for performing the analysis of that engineering simulation. The process repeats until all of the engineering simulations have been conducted in the entire sequence. | 01-14-2010 |

20100076739 | METHOD OF INITIALIZING BOLT PRETENSION IN A FINITE ELEMENT ANALYSIS - In one aspect of the invention, each bolt is modeled using a beam element in a FEA model. To apply desired pretension to one or more bolts, at least one pretension-versus-time curve is specified. Each pretension-versus-time curve includes ramp portion, desired pretension portion and optional unloading portion. Duration_of the pretension-versus-time curve generally covers first 0.5-1% of total simulation time of a car crashworthiness analysis. Ramp portion starts from zero to desired pretension in a substantially linear manner, and hence being configured for applying desired pretension to a bolt gradually with smaller increments. Desired pretension portion is configured for ensuring the desired pretension can actually be applied to the beam element during an initialization process—a series of quasi-static analyses. Since the method is independent of the deformation of the beam, the method completely avoids the need to iteratively determine an axial strain or displacement that gives the desired pretension. | 03-25-2010 |

20100131256 | Spot Weld Failure Determination Method in a Finite Element Analysis - Each spot weld in a structure is represented by a cluster of at least one solid element in a finite element analysis model of the structure. Each spot weld is used for tying together two parts. Each of the two parts are generally represented or modeled as a number of two-dimension shell elements. Since the tie-connection between the spot weld and the two parts can be located arbitrarily within the respective part, the shell elements representing the two parts do not have to be aligned in space. The only requirement is the two shell elements must be overlapped each other such that the spot weld can tie the two shell elements (i.e., one from each part) together. A spot weld failure criterion used for determining failure including shear and axial stresses acted on the spot weld, shell element size and spot weld location sensitivity scale factors and strain rate effect. | 05-27-2010 |

20100145662 | SOLID FINITE ELEMENTS SUITABLE FOR SIMULATING LARGE DEFORMATIONS AND/OR ROTATIONS OF A STRUCTURE - System and method of simulating large deformation and rotation of a structure in a finite element analysis used for improving structural design is disclosed. According to one aspect, a special purpose solid finite element is configured for simulating large deformations and/or rotations of a structure. The special purpose solid finite element comprises only corner nodes with each node having six degrees-of-freedom (DOF), three translational and three rotational. In other words, each node is configured to include translational deformation and rotation deformation, each of the translational and rotational deformation has three components corresponding to one of the six DOFs. According to another aspect, the special purpose solid element has a plurality of external edges. Each external edge has two ends, each end is located at one of the adjacent corner nodes. Additionally, translational deformation at mid-edge point of each external edge is implicitly embedded in the translational and rotational deformations of two adjacent corner nodes. | 06-10-2010 |

20100268483 | Methods and systems for enabling simulation of aging effect of a chrono-rheological material in computer aided engineering analysis - Methods and systems for enabling simulation of material aging effect of chrono-rheological materials in computer aided engineering (CAE) analysis are disclosed. According to one aspect, a set of material property tests is conducted for a chrono-rheological material of interest. Each test obtains a series of material properties such as relaxation test data at different age. The relaxation test data are measured by maintaining a specimen of the chrono-rheological material at a predetermined strain. A set of first and second time-dependent material aging effect parameters is determined by shifting and matching the series of relaxation test data between each pair of the tests. The set of first and second time-dependent material aging effect parameters in conjunction with a CAE analysis application module with a chrono-rheological material constitutive equation configured therein are then used for simulating material aging effect by performing a CAE analysis of an engineering structure containing at least in part the chrono-rheological material. | 10-21-2010 |

20100286966 | METHODS AND SYSTEMS FOR SIMULATING BEAM-TO-SURFACE CONTACTS IN FINITE ELEMENT ANALYSIS - Methods and systems for simulating beam-to-surface contacts in finite element analysis (FEA) are disclosed. A FEA model contains at least one beam element and at least one surface mesh. Surface mesh comprises a plurality of two-dimensional finite elements having arbitrary mesh density. A minimum characteristic length (CL) of the surface mesh is calculated. One or more interior points are defined for those beam elements with length longer than CL. For every nodal point (i.e., end nodes and interior points if any), a parametric coordinate between 0 and 1 inclusive is established and kept constant throughout the FEA analysis. Distributed nodal masses are used for calculating a stiffness value for calculating nodal force to resist penetration. Initial penetration with the surface mesh at each nodal point along the beam element is compensated with a set of displacements subtracting from the initial nodal displacements, such that the compensational forces remain at zero as the nodal point's initial interpenetration decreases. | 11-11-2010 |

20110093240 | CREATION OF SIMULATED DISJOINT RIGID BODIES IN A FINITE ELEMENT ANALYSIS - Improved methods and systems for defining and creating simulated rigid bodies in finite element analysis are disclosed. One or more rigid finite elements in a finite element model are designated for forming one or more simulated rigid bodies (RBs). Each simulated RB comprises an arbitrary number of rigid finite elements connecting to one another in an arbitrary shape. Each simulated RB is created by locating all of the elements embedded in the model through shared node or nodes. A procedure of using element definition as a guide to set up an array of node flags, each node flag for one node such that all RBs defined in the model can be located efficiently. Once all RBs have been located, each unique RB is defined as a unique list of connected rigid finite elements. | 04-21-2011 |

20110191068 | MULTISCALE SUBSTRUCTURES IN FINITE ELEMENT ANALYSIS - Methods and systems for conducting a time-marching simulation of a product using a finite element analysis model including at least one multiscale substructure are disclosed. According to one aspect, a FEA model of a product is defined for a time-marching simulation. The FEA model comprises an overall structure, and at least one multiscale substructure. Each substructure corresponds to some of the master representative segments defined in the overall structure. Time-marching simulation of the product is conducted with first and second sets of timescale due to significantly different characteristic dimension of the FEA model. The first set is configured for the overall structure or master group, while the second set for the substructures or slave group. The first set is run at a time step significantly larger than the second set. Synchronization of the responses is at the end of each solution cycle corresponds to the first set of timescale. | 08-04-2011 |

20120215498 | NUMERICALLY-SIMULATED RIGID BODY CREATION MEHTODS AND SYSTEMS THEREOF - Methods and systems for creating numerically-simulated rigid bodies in finite element analysis are disclosed. At least one rigid finite element in a finite element model is designated for forming one or more numerically-simulated rigid bodies (RBs). Each numerically-simulated RB comprises an arbitrary number of rigid finite elements connecting to one another in an arbitrary shape. Each numerically-simulated RB is created by locating all of the elements embedded in the FEA model through shared node or nodes. A procedure of using element definition as a guide to set up an array of node flags, each node flag for one node such that all numerically-simulated RBs defined in the model can be located efficiently. Once all numerically-simulated RBs have been located, each unique numerically-simulated RB is defined as a unique linked-list of connected rigid finite elements. | 08-23-2012 |

20130185029 | Numerically simulating structural behaviors of a product using explicit finite element analysis with a mass scaling enhanced subcycling technique - Methods and systems for numerically simulating structural behaviors of a product using explicit FEA with a mass scaling enhanced subcycling technique are disclosed. A FEA model of the product defined by a plurality of nodes and finite elements is received. A critical time step size is calculated for each finite element and then assigned to associated nodes. Elements are partitioned into N element groups with first group requiring minimum time step size Δt | 07-18-2013 |

20130185030 | Numerically simulating structural behaviors of a product using explicit finite element analysis with a combined technique of mass scaling and subcycling - Methods and systems for numerically simulating structural behaviors of a product using explicit FEA with a combined technique of subcycling and mass scaling are disclosed. A FEA model representing a product and a minimum time step size (Δt | 07-18-2013 |

20130325417 | Numerical Simulation Of A Structure Having A Heat-Affected Zone Using A Finite Element Analysis Model - Methods and systems for conducting numerical simulation of a structure having HAZ using a FEA model are disclosed. A FEA model includes at least a group of finite elements representing a welded structural part that encompasses at least one HAZ is defined and received in a computer system. Each finite element in the group is configured with at least one integration point according to FEA. The group of finite elements is associated with a set of HAZ material properties representing structural behavior of the welded structural part inside and outside the HAZ. Corresponding material properties are then determined and assigned to each integration point by interpolating the associated set using the shortest heat-propagation distance between each integration point and the heat source locations (e.g., spotwelds' centroid) with an automated procedure that requires no additional input after the HAZ material properties have been defined. | 12-05-2013 |

20140222395 | CONTACT SURFACE DEFINITION CREATION INVOLVING LOW ORDER AND QUADRATIC FINITE ELEMENTS IN A NUMERICAL SIMULATION OF AN IMPACT EVENT - Methods and systems for creating a contact surface definition involving lower order and quadratic finite elements (QFE) in a FEA model used for numerically simulating an impact event are disclosed. FEA model is organized by one or more groups of finite elements. Each group represents one of the product's parts and is identified by a part ID. Further, the FEA model is configured with one or more contact surface definitions for detecting contacts amongst the parts due to the impact event. For each determined group that is determined to contain QFE, a new group is created. The new group is associated with a unique part ID. Contact segments for the new group are then generated in accordance with a set of predefined rules for subdividing one or more geometric shapes associated with the QFE. Contact surface definitions are updated by replacing each determined group with the new group. | 08-07-2014 |

20140343902 | METHODS AND SYSTEMS FOR PROVIDING DETAILED RIGID WALL FORCE SUMMARY IN A TIME-MARCHING SIMULATION OF A VEHICLE COLLIDING WITH A RIGID WALL - A finite element analysis (FEA) model of a vehicle and a rigid wall definition are received. The FEA model comprises a number of nodes connected by finite elements that are organized in groups. The rigid wall comprises one or more segments each corresponding to a load cell installed thereon. A list of groups that are desired to have a detailed rigid wall force (RWF) summary is defined by user. A contribution weighting factor is calculated for each node in the FEA model. A time-marching simulation of the vehicle colliding with the rigid wall is conducted. At each solution cycle, a nodal force contribution is calculated for each node according to node type. The calculated nodal force contribution modified with the contribution weighting factor is accumulated in the detail RWF summary under respective groups and segments. A full detailed RWF summary is presented. | 11-20-2014 |