Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Specified electrode/electrolyte combination

Subclass of:

429 - Chemistry: electrical current producing apparatus, product, and process

429400000 - FUEL CELL, SUBCOMBINATION THEREOF, OR METHOD OF MAKING OR OPERATING

429479000 - Fuel cell with solid electrolyte

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
429483000 Membrane electrode assembly (MEA) 214
Entries
DocumentTitleDate
20120171598POLYMER ELECTROLYTE COMPOSITION - A polymer electrolyte composition of a sulfonated block copolymer (A) having a hydrophilic segment with a sulfonic acid group and a hydrophobic segment with no sulfonic acid group, each segment having an aromatic ring is its main chain, and an aromatic polymer (B) having no sulfonic acid group with a structural unit that is identical to the structural unit contained in the hydrophobic segment of the sulfonated block copolymer is provided. The ion-exchange capacity of the composition can be in a range of 0.5 mmol/g to 2.9 mmol/g. Electrolyte membranes, membrane/electrolyte assemblies, and electrolyte fuel cells utilizing the polymer electrolyte composition are also provide.07-05-2012
20120183882SEPARATOR FOR A FUEL CELL, A PRODUCTION METHOD THEREFOR AND A FUEL CELL STACK COMPRISING THE SAME - The present invention provides a separator for a fuel cell that improves efficiency of the fuel cell by removing water generated in a membrane-electrode assembly and accumulated in a channel of the separator, a manufacturing method thereof, and a fuel cell stack including the same. The separator for the fuel cell of the present invention includes: a main body of a plate shape; a channel concavely formed in at least one surface of the main body and supplying a fuel or oxygen to a membrane-electrode assembly; and a metal layer provided to a surface of the channel and including an oxide layer formed by an anodic oxidation treatment and minute grooves of a nano-scale formed in the oxide layer, thereby forming the surface of the channel to be super-hydrophilic.07-19-2012
20120183881FUEL CELL WITH PROTRUDED GAS DIFFUSION LAYER - An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell (07-19-2012
20120178016CATHODE MATERIAL FOR FUEL CELL, CATHODE FOR FUEL CELL INCLUDING THE SAME, METHOD OF MANUFACTURING THE CATHODE, AND SOLID OXIDE FUEL CELL INCLUDING THE CATHODE - A cathode material for a fuel cell, the cathode material for a fuel cell including a lanthanide metal oxide having a perovskite crystal structure; and a bismuth metal oxide represented by Chemical Formula 1 below,07-12-2012
20130078550CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY, AND ELECTROCHEMICAL CELL - According to one embodiment, there is provided a catalyst layer containing a catalyst material. The catalyst layer satisfying requirements below: 03-28-2013
20130078549CATALYST-SUPPORTING SUBSTRATE, METHOD OF MANUFACTURING THE SAME, MEMBRANE ELECTRODE ASSEMBLY, AND FUEL CELL - According to one embodiment, a catalyst-supporting substrate comprises a substrate and a catalyst layer including a plurality of pores, the catalyst layer being supported on the substrate. The average diameter of the section of the pore when the catalyst is cut in the thickness direction of the thickness is 5 nm to 400 nm, and the long-side to short-side ratio of the pore on the section is 1:1 to 10:1 in average.03-28-2013
20130078548ELECTRODE CATALYST FOR FUEL CELL, METHOD OF PREPARATION, MEA INCLUDING THE CATALYST, AND FUEL CELL INCLUDING THE MEA - An electrode catalyst for fuel cell, a method of preparing the electrode catalyst, a membrane electrode assembly including the electrode catalyst, and a fuel cell including the membrane electrode assembly. The electrode catalyst includes a crystalline catalyst particle incorporating a precious metal having oxygen reduction activity and a Group 13 element, where the Group 13 element is present in a unit lattice of the crystalline catalyst particle.03-28-2013
20130040222CATALYST LAYER COMPOSITION FOR FUEL CELL, ELECTRODE FOR FUEL CELL, METHOD OF PREPARING ELECTRODE FOR FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL, AND FUEL CELL SYSTEM USING THE MEMBRANE-ELECTRODE ASSEMBLY - A catalyst layer composition for a fuel cell includes an ionomer cluster, a catalyst, and a solvent including water and polyhydric alcohol; and an electrode for a fuel cell includes a catalyst layer comprising an ionomer cluster having a three-dimensional reticular structure, and a catalyst, a method of preparing a electrode for a fuel cell includes a catalyst layer comprising an ionomer cluster having a three-dimensional reticular structure, and a catalyst, and a membrane-electrode assembly for a fuel cell including the electrode and a fuel cell system including the membrane-electrode assembly.02-14-2013
20130157169MIXED-IONOMER ELECTRODE - A membrane electrode assembly includes a membrane, an anode catalyst layer and a cathode catalyst layer. The anode catalyst layer is on a first side of the membrane and the cathode catalyst layer is on a second side of the membrane, wherein the second side of the membrane is opposite the first side of the membrane along a first axis. The cathode catalyst layer includes agglomerates formed of a catalyst support supporting catalyst particles, an agglomerate ionomer and an inter-agglomerate ionomer. The agglomerate ionomer surrounds the agglomerates and the inter-agglomerate ionomer is in regions between the agglomerates surrounded by the agglomerate ionomer. The agglomerate ionomer is different than the inter-agglomerate. Methods to produce the catalyst layer are also provided.06-20-2013
20130157168COMPOSITION, COMPOSITE PREPARED FROM THE COMPOSITION, ELECTRODE AND ELECTROLYTE MEMBRANE FOR FUEL CELL EACH INCLUDING THE SAME, METHOD OF PREPARING THE ELECTROLYTE MEMBRANE, AND FUEL CELL INCLUDING THE SAME - A composition including a compound represented by Formula 1, an azole-based polymer, and at least one of compounds represented by Formula 2-7 according to the specification, a composite obtained from the composition, an electrode and electrolyte for a fuel cell that include the composition or the composite, and a fuel cell including the electrode or the electrolyte membrane:06-20-2013
20130157167ALTERNATE MATERIAL FOR ELECTRODE TOPCOAT - A reduced gas crossover fuel cell membrane and method of making. The fuel cell member includes an electrode layer with a catalyst and an electrochemically-active first ionomer and an overcoat layer disposed on the electrode layer. The overcoat layer is made of the same or different second ionomer relative to the first ionomer of the electrode layer with at least one reduced gas crossover characteristic.06-20-2013
20130034795FUEL CELL SYSTEM - An fuel cell system includes a fuel cell, a fuel cell box, a ventilation device, an air intake duct, and a gas outlet pipe. The fuel cell is disposed in the fuel cell box. The ventilation device is provided to supply air to the fuel cell box. The air intake duct connects the ventilation device to the fuel cell box to supply air from the ventilation device into the fuel cell box. The gas outlet pipe is connected to the air intake duct and connects an inside space of the fuel cell box to an outside space of the fuel cell box through the air intake duct. The gas outlet pipe has an opening cross-sectional area smaller than an opening cross-sectional area of the air intake duct.02-07-2013
20130052560MEMBRANE-ELECTRODE-ASSEMBLY AND FUEL CELL - A membrane-electrode-assembly contains two or more types of solid polymer electrolytes having different acid dissociation constants in an electrode catalyst layer, a solid polymer electrolyte of small acid strength covers the surface of a catalyst, and a solid polymer electrolyte of large acid strength is disposed to the periphery thereof, which makes the resistance to dissolving of the catalyst metal and the ion conductivity in the catalyst electrode layer compatible.02-28-2013
20130089807FUEL CELL WITH ENHANCED MASS TRANSFER CHARACTERISTICS - Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).04-11-2013
20130137009ELECTRODE CATALYST FOR FUEL CELL, METHOD OF PREPARING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL INCLUDING ELECTRODE CATALYST - An electrode catalyst for a fuel cell which including alloy particles including a Group 8 metal and a Group 9 metal.05-30-2013
20130059227END PLATE FOR FUEL CELL INCLUDING ANTI-BENDING PLATE - Disclosed is an end plate for a fuel cell including an anti-bending plate, in which an anti-bending plate is assembled with an insert having a sandwich structure and the insert is injection molded, thereby easily preventing the insert from being bent due to an injection molding pressure. In the disclosed end plate, a sandwich insert including two or more stacked plates each having a specific shape is manufactured, and an anti-bending plate is coupled to the sandwich insert and then is injection molded, thereby easily preventing the sandwich insert from being bent due to a resin pressure in the injection molding process, contrary to a conventional integral metal insert.03-07-2013
20110065017CATALYST MATERIALS AND METHODS FOR REFORMING HYDROCARBON FUELS - In one embodiment, a composition for use in reforming is provided comprising a catalyst material comprising molybdenum dioxide and/or MO03-17-2011
20120225369SOLID OXIDE FUEL CELL - Provided is a solid oxide fuel cell (SOFC), including: a fuel electrode for allowing a fuel gas to be reacted; an air electrode for allowing a gas containing oxygen to be reacted; an electrolyte film provided between the fuel electrode and the air electrode; and a reaction prevention film provided between the air electrode and the electrolyte film. The porosity of the reaction prevention film is less than 10%, particularly preferably “closed pore-ratio” is 50% or more. The diameter of closed pores in the reaction prevention film is 0.1 to 3 μm. The reaction prevention film includes closed pores each containing a component (e.g., Sr) for the air electrode. This can provide an SOFC in which a decrease in output due to an increase in electric resistance between an air electrode and a solid electrolyte film hardly occurs even after long-term use.09-06-2012
20130065156SEPARATOR FOR FUEL CELL - A separator for a fuel cell includes a flow field plate and a main body plate. The flow field plate has a porous plate structure and is bonded to an outer surface of a gas diffusion layer to form a reaction gas flow field. The main body plate is bonded to an outer surface of the flow field plate to seal the reaction gas flow field. The flow field plate has protrusions that protrude from both surfaces of the flow field plate in a repetitive pattern, forming an uneven structure. The flow filed plate has a land portion bonded to the gas diffusion layer at a sharp tip of a protrusion thereof protruding from one surface of the flow field plate and a bonding portion bonded to the main body plate at an opposite sharp tip of a protrusion thereof protruding from the other surface of the flow field plate.03-14-2013
20130164651SOLID OXIDE FUEL CELL AND CURRENT COLLECTING METHOD THEREOF - Disclosed herein is a solid oxide fuel cell including a cylindrical fuel cell and a current collector inserted with the cylindrical fuel cell and herein, the current collector is constituted by the semicircular mesh structure inserted with the cylindrical fuel cell and at least one metal connection plate connected with both ends of an opened part of the mesh structure and having an inner surface contacting a lower part of the mesh structure. According to the present invention, serial and parallel connections between cells of the fuel cell can be arbitrarily constructed with a metal connection plate and a current collector having a mesh structure as one unit module.06-27-2013
20130164652CARBON BASED ELECTROCATALYSTS FOR FUEL CELLS - Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit. Proton exchange membrane fuel cells and direct methanol fuel cells are developed by stacking the membrane electrode assemblies in a conventional manner.06-27-2013
20110281198FUEL CELL - According to one embodiment, a fuel cell includes a membrane electrode assembly including an anode, a cathode, and an electrolyte membrane interposed between the anode and the cathode, and an electricity-collecting member including an anode electricity collector having a first electrode member which is in contact with the anode, a cathode electricity collector having a second electrode member which is in contact with the cathode, a connection portion having a conductor which connects the anode electricity collector and the cathode electricity collector, and an insulative protection film covering at least the conductor of the connection portion.11-17-2011
20130022892MEMBRANE ELECTRODE ASSEMBLY, METHOD OF MANUFACTURE THEREOF, AND FUEL CELL - A cathode catalyst layer (01-24-2013
20110300468FUEL CELL DEVICE - A housing contains a fuel cell, a lithium ion secondary cell, a wiring board on which a control circuit and the like are mounted, a light-emitting diode and the like. The bottom surface of the housing is covered with a bottom plate. A plurality of air-intake holes are formed in the bottom plate to supply air to the fuel cell. Two USB ports and are provided in the periphery of the housing. A plurality of air-discharge holes are formed in the upper portion of the periphery of the housing. Gas in the housing is discharged to the outside through the air-discharge holes. Furthermore, light from an LED provided in the housing works as an illumination for the fuel cartridge, which can facilitate checking of the fluid level of the fuel cartridge, thus, checking of the amount of remaining fuel.12-08-2011
20110287335REINFORCED ELECTROLYTE MEMBRANE FOR FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL, AND POLYMER ELECTROLYTE FUEL CELL COMPRISING THE SAME - It is an object of the present invention to provide a fuel cell electrolyte membrane reinforced with a porous substrate which has excellent durability and in which the amount of cross leakage as a result of chemical deterioration of electrolyte membrane components due to the presence of peroxide and/or radicals is particularly reduced. The present invention relates to an electrolyte membrane for a fuel cell comprising a polyelectrolyte, which contains a porous substrate and a radical scavenger dispersed in the polyelectrolyte.11-24-2011
20110207017Fuel cell and fuel cell System as described and claimed in - In a fuel cell 08-25-2011
20120189943SYNTHESIS OF STABLE AND DURABLE CATALYST COMPOSITION FOR FUEL CELL - Provided is a catalyst composition comprising an intermetallic phase comprising Pt and a metal selected from either Nb or Ta, and a dioxide of the metal. Also provided is a low temperature method for making such compositions that results in the formation of intermetallic phase with small crystallite size and thus greater mass activity. In particular, a Pt07-26-2012
20120171599FUEL CELL, BATTERY AND ELECTRODE FOR FUEL CELL - Provided is a fuel cell for being implanted which enables a long time operation while reducing its size so as to be implanted in a living body. The fuel cell to be adopted includes: a container which contains a fuel such as glucose and an electrolyte solution therein; a pair of electrodes which are arranged in the container and have a noble metal catalyst fixed thereon; an aeration portion which is formed on at least one part of the outer surface of the container and has air permeability and waterproofness; and septa and for injecting the fuel from the outside into the container or discharging it from the container.07-05-2012
20110217619MEMBRANE ELECTRODE ASSEMBLY - There is provided a membrane electrode assembly comprising an electrolyte membrane, an anode electrode stacked on one surface of the electrolyte membrane, a cathode electrode stacked on the other surface of the electrolyte membrane, and a channel plate arranged on a side of the anode electrode, said side being the reverse side of the electrolyte membrane side. The membrane electrode assembly also comprises an insulating sealing layer which covers at least the lateral surfaces of the anode electrode, the electrolyte membrane and the channel plate, and contains a water-swellable particle.09-08-2011
20110171560Paraffin fuel cell - The present invention provides a fuel cell in which electricity is generated and a paraffin is converted to an olefin. Between the anode and cathode compartment of the fuel cell is a ceramic membrane of the formula BaCe07-14-2011
20120107719ELECTRODE CATALYST FOR MEMBRANE ELECTRODE OF FUEL CELL AND ITS METHOD OF PREPARATION AND FUEL CELL MEMBRANE ELECTRODE - This invention discloses an electrocatalyst for membrane electrode assembly, and its preparation method, as well as a fuel cell membrane electrode assembly. An electrocatalyst for fuel cell application, it is featured that the electrocatalyst is prepared by supporting precious metal (10-60 wt %) on a composite carrier which is prepared by depositing water-containing substance (0.3-10 wt %) on carbon material; Using the catalyst invented by this invention as anode catalyst, an fuel cell membrane electrode assembly with excellent non-humidification performance can be prepared by normal procedures. No need to construct a water retention layer, no need to add water retention material in proton exchange membrane, it avoids the possible problems caused by adding water attention material into proton exchange membrane or inserting a water retention layer. The approach suggested by this invention is a simple and effective approach to realize non-humidification membrane electrode assembly.05-03-2012
20120107718FUEL CELL SEALING STRUCTURE - A fuel cell sealing structure has a power generating body, and first and second separators arranged in both sides in a thickness direction of the power generating body. On a surface in one side in a thickness direction of the first separator, formed integrally first and second sealing protrusions respectively brought into close contact with an outer peripheral portion of the power generating body and the second separator in an outer peripheral side of the first sealing protrusion, and a short circuit prevention rib protruding in line with the first and second sealing protrusions by an electrically insulating rubber-like elastic material. On a surface in another side thereof, formed integrally a third sealing protrusion brought into close contact with a surface in an opposite side to the power generating body in the second separator, by the electrically insulating rubber-like elastic material.05-03-2012
20120270137FUEL CELL - A fuel cell is formed by stacking a plurality of unit cells. Each of the unit cells includes a membrane electrode assembly, and an anode side metal separator and a cathode side metal separator sandwiching the membrane electrode assembly therebetween. In a surface of the cathode side metal separator, metal portions are exposed in at least part of a second flat portion in an area surrounded by seal lines SL of the anode side metal separator. Cutouts are formed on a surface of the cathode side metal separator by cutting at least part of the second flat portion up to the metal portions thereby to expose the metal portions through the cutouts.10-25-2012
20120270136FUEL CELL - A fuel cell includes an electrolyte electrode assembly, an inner seal member, an outer seal member, a metal separator, and a cell voltage monitor terminal. The electrolyte electrode assembly includes an electrolyte, a pair of electrodes, and a resin frame member. The inner seal member extends around an electrode surface. The outer seal member extends around an outer periphery of the inner seal member. The inner seal member and the outer seal member are disposed on the resin frame member. The cell voltage monitor terminal is embedded in the resin frame member. The cell voltage monitor terminal includes an exposed portion provided between the inner seal member and the outer seal member. The exposed portion is in contact with the metal separator adjacent to the exposed portion.10-25-2012
20110200911FUEL CELL SEALING STRUCTURE - To effectively prevent deformation of an MEA and shift of GDLs, first GDLs, second GDLs, and separators are layered in order at both sides of the MEA in the thickness direction thereof, the gaskets which sandwich an end portion of the MEA outside the first GDLs and the second GDLs are made from rubber or a synthetic resin material having rubber-like elasticity and integrally provided on the separators respectively, the first GDLs have end portions which are formed so as to protrude beyond outer peripheries of the second GDLs, and the gaskets have support step portions which can position and support the end portions of the first GDLs at the same height as the support height by the second GDLs.08-18-2011
20120058413INTERPENETRATING NETWORK OF ANION-EXCHANGE POLYMERS, PRODUCTION METHOD THEREOF AND USE OF SAME - The invention relates to a method for producing an anion-exchange polymer material having an IPN or semi-IPN structure, said method consisting in: (A) preparing a homogeneous reaction solution containing, in a suitable organic solvent, (a) at least one organic polymer bearing reactive halogen groups, (b) at least one tertiary diamine, (c) at least one monomer comprising an ethylenic unsaturation polymerizable by free radical polymerization, (d) optionally at least one cross-linking agent including at least two ethylenic unsaturations polymerizable by free radical polymerization, and e) at least one free radical polymerization initiator; and (B) heating the prepared solution to a temperature and for a duration that are sufficient to allow both a nucleophilic substitution reaction between components (a) and (b) and a free radical copolymerization reaction of components (c) and optionally (d) initiated by component (e). The invention also relates to the resulting IPN or semi-IPN material and to the use thereof in electrochemical devices, in direct contact with an air electrode.03-08-2012
20120141910Multiple Membrane Layers in a Fuel Cell Membrane-Electrode Assembly - Embodiments are disclosed herein that relate to PEM fuel cells comprising membrane-electrode assemblies having plural membrane layers. For example, one disclosed embodiment provides a fuel cell including an anode, a cathode, and a multi-layer membrane disposed between the anode and the cathode, the multi-layer membrane comprising two or more polymer membranes layers. The fuel cell further comprises an electrolyte within the multi-layer membrane.06-07-2012
20120141908MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELLS WITH IMPROVED LIFETIME - The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having fibrous reinforcing elements which at least partly penetrate the polymer electrolyte membrane, wherein at least some of the fibrous reinforcing elements have functional groups which have a covalent chemical bond between the fibers and the polymer of the polymer electrolyte membrane.06-07-2012
20110269057REVERSAL TOLERANT MEMBRANE ELECTRODE ASSEMBLY FOR A FUEL CELL - Ruthenium or a Ruthenium compound is applied to an anode structure according to a predetermined pattern, with only part of the anode active area containing Ru. The parts of the MEA that do not contain Ru are not expected to suffer degradation from Ru cross-over, so that overall degradation of the cell will be diminished. Having less precious metals will also translate into less cost.11-03-2011
20110269056AIR BATTERY - An air battery which is capable of improving operating voltage. The air battery includes: an air electrode containing a carbonaceous matter; an anode; and an electrolyte layer containing an electrolyte which conducts ions between the air electrode and the anode, the DIG band ratio X of the carbonaceous matter being 0.058≦X≦0.18.11-03-2011
20110229793METAL OXIDE ELECTROCATALYST, USE THEREOF, AND PROCESS FOR PRODUCING METAL OXIDE ELECTROCATALYSTS - A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.09-22-2011
20110229794Composite Cathode for Use in Solid Oxide Fuel Cell Devices - Disclosed are composite electrodes for use in a solid oxide fuel cell devices. The electrodes are comprised of a sintered mixture of lanthanum strontium ferrite phase and yttria stabilized zirconia phase. The lanthanum strontium ferrite phase has the general formula (La09-22-2011
20120141909MEMBRANE ELECTRODE ASSEMBLIES AND HIGHLY DURABLE FUEL CELLS - The invention relates to a membrane electrode assembly which comprises two gas diffusion layers, each contacted with a catalyst layer, which are separated by a polymer-electrolyte membrane. Said polymer electrolyte membrane has an inner area which is contacted with a catalyst layer, and an outer area which is not provided on the surface of a gas diffusion layer. The inventive assembly is characterized in that the thickness of all components of the outer area is 50 to 100%, based on the thickness of all components of the inner area. The thickness of the outer area decreases over a period of 5 hours by not more than 5% at a temperature of 80° C. and a pressure of 5 N/mm06-07-2012
20130122396METHOD AND DEVICE USING PLASMON- RESONATING NANOPARTICLES - Disclosed herein are methods and articles that include a plasmon-resonating nanostructure that employ a photo-thermal mechanism to catalyze the reduction of an oxidant. As such, the plasmon-resonating nanostructure catalyzes a redox reaction at a temperature below a predetermined activation temperature. The method can be efficiently used to catalyze the reduction of an oxidant, for example in a catalytic reactor or in a fuel cell that includes a photon source.05-16-2013
20100183942ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST - This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.07-22-2010
20100151349Uniform Gas Distribution Through Channels of SOFC - A solid oxide fuel cell includes an anode layer, an electrolyte layer over the anode layer, and a cathode layer over the electrolyte layer. At least one of the anode layer and the cathode layer defines a gas manifold. The gas manifold includes a gas inlet, defined by an edge of the anode layer or cathode layer, a gas outlet, defined by the same or a different edge of the anode layer or cathode layer, and a plurality of gas flow channels in fluid communication with the gas inlet and gas outlet. The gas flow channels can have diameters that conduct flow of gas from the gas inlet at substantially equal flow rates among the gas flow channels.06-17-2010
20130216933PROTECTIVE EDGE SEAL FOR MEMBRANE ION EXCHANGE - A unitized electrode assembly (08-22-2013
20130216934ELECTRODE CATALYST FOR FUEL CELL, METHOD OF PREPARING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL INCLUDING ELECTRODE CATALYST - An electrode catalyst for a fuel cell, the electrode catalyst including a first catalyst that exhibits hydrophilicity, the first catalyst including pores, wherein at least 50 volume percent of the pores have an average diameter of about 100 nanometers or less; a method of preparing the electrode catalyst; and a membrane electrode assembly (MEA) and a fuel cell that include the electrolyte catalyst. The electrode catalyst for a fuel cell rapidly controls the migration of phosphoric acid at an initial stage of operation of an MEA, thereby securing a path for the migration of a conductor and a path for the diffusion of a fuel, and thus, an activation time of the MEA is shortened.08-22-2013
20120141911POROUS ELECTRODE SUBSTRATE, METHOD FOR PRODUCING THE SAME, PRECURSOR SHEET, MEMBRANE ELECTRODE ASSEMBLY, AND POLYMER ELECTROLYTE FUEL CELL - The provision of a porous electrode substrate that has large sheet strength, low production costs, high handling properties, high thickness precision and surface smoothness, and sufficient gas permeability and electrical conductivity. A porous electrode substrate including a three-dimensional entangled structure including short carbon fibers (A) dispersed in a three-dimensional structure, joined together via three-dimensional mesh-like carbon fibers (B). A method for producing a porous electrode substrate, including a step (1) of producing a precursor sheet including short carbon fibers (A), and short carbon fiber precursors (b) and/or fibrillar carbon fiber precursors (b′) dispersed in a two-dimensional plane; a step (2) of subjecting the precursor sheet to entanglement treatment; and a step (3) of subjecting this sheet to carbonization treatment at 1000° C. or higher. It is preferable to include a step (4) of subjecting the sheet to hot press forming at lower than 200° C. between step (2) and step 3), and to further include a step (5) of subjecting the sheet after hot press forming to oxidation treatment at 200° C. or higher and lower than 300° C. between step (4) and step (3).06-07-2012
20120196206METHOD FOR PRODUCING STRONGLY ACIDIC ZIRCONIUM PARTICLES, PROTON CONDUCTING MATERIAL, METHOD FOR PRODUCING PROTON CONDUCTING MEMBRANE, PROTON CONDUCTING MEMBRANE, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY, FUEL CELL - The disclosed methods enable zirconium sulfophenyl phosphonate, zirconium sulfate, or zirconia sulfate, which has high performance as a proton conducting material and high catalytic activity, to be produced at low temperature by reaction by adding sulfophenyl phosphonic acid or sulfuric acid to zirconium nanoparticles, the zirconium nanoparticles being a precursor of strongly acidic zirconium particles obtained by reacting zirconium alkoxide with zirconium butoxide as a chelating agent and nitric acid as a catalyst in isopropyl alcohol as a solvent.08-02-2012
20130130150ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD OF MANUFACTURING THE ELECTROLYTE MEMBRANE, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL INCLUDING THE ELECTROLYTE MEMBRANE, AND FUEL CELL INCLUDING THE MEMBRANE-ELECTRODE ASSEMBLY - An electrolyte membrane for fuel cells, the electrolyte membrane including a polymer film and a polymerization product of a composition comprising i) a plurality of inorganic particles surface-treated with a surface treatment agent including the polymerizable double bonds and ii) a polymerizable acid monomer, wherein the inorganic particles and the polymerizable acid monomer are impregnated within the polymer film.05-23-2013
20110039183INTERNAL REFORMING ANODE FOR SOLID OXIDE FUEL CELLS - A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode having a first portion and a second portion, such that the first portion is located between the electrolyte and the second portion. The anode electrode comprises a cermet comprising a nickel containing phase and a ceramic phase. The first portion of the anode electrode contains a lower porosity and a lower ratio of the nickel containing phase to the ceramic phase than the second portion of the anode electrode. The nickel containing phase in the second portion of the anode electrode comprises nickel and at least one other metal which has a lower electrocatalytic activity than nickel.02-17-2011
20110244361LIQUID FUEL AND FUEL CELL - A liquid fuel containing an ionic microgel is provided. A fuel cell having an anode for oxidizing the liquid fuel, a cathode for reducing an oxidizing agent, and an electrolyte film sandwiched between the anode and the cathode is provided.10-06-2011
20110081595ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE ELECTRODE CATALYST, AND POLYMER ELECTROLYTE FUEL CELL USING THE ELECTRODE CATALYST (AS AMENDED) - An electrode catalyst for a fuel cell, which has improved performance compared with conventional platinum alloy catalysts, a method for producing the electrode catalyst, and a polymer electrolyte fuel cell using the electrode catalyst are provided. The electrode catalyst for a fuel cell comprises a noble-metal-non-precious metal alloy that has a core-shell structure supported on a conductive carrier. The composition of the catalyst components of the shell is such that the amount of the noble metal is greater than or equal to the amount of the non-precious metal.04-07-2011
20110070522ION-CONDUCTIVE POLYMERIC COMPOSITE MEMBRANE, MEMBRANE-ELECTRODE ASSEMBLY, FUEL CELL, AND PROCESS FOR PRODUCING ION-CONDUCTIVE POLYMERIC COMPOSITE MEMBRANE - An ion-conductive polymer composite membrane is provided which has both high gas barrier properties and high protonic conductivity. The ion-conductive polymer composite membrane includes an ion-conductive polymer and ion-conductive materials. The ion-conductive materials each include i) an inorganic layered structure including a plurality of layers formed of an inorganic compound and ii) a sulfobetaine-type or hydroxysulfobetaine-type ampholytic surfactant. The ampholytic surfactant is present between the layers formed of an inorganic compound. The present invention further provides a membrane-electrode assembly and a fuel cell which use the ion-conductive polymer composite membrane, and a process for producing the ion-conductive polymer composite membrane.03-24-2011
20120034549SEPARATOR FOR FUEL CELL, AND FUEL CELL SYSTEM INCLUDING SAME - A fuel cell separator and a fuel cell system including the same. The separator includes a main body including a plurality of cell barriers and a flow channel disposed between the cell bathers, and a hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel of the main body. The hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel has a contact angle less than a contact angle of a side surface of at least one of the cell barriers by approximately 10° to approximately 60°.02-09-2012
20110250524FUEL CELL - A fuel cell includes an electrolyte electrode assembly and a first separator and a second separator sandwiching the electrolyte electrode assembly. The first and second separators have flat surfaces stacked on the electrolyte electrode assembly. The electrolyte electrode assembly includes an anode having a plurality of anode projections. The anode projections contact the first separator and form a fuel gas channel between the anode and the first separator. Further, the electrolyte electrode assembly includes a cathode having a plurality of cathode projections. The cathode projections contact the second separator and form an oxygen-containing gas channel between the cathode and the second separator.10-13-2011
20110151353FUEL CELL ELECTRODE WITH NANOSTRUCTURED CATALYST AND DISPERSED CATALYST SUBLAYER - Polymer electrolyte membrane (PEM) fuel cell membrane electrode assemblies (MEA's) are provided which have nanostructured thin film (NSTF) catalyst electrodes and additionally a sublayer of dispersed catalyst situated between the NSTF catalyst and the PEM of the MEA.06-23-2011
20120202135IMPROVED CATALYST COATED MEMBRANES HAVING COMPOSITE, THIN MEMBRANES AND THIN CATHODES FOR USE IN DIRECT METHANOL FUEL CELLS - The invention relates to DMFC catalyst coated membranes having improved water crossover and methanol crossover performance, excellent power output and durability, which utilize a thin composite reinforced polymer membrane layer and a thin cathode layer to achieve these performance benefits, and methods of making these catalyst coated membranes. The catalyst coated membrane for use in a direct methanol fuel cell have an anode layer, a thin cathode layer, a thin reinforced ionomer membrane, and do not rely on any additional barrier layers or complex water and/or methanol management layers or peripherals or to improve performance.08-09-2012
20100330451ELECTRODE CATALYST SUBSTRATE AND METHOD FOR PRODUCING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL - A method for producing an electrode catalyst substrate is provided herein, which comprises a carbon film forming step of forming a porous carbon film on a base, a hydrophilization step of hydrophilizing the porous carbon film, an immersion step of immersing the base in a solution prepared by dissolving catalytic metal ions in a polar solvent, and a reduction step of adding a reducing agent to the solution and thus reducing the catalytic metal ions. An electrode catalyst substrate obtained by the method and a polymer electrolyte fuel cell in which the electrode catalyst obtained by the method is used for anodes and/or cathodes are also provided herein. In the electrode catalyst of the present invention, fine catalyst particles are loaded in a uniform and highly dispersed manner.12-30-2010
20110262835POLYMER ELECTROLYTE MEMBRANE BASED ON POLYAZOLE - Proton-conducting polymer electrolyte membrane based on a polyazole salt of an inorganic or organic acid which is doped with an acid as electrolyte, wherein the polyazole salt of the organic or inorganic acid has a lower solubility in the acid used as electrolyte than the polyazole salt of the acid used as electrolyte, a process for producing the inventive proton-conducting polymer electrolyte membrane, a membrane-electrode assembly comprising at least two electrochemically active electrodes which are separated by a polymer electrolyte membrane, wherein the polymer electrolyte membrane is a proton-conducting polymer electrolyte membrane according to the invention, and a fuel cell comprising at least one membrane-electrode assembly according to the invention.10-27-2011
20110262834ELECTROLYTE MEBRANE FORMATION METHOD, MEMBRANE-ELECTERODE ASSEMBLY, AND MEMBRANE-ELECTRODE ASSEMBLY MANUFACTURING METHOD - A membrane-electrode assembly a solid electrolyte type-structure including a first electrode, an electrolyte membrane, and a second electrode and is formed on one single face of a porous metal support. The electrolyte membrane is obtained by firing a first electrolyte film formed on the first electrode and a second electrolyte film, which has a higher degree of fluidity than the degree of fluidity of the first electrolyte film.10-27-2011
20110189583CATALYST, PRODUCTION PROCESS THEREFOR AND USE THEREOF - The invention provides catalysts which are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability.08-04-2011
20110189582Mixed Ionic and Electronic Conductor Based on Sr2Fe2-x MoXO6 Perovskite - In accordance with the present disclosure, a method for fabricating a symmetrical solid oxide fuel cell is described. The method includes synthesizing a composition comprising perovskite and applying the composition on an electrolyte support to form both an anode and a cathode.08-04-2011
20110189581COMPOUND, CROSS-LINKED MATERIAL THEREOF, DOUBLE CROSS-LINKED POLYMER THEREOF, AND ELECTROLYTE MEMBRANE, ELECTRODE FOR FUEL CELL AND FUEL CELL INCLUDING SAME - A compound having an amino group at a terminal thereof and at least one amino group in a repeating unit, a cross-linked material of the compound, a double cross-linked polymer thereof, an electrolyte membrane and an electrode for a fuel cell, which include the cross-linked material of the compound or the double cross-linked polymer thereof, and a fuel cell including at least one of the electrolyte membrane and the electrode.08-04-2011
20120040270FUEL CELL ELECTRODE CATALYST WITH REDUCED NOBLE METAL AMOUNT AND SOLID POLYMER FUEL CELL COMPRISING THE SAME - An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30 mL/g·Pt.02-16-2012
20120040269ION/PROTON-CONDUCTING APPARATUS AND METHOD - A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600° C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.02-16-2012
20120301810Fuel Battery - A membrane electrode assembly (11-29-2012
20110318669Fluoropolymer Electrolyte Membrane - There is provided a fluoropolymer electrolyte membrane having excellent performance under conditions of high temperature and low humidity and also having excellent durability. A fluoropolymer electrolyte membrane comprising a fluoropolymer electrolyte having an ion exchange capacity of 1.3 to 3.0 meq/g in pores of a microporous film.12-29-2011
20120308913CONTROLLING FUEL CELL - A fuel cell is configured to comprise a power generation layer including an electrolyte membrane, an anode and a cathode, separators and a gas flow path layer provided between the power generation layer and the separator. The gas flow path layer is structured by a plurality of corrugated elements. Each corrugated element has a corrugated cross section where first convexes that are convex toward the separator and second convexes that are convex toward the power generation layer are alternately arranged. The plurality of corrugated elements are arranged, such that a top surface of the first convex in one corrugated element and a bottom surface of the second convex in an adjacent corrugated element cooperatively form an integral surface, and a plurality of through holes are formed between the respective adjacent corrugated elements. The plurality of corrugated elements include a corrugated element having positions of the first convexes and the second convexes shifted in a positive side of the first direction from those of an adjacent corrugated element, and a corrugated element having positions of the first convexes and the second convexes shifted in a negative side of the first direction from those of an adjacent corrugated element. The volume of a first reaction gas flow path, which is formed along the positions of the second convexes on a separator-side of the gas flow path layer, is less than the volume of a second reaction gas flow path, which is formed along the positions of the first convexes on a power generation layer-side of the gas flow path layer.12-06-2012
20110091789MATERIAL FOR AN ELECTROCHEMICAL DEVICE - The present invention relates to a material for an electrochemical device, especially a fuel cell, an electrolyzer or a storage battery, comprising a matrix and activated boron nitride contained in the matrix.04-21-2011
20120003562FUEL CELL - A fuel cell 01-05-2012
20120003563POROUS DENDRITIC PLATINUM TUBES AS FUEL CELL ELECTROCATALYSTS - Platinum particles have been formed as porous, hollow tubular dendrites by using silver dendrite particles in a galvanic replacement reaction conducted in an aqueous solution of a platinum compound. The dendritic platinum particles have been found useful as catalysts and particularly useful as a hydrogen-oxidation electrocatalyst and/or an oxygen-reduction catalyst in a polymer electrolyte membrane fuel cell.01-05-2012
20110097642Polymer electrolyte membrane having high durability and method for producing the same - A polymer electrolyte membrane comprising: (a) a fluorinated polymer electrolyte having an ion exchange group, and (b) a basic polymer, wherein, optionally, at least a part of component (a) and at least a part of component (b) are chemically bonded to each other. A method for producing the above-mentioned polymer electrolyte membrane. A membrane/electrode assembly comprising the above-mentioned polymer electrolyte membrane which is securely sandwiched between an anode and a cathode. A polymer electrolyte fuel cell comprising the membrane/electrode assembly.04-28-2011
20120208103CARBON NANOSPHERE WITH AT LEAST ONE OPENING, METHOD FOR PREPARING THE SAME, CARBON NANOSPHERE-IMPREGNATED CATALYST USING THE CARBON NANOSPHERE, AND FUEL CELL USING THE CATALYST - A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.08-16-2012
20120231366POROUS CERAMIC MOLTEN METAL COMPOSITE SOLID OXIDE FUEL CELL ANODE - A fuel cell anode comprises a porous ceramic molten metal composite of a metal or metal alloy, for example, tin or a tin alloy, infused in a ceramic where the metal is liquid at the temperatures of an operational solid oxide fuel cell, exhibiting high oxygen ion mobility. The anode can be employed in a SOFC with a thin electrolyte that can be a ceramic of the same or similar composition to that infused with the liquid metal of the porous ceramic molten metal composite anode. The thicknesses of the electrolyte can be reduced to a minimum that allows greater efficiencies of the SOFC thereby constructed.09-13-2012
20120015282SOLID OXIDE FUEL CELL - A solid oxide fuel cell is provided. The solid oxide fuel cell has a structure in which a separate thermal expansion member is provided in a current collecting body formed on the inner circumferential surface of a first electrode so that the uniform contact between a support body of the first electrode and the current collecting body can be maintained even though the internal diameter of the support body of the first electrode is changed. Accordingly, the current collection performance of the current collecting body is enhanced through the thermal expansion member between the first electrode and the current collecting body, thereby improving the entire performance of the fuel cell.01-19-2012
20120015281FUEL CELL - A fuel cell includes an electrolyte layer; a fuel-side electrode to which fuel is supplied; and an oxygen-side electrode to which oxygen is supplied, the fuel-side electrode and the oxygen-side electrode being disposed to face each other with the electrolyte layer sandwiched therebetween. The electrolyte layer is an anion exchange membrane. The fuel-side electrode contains cobalt and nickel. The fuel includes a compound containing at least hydrogen and nitrogen. The proportion of the nickel content relative to total moles of cobalt and nickel in the fuel-side electrode is 70 mol % or less.01-19-2012
20120028164LITHIUM AIR BATTERY - A lithium air battery including an aqueous electrolyte. In the lithium air battery, a lithium halide is included in the aqueous electrolyte in order to prevent lithium hydroxide and a solid electrolyte from reacting with each other so as to protect the negative electrode, thereby improving electrical characteristics of the lithium air battery.02-02-2012
20120028163COMPOSITIONS OF NANOMETAL PARTICLES CONTAINING A METAL OR ALLOY AND PLATINUM PARTICLES - A composition comprising an admixture of at least platinum particles and metal nanoparticles of metal that, when in admixture with the platinum particles, beneficially alters the characteristics of the platinum, including metals selected from one or more of the metals in groups 3-16, lanthanides, combinations thereof, and/or alloys thereof. The composition could be used to form an ink that further comprises an ionically conductive material, such as a polymer, capable of ionic networking throughout the ink composition so as to create a substantially structurally coherent mass without significantly impacting the reactivity of a substantial number of the nanoparticles. In one application, the ink may be used to form a catalyst whereby the ink is applied to an electrically conductive backing material, such as carbon paper or fibers. In another application, the ink may be used to form an electrode whereby the ink may be applied to an electrically conductive material, and wherein the ink comprises an admixture of platinum particles and metal nanoparticles.02-02-2012
20120156588MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELLS WITH IMPROVED LIFETIME - The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes which are separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having at least one reinforcement, wherein the reinforcement comprises at least one film which has holes through which the polymer electrolyte membrane is in contact with both electrochemically active electrodes.06-21-2012
20120064433MATERIAL FOR SOLID OXIDE FUEL CELL, CATHODE INCLUDING THE MATERIAL, AND SOLID OXIDE FUEL CELL INCLUDING THE MATERIAL - A material for a solid oxide fuel cell, the material including a lanthanum metal oxide having a perovskite-type crystal structure; and a ceria metal oxide, wherein the ceria metal oxide includes at least one material selected from the group consisting of metal oxides represented by Formula 1 below and metal oxides represented by Formula 2:03-15-2012
20120070764NON-PRECIOUS METAL CATALYSTS - Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700° C. to about 1100° C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.03-22-2012
20120164555COLLECTOR MEMBER, POWER GENERATOR, AND METHOD OF MANUFACTURING COLLECTOR MEMBER FOR POWER GENERATOR - According to an aspect of the present invention, there is provided a collector member 06-28-2012
20120164554MEMBRANE ELECTRODE ASSEMBLY, FUEL CELL WITH THE SAME, AND FUEL CELL GENERATING SYSTEM - A membrane electrode assembly for a fuel cell comprises a solid polymer electrolyte membrane, an anode being formed on one side of the solid polymer electrolyte membrane and containing a catalyst and a solid polymer electrolyte, a cathode being formed on another side of the solid polymer electrolyte membrane and containing a catalyst and a solid polymer electrolyte, an anode gas diffusion layer formed on one side of the anode, and a cathode gas diffusion layer formed on one side of the cathode. In addition, a formic acid oxidation electrode containing palladium and a solid polymer electrolyte is formed between the anode gas diffusion layer and the anode.06-28-2012
20120122015MICRO FUEL CELL SYSTEM AND CORRESPONDING MANUFACTURING METHOD - A micro fuel cell system comprises at least an anode region and a cathode region being realized in a substrate as well as at least an active area for chemical reactions and an ionic exchange membrane for separating the active area. The anode and cathode regions, the active area and the ionic exchange membrane are realized on a same planar surface being made by the substrate in order to form a single multifunctional bipolar plate.05-17-2012
20120122014NANOCRYSTALLINE CERIUM OXIDE MATERIALS FOR SOLID FUEL CELL SYSTEMS - Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.05-17-2012
20120214086METHOD OF FABRICATING A POLYMER ELECTROLYTE MEMBRANE (PEM) - A proton (H08-23-2012
20120219878COPOLYMERS COMPRISING PHOSPHONATE AND/OR PHOSPHONIC ACID GROUPS, USABLE FOR FORMING FUEL CELL MEMBRANES - Copolymers comprising at least one recurrent unit of the following formula (I) are provided:08-30-2012
20120219877NAPHTHOXAZINE BENZOXAZINE-BASED MONOMER, POLYMER THEREOF, ELECTRODE FOR FUEL CELL INCLUDING THE POLYMER, ELECTROLYTE MEMBRANE FOR FUEL CELL INCLUDING THE POLYMER, AND FUEL CELL USING THE ELECTRODE - A naphthoxazine benzoxazine-based monomer is represented by Formula 1 below:08-30-2012
20120219876NAPHTHOXAZINE BENZOXAZINE-BASED MONOMER, POLYMER THEREOF, ELECTRODE FOR FUEL CELL INCLUDING THE POLYMER, ELECTROLYTE MEMBRANE FOR FUEL CELL INCLUDING THE POLYMER, AND FUEL CELL USING THE ELECTRODE - A naphthoxazine benzoxazine-based monomer is represented by Formula 1 below:08-30-2012
20120214084CATALYST LAYER - A catalyst layer includes (i) an electrocatalyst, and (ii) a water electrolysis catalyst, iridium or iridium oxide and one or more metals M or an oxide thereof, wherein M is selected from transition metals and/or Sn, with the exception of ruthenium. Such a catalyst layer has utility in fuel cells that experience high electrochemical potentials.08-23-2012
20110183233Phase Stable Doped Zirconia Electrolyte Compositions with Low Degradation - A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode. The electrolyte and/or electrode composition includes zirconia stabilized with (i) scandia, (ii) ceria, and (iii) at least one of yttria and ytterbia. The composition does not experience a degradation of ionic conductivity of greater than 15% after 4000 hrs at a temperature of 850° C.07-28-2011
20120214085FUEL CELL OF SOLID OXIDE FUEL CELL - An SOFC unit cell 08-23-2012
20120214083PLATINUM AND PALLADIUM ALLOYS SUITABLE AS FUEL CELL ELECTRODES - The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive support material.08-23-2012
20120135331CATHODE - The present invention relates to a cathode composed of a perovskite-type or fluorite-type mixed metal oxide containing molybdenum, to a composite comprising the mixed metal oxide and to a solid oxide fuel cell comprising the cathode. The cathode mixed metal oxide has an empirical formula unit: EaTbMocOn wherein: T is one or more transition metal elements other than Mo; E is one or more metal elements selected from the group consisting of lanthanide metal elements, alkali metal elements, alkaline earth metal elements, Pb and Bi; and a, b, c, and n are non-zero numerals which may be the same or different for each element.05-31-2012
20120171596SOLID OXIDE ELECTROLYTIC DEVICE - A monolithic electrolyte assembly comprising improved as well as new associated structures and processes operative in the general field of solid oxide electrolytic devices is disclosed. The invention provides a reliable and durable interconnect for both structural and electrical components of such devices. In the present invention, thin-film-based solid oxide fuel cells and solid oxide oxygen/hydrogen generators may be fabricated using primarily solid metal alloys as underlying components of thin film and thick film structures built thereon.07-05-2012
20120171597DIRECT METHANOL FUEL CELL AND ANODE USED THEREIN - According to one embodiment, an anode for a direct methanol fuel cell includes an anode catalyst layer containing a noble metal catalyst and a proton-conductive polyelectrolyte. A log differential pore volume distribution curve measured by a mercury intrusion porosimetry of the anode catalyst layer has a peak within a pore diameter range of 0.06 to 0.3 μm and satisfies the following relationship:07-05-2012
20120251919POLYARYLENE-BASED COPOLYMER AND USES THEREOF - The present invention provides a polyarylene-based copolymer including a plurality of segments having an ion exchange group and a plurality of segments having substantially no ion exchange group, wherein at least one of the segments having an ion exchange group includes a polyarylene structure, the polystyrene-equivalent weight-average molecular weight of the segments having an ion exchange group is from 10,000 to 250,000, and the ion exchange capacity of the polyarylene-based copolymer is 3.0 meq/g or more.10-04-2012
20120178017ELECTROLYTE EMULSION AND PROCESS FOR PRODUCING SAME - The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO07-12-2012
20120178015METHOD OF PROCESSING A CERAMIC ELECTROLYTE, AND RELATED ARTICLES - A method of processing a ceramic electrolyte suitable for use in a fuel cell is provided. The method comprises situating a ceramic electrolyte layer over an anode layer; and subjecting the ceramic electrolyte layer to a stress prior to operation of the fuel cell, by: exposing the top surface of the electrolyte layer to an oxidizing atmosphere and the bottom surface of the electrolyte layer to a reducing atmosphere; and heating the electrolyte layer. The stress causes a substantial increase in the number of microcracks, or in the average size of the microcracks, or in both the number of the microcracks and their average size. A solid oxide fuel cell comprising a ceramic electrolyte layer processed by the disclosed method is also provided.07-12-2012
20120225370MINIMIZING ELECTRODE CONTAMINATION IN AN ELECTROCHEMICAL CELL - An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.09-06-2012
20120082919POLYMER ELECTROLYTE FUEL CELL - There is used a polymer electrolyte membrane containing a polymer segment (A) having an ion-conducting component, and a polymer segment (B) having a composition ratio of the ion-conducting component lower than that in the polymer segment (A), wherein the polymer segment (A) and the polymer segment (B) form a micro phase-separated structure, and inorganic particles 04-05-2012
20120264035FUEL CELL - A fuel cell (10-18-2012
20120264034FUEL CELL ELECTRODE AND PRODUCTION PROCESS THEREOF - A fuel cell electrode that contains a support layer and a catalyst layer, wherein the catalyst layer does not contain a noble metal catalyst and is formed of carbon nanotubes, wherein the carbon nanotubes have pores in sidewalls thereof, and have a pore size distribution of 0.1 nm to 30 nm and a BET specific surface area of 100 to 4,000 m10-18-2012
20110123899POLYMER ELECTROLYTE FUEL CELL - For a combination of a solid polymer electrolyte membrane 05-26-2011
20110123898FUEL CELL - A fuel cell includes a membrane electrode assembly and separators which are stacked. A fuel gas channel allows a fuel gas to flow along a surface of one of a pair of electrodes. An oxidant gas channel allows an oxidant gas to flow along a surface of another of a pair of electrodes. A channel width of the oxidant gas channel in a central portion of the oxidant gas channel in a channel width direction is larger than a channel width of the oxidant gas channel in both end portions of the oxidant gas channel in the channel width direction. A channel width of the fuel gas channel in a central portion of the fuel gas channel in a channel width direction is smaller than a channel width of the fuel gas channel in both end portions of the fuel gas channel in the channel width direction.05-26-2011
20110123897MEMBRANE-ELECTRODE ASSEMBLY AND FUEL CELL USING THE SAME - In a membrane-electrode assembly comprising an anode, a cathode and a polymer electrolyte membrane and having a constitution in which the polymer electrolyte membrane is interleaved between the anode and the cathode, an agglomerate structure of carbon support formed with a plurality of carbon primary particles supporting catalyst particles is contained in the anode and the cathode, and particulate media having polymer electrolyte on the surface thereof are contained between adjacent agglomerate structures of carbon supports.05-26-2011
20110123896FUEL CELL - The present invention provides a fuel cell having a blocked passage and showing capability of inhibiting desiccation and flooding of the membrane electrode assembly. The fuel cell comprises: a laminated body comprising at least a membrane electrode assembly which includes: an electrolyte membrane, an anode catalyst layer arranged on one surface of the electrolyte membrane, and a cathode catalyst layer arranged on the other surface of the electrolyte membrane; and a pair of separators sandwiching the laminated body, wherein, between the pair of separators, along the laminated body side surface of at least one separator, an inlet passage is provided for getting through a reaction gas supplied to the laminated body and an outlet passage is provided for getting through a reaction gas having passed through the laminated body; the inlet passage is blocked at a downstream end of the reaction gas being supplied to the laminated body and the outlet passage is blocked at an upstream end of the reaction gas having passed through the laminated body; the inlet passage and the outlet passage are arranged separately from each other along the separator; and the depth of the upstream region of the inlet passage is larger than that of the downstream region of the inlet passage.05-26-2011
20120328971SOLID ELECTROLYTE MEMBRANE, FUEL BATTERY CELL, AND FUEL BATTERY - Provided are a solid electrolyte membrane useful in achieving strong electromotive force in a fuel battery, and a fuel battery cell produced with this membrane. The solid electrolyte membrane includes a substrate made of a sheet material and having a plurality of openings penetrating the substrate in its thickness direction, and a solid electrolyte layer provided on at least one of the faces of the substrate. The fuel battery cell includes a solid electrolyte membrane having the solid electrolyte layer on one of the faces of the substrate, and a catalyst layer containing a precious metal and provided on the other of the faces of the substrate, with the solid electrolyte layer and the catalyst layer being in contact with each other in the openings of the substrate.12-27-2012
20120328970MATERIAL FOR SOLID OXIDE FUEL CELL, CATHODE INCLUDING THE MATERIAL AND SOLID OXIDE FUEL CELL INCLUDING THE MATERIAL - A material for a solid oxide fuel cell, the material including: a first compound having a perovskite crystal structure, a first ionic conductivity, a first electronic conductivity, and a first thermal expansion coefficient, wherein the first compound is represented by Formula 1 below; and a second compound having a perovskite crystal structure, a second ionic conductivity, a second electronic conductivity, and a second thermal expansion coefficient,12-27-2012
20120321990ELECTROLYTE MEMBRANE FOR SOLID OXIDE FUEL CELLS, METHOD FOR MANUFACTURING THE SAME, AND FUEL CELL USING THE SAME - Provided is an electrolyte membrane for solid oxide fuel cells. The electrolyte membrane for solid oxide fuel cells includes two or more deposited layers, wherein each of the deposited layers independently has an average crystal grain size of 5-100 nm and the deposited layers are different from each other in the average crystal grain.12-20-2012
20120321991Alkaline Membrane Fuel Cells and Apparatus and Methods for Supplying Water Thereto - A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.12-20-2012
20120270138MEMBRANE-ELECTRODE ASSEMBLY AND FUEL BATTERY USING THE SAME - A membrane-electrode assembly having catalyst layers containing an electrode catalyst disposed on the both sides of an electrolyte membrane, wherein at least one of the above-described catalyst layers contains a non-precious metal electrode catalyst and an ionomer having an ion exchange capacity of 1.2 meq/g or more.10-25-2012
20120270135CATALYST, METHOD FOR PRODUCING THE SAME, AND USE THEREOF - Provided is a catalyst having high durability with resistance to corrosion in an acidic electrolyte or at high potential and high oxygen reduction activity. The catalyst is a metal oxycarbonitride containing at least one group III transition metal compound and at least one group IV or V transition metal oxide having a crystallite size of 1 to 100 nm. The group III transition metal compound may be a compound of at least one selected from the group consisting of scandium, yttrium, lanthanum, cerium, samarium, dysprosium, and holmium. The group IV or V transition metal oxide may be an oxide of at least one selected from the group consisting of titanium, zirconium, tantalum, and niobium.10-25-2012
20110236787FUEL CELL - The present invention provides a fuel cell having obstructed passages, which is capable of inhibiting the occurrence of flooding. The fuel cell comprises: a stacked body comprising at least a membrane electrode assembly; and a pair of separators sandwiching the stacked body. A face of the stacked body side of the separator is provided with inlet passage(s) through which reaction gas to be supplied to the stacked body passes and outlet passage(s) through which reaction gas having passed the stacked body passes. The inlet passage is obstructed at a downstream end of the reaction gas to be supplied to the stacked body and the outlet passage is obstructed at an upstream end of the reaction gas having passed through the stacked body. The inlet passage and the outlet passage is arranged separately from each other, and the inlet passage is arranged on both ends of the face of the stacked body side of the separator in the passage width direction of the inlet passage and the outlet passage.09-29-2011
20110236786FUEL CELL - There is provided a fuel cell having a seal structure that has high gas sealability and, further, is capable of supplying gas to a membrane electrode assembly without being path-cut even if there are conventional processing errors (variations) in the gasket. With respect to a gasket 09-29-2011
20100143820ANODE CATALYST AND METHODS OF MAKING AND USING THE SAME - The present disclosure relates to an ion conductive material useful as an anode catalyst comprising LaCrO06-10-2010
20120100457CATALYST SUPPORT MATERIAL COMPRISING POLYAZOLE, ELECTROCHEMICAL CATALYST, AND THE PREPARATION OF A GAS DIFFUSION ELECTRODE AND A MEMBRANE-ELECTRODE ASSEMBLY THEREFROM - A process for preparing a catalyst material comprising an electrically conducting support material, a proton-conducting, polyazole-based polymer and a catalytically active material. A catalyst material prepared by the process of the invention. A catalyst ink comprising a catalyst material of the invention and a solvent. A catalyst-coated membrane (CCM) comprising a polymer electrolyte membrane and also catalytically active layers comprising a catalyst material of the present invention. A gas diffusion electrode (GDE) comprising a gas diffusion layer and a catalytically active layer comprising a catalyst material of the invention. A membrane-electrode assembly (MEA) comprising a polymer electrolyte membrane, catalytically active layers comprising a catalyst material of the invention, and gas diffusion layers. And a fuel cell comprising a membrane-electrode assembly of the present invention.04-26-2012
20130011764Cathode Catalyst Layer, Manufacturing Method Thereof and Membrane Electrode Assembly - According to the present invention, it is possible to improve the use ratio of active sites in a catalyst having oxygen reduction activity so as to provide a cathode catalyst layer and MEA for a fuel cell with high a level of power generation performance. The present invention includes a process of introducing a functional group into a surface of the catalyst 01-10-2013
20130011765FUEL CELL - In a fuel cell including an electrolyte layer allowing an anion component to migrate, and a fuel-side electrode and an oxygen-side electrode arranged to face each other while sandwiching the electrolyte layer, the oxygen-side electrode contains a first catalyst containing a first transition metal and polypyrrole, and a second catalyst containing a second transition metal and a porphyrin ring-containing compound so that the mixing ratio of the first catalyst relative to 100 parts by mass of the total amount of the first catalyst and the second catalyst is more than 10 parts by mass, and below 90 parts by mass.01-10-2013
20130171539TUBULAR SOLID OXIDE FUEL CELL MODULE AND METHOD OF MANUFACTURING THE SAME - Disclosed herein is a tubular solid oxide fuel cell module including an anode layer, an electrolyte layer, a cathode layer divided into two parts or more, a conductive mesh structure and a conductive wire, and a method of manufacturing the same. The tubular solid oxide fuel cell is advantageous in that the cathode is divided into two parts or more, so that the moving distance of electric charges is decreased, with the result that resistance loss can be minimized, thereby increasing the efficiency of collecting electric charges.07-04-2013
20130171540BIMETAL CURRENT COLLECTING MEMBER AND FUEL CELL APPARATUS WITH THE SAME - Disclosed herein is a fuel cell apparatus including: a first electrode support having a tubular shape; an interconnector connected to one side of the first electrode support; an electrolyte membrane surrounding the interconnector and covering an outer surface of the first electrode support; a second electrode formed at the outer surface of the electrolyte membrane while being spaced apart from the interconnector; a first current collecting member surrounding an outer surface of the second electrode; and a second current collecting member engaged with an outer surface of the first current collecting member and having a bimetal structure.07-04-2013
20130171541POLYIMIDE, POLYIMIDE-BASED POLYMER ELECTROLYTE MEMBRANE, MEMBRANE-ELECTRODE ASSEMBLY, AND POLYMER ELECTROLYTE FUEL CELL - The present invention provides a novel polyimide containing a diamine component having a fluorene skeleton and a novel polyimide-based polymer electrolyte membrane containing this polyimide as a main component and having properties based on this polyimide (for example, high resistance to methanol crossover). The polyimide of the present invention contains a structural unit (P) represented by the following formula (1). The polyimide-based polymer electrolyte membrane of the present invention contains the polyimide of the present invention as a main component.07-04-2013
20130143145GEL FORMED BATTERY - A gel battery may be fabricated from a gel anode material and a gel cathode material. The battery may further comprise a gel electrolyte material. The gel materials may be in the form of thin films. A gel battery may be formed by contacting at least a portion of a gel anode with at least a portion of a gel electrolyte, and at least a portion of a gel cathode may also be in contact with at least a portion of the gel electrolyte. A battery formed by gel films may also be coated with a material. The gel battery, its anode, cathode, and electrolyte materials may all be non-toxic for an application to an animal.06-06-2013
20130143144METASTABLE CERAMIC FUEL CELL AND METHOD OF MAKING SAME - A solid oxide fuel cell has anode, cathode and electrolyte layers each formed essentially of a multi-oxide ceramic material and having a far-from-equilibrium, metastable structure selected from the group consisting of nanocrystalline, nanocomposite and amorphous. The electrolyte layer has a matrix of the ceramic material, and is impervious and serves as a fast oxygen ion conductor. The electrolyte layer has a matrix of the ceramic material and a dopant dispersed therein in an amount substantially greater than its equilibrium solubility in the ceramic matrix. The anode layer includes a continuous surface area metallic phase in which electron conduction is provided by the metallic phase and the multi-oxide ceramic matrix provides ionic conduction.06-06-2013
20120251918POLYMER FUEL CELL STACK AND POLYMER FUEL CELL SEPARATOR PAIR - A fuel cell separator pair has first and second separators having front and back surfaces, a corrugated plate portion shaped in a wave form at the central portion, and a flat plate portion formed in the peripheral portion and surrounding the corrugated plate portion, wherein the corrugated plate portion of the front surface constitutes a reaction gas channel and the corrugated plate portion of the back surface constitutes a coolant channel. The back surfaces of the first and second separators are facing each other. The flat plate portions of the first and second separators are arranged on top of each other so as to be in contact with each other. The flat plate portion of the second separator protrudes toward the outside beyond the flat plate portion of the first separator. The fuel cell separator pair has a seal member (A) disposed on the flat plate portion of the front surface of the first separator, a seal member (B) disposed on the flat plate portion of the front surface of the second separator, and a seal member (C) disposed on the region protruding beyond the flat plate portion of the first separator in the flat plate portion of the back surface of the second separator.10-04-2012
20120251917SOLID OXIDE FUEL CELL COMPRISING NANOSTRUCTURE COMPOSITE CATHODE AND FABRICATION METHOD THEREOF - Disclosed are a solid oxide fuel cell including: a) an anode support; b) a solid electrolyte layer formed on the anode support; and c) a nanostructure composite cathode layer formed on the solid electrolyte layer, wherein the nanostructure composite cathode layer includes an electrode material and an electrolyte material mixed in molecular scale, which do not react with each other or dissolve each other to form a single material, and a method for fabricating the same. The fuel cell is operable at low temperature and has high performance and superior stability.10-04-2012
20130095408ANODE MATERIAL FOR SOLID OXIDE FUEL CELL, AND ANODE AND SOLID OXIDE FUEL CELL INCLUDING ANODE MATERIAL - A composite anode material for a solid oxide fuel cell (SOFC), an anode for a SOFC including a Ni-containing alloy including Ni and a transition metal other than Ni; and a perovskite metal oxide having a perovskite structure.04-18-2013
20130101920CATALYST, ELECTRODE, FUEL CELL, GAS DETOXIFICATION APPARATUS, AND METHODS FOR PRODUCING CATALYST AND ELECTRODE - Provided are a catalyst, an electrode, a fuel cell, a gas detoxification apparatus, and the like that can promote a general electrochemical reaction causing gas decomposition or the like. A catalyst according to the present invention is used for promoting an electrochemical reaction and is chain particles 04-25-2013
20130101919MEMBRANE ELECTRODE ASSEMBLY, FUEL CELL, GAS DETOXIFICATION APPARATUS, AND METHOD FOR PRODUCING MEMBRANE ELECTRODE ASSEMBLY - Provided are a MEA, a fuel cell, and a gas detoxification apparatus that allow at high efficiency a general electrochemical reaction causing gas decomposition or the like and are excellent in cost efficiency; and a method for producing a MEA. In this MEA 04-25-2013
20130101918REINFORCED ELECTROLYTE MEMBRANE - An electrolyte membrane having a proton conducting polymer reinforced with a nanofiber mat made from a nanofiber comprising a fiber material selected from polymers and polymer blends; wherein the fiber material has a fiber material proton conductivity; wherein the proton conducting polymer has a proton conducting polymer conductivity; and wherein the fiber material proton conductivity is less than the proton conducting polymer conductivity, and methods of making. In some embodiments, the nanofiber further comprises a proton conducting polymer.04-25-2013
20130115542METHOD FOR PRODUCING FUEL CELL CATALYST, FUEL CELL CATALYST, AND USES THEREOF - A method for producing a fuel cell catalyst containing a metal oxycarbonitride, the method including: a step of producing a metal oxycarbonitride by heating a metal carbonitride in an inert gas containing oxygen gas; and a step of bringing the metal oxycarbonitride into contact with an acidic solution.05-09-2013
20110223518PROTON-CONDUCTIVE COMPOSITE ELECTROLYTE, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND ELECTROCHEMICAL DEVICE USING MEMBRANE-ELECTRODE ASSEMBLY - Provided are a proton-conductive composite electrolyte, a membrane-electrode assembly, and a fuel cell in which an improvement of the proton conductivity, and suppression of crossover and insolubilization are satisfied at the same time. The proton-conductive composite electrolyte includes an electrolyte having a proton-dissociative group (—SO09-15-2011
20120276470SOLUTION BASED ENHANCEMENTS OF FUEL CELL COMPONENTS AND OTHER ELECTROCHEMICAL SYSTEMS AND DEVICES - This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |δ solvent-δ solute|<1, where δ solvent is the Hildebrand solubility parameter of the at least one solvent and where δ solute is the Hildebrand solubility parameter of the polymer.11-01-2012
20110275006SOLID OXIDE FUEL CELL HAVING METAL SUPPORT WITH A COMPLIANT POROUS NICKEL LAYER - A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.11-10-2011
20110275005Membrane Electrode Assemblies With Interfacial Layer - The present invention relates to interfacial layers for use m membrane electrode assemblies that comprise nanowire-supported catalysts, and fuel cells comprising such membrane electrode assemblies. The present invention also relates to methods of preparing membrane electrode assemblies and fuel cells comprising interfacial layers and nanowire-supported catalysts.11-10-2011
20100304265SOLID OXIDE FUEL CELL - A solid oxide fuel cell of long lifetime in which good electric conductivity can be maintained between power generation cells even after long time use. A protective plate (12-02-2010
20100316930FUEL CELL HAVING A STABILIZED CATHODE CATALYST - A fuel cell (12-16-2010
20120282539FUEL CELL - Disclosed is a fuel cell in which an electrolyte membrane-electrode structure is held between the first separator and a second separator. The electrolyte membrane-electrode structure comprises a solid polymer electrolyte membrane, a cathode-side electrode and an anode-side electrode. An end portion of the solid polymer electrolyte membrane projects outwardly beyond end portions of gas diffusion layers, and the both surfaces of the end portion of the solid polymer electrolyte membrane are held between the first protective film and a second protective film. The thickness of the first protective film is set to be thinner than the thickness of the second protective film.11-08-2012
20130183606FUEL CELL - The invention provides a fuel cell (A07-18-2013
20130122395COMPOSITION, COMPOSITE PREPARED FROM THE COMPOSITION, ELECTRODE USING THE COMPOSITION OR THE COMPOSITE, COMPOSITE MEMBRANE INCLUDING THE COMPOSITE, AND FUEL CELL INCLUDING THE COMPOSITE MEMBRANE - A composition including a cross-linkable compound and at least one selected from compounds represented by Formula 1, a composite obtained from the composition, an electrode including the composition or the composite, a composite membrane including the composite, and a fuel cell including the composite membrane,05-16-2013
20110294036POROUS ELECTRODE SUBSTRATE, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY, AND POLYMER ELECTROLYTE FUEL CELL - Provided is a porous electrode substrate having high mechanical strength, good handling properties, high thickness precision, little undulation, and adequate gas permeability and conductivity. Also provided is a method for producing a porous electrode substrate at low costs. A porous electrode substrate is produced by joining short carbon fibers (A) via mesh-like of carbon fibers (B) having an average diameter of 4 μm or smaller. Further provided are a membrane-electrode assembly and a polymer electrolyte fuel cell that use this porous electrode membrane. A porous electrode substrate is obtained by subjecting a precursor sheet, in which short carbon fibers (A) and short carbon fiber precursors (b) having an average diameter of 5 μm or smaller have been dispersed, to carbonization treatment after optional hot press forming and optional oxidization treatment.12-01-2011
20110294035METHOD FOR PREPARING AN ENHANCED PROTON EXCHANGE MEMBRANE AND ENHANCED PROTON EXCHANGE MEMBRANE - A novel approach based on the increase of the intrinsic oxidative stability of uncrosslinked membranes is addressed. The co-grafting of styrene with methacrylonitrile (MAN), which possesses a protected α-position and strong dipolar pendant nitrile group, onto 25 μm ETFE base film is disclosed. Styrene/MAN co-grafted membranes were compared to styrene based membrane in durability tests in single H12-01-2011
20110311901MECHANICALLY STABILIZED POLYAZOLES - A process for preparing mechanically stabilized polyazoles, comprising the following steps: 12-22-2011
20110311900ELECTROCHEMICAL DEVICE CONFIGURATIONS - The present invention generally relates to electrochemical devices such as fuel cells and, in particular, to various component configurations including configurations for converting common fuels directly into electricity without additional fuel reforming or processing. Certain aspects of the invention are generally directed to configurations in which an anode of the device surrounds the electrolyte and/or the cathode of the device. In some embodiments, all single cells in a fuel cell stack share a common anode fuel chamber. The anode, in some cases, may be exposed to a fuel. In one set of embodiments, the anode of the device may be fluid during operation of the fuel cell, and in some cases, a porous container may be used to contain the anode during operation of the fuel cell. Other aspects of the invention relate to methods of making such devices, methods of promoting the making or use of such devices, and the like.12-22-2011
20110311899POLYMER, POLYARYLENE BLOCK COPOLYMER, POLYELECTROLYTE, POLYELECTROLYTE MEMBRANE, AND FUEL CELL - The polymer electrolyte membrane according to the present invention comprises a polymer electrolyte having ion-exchange groups, wherein Sp and Snp satisfy a relationship expressed by the following expression (I):12-22-2011
20120021330Electrode material and solid oxide fuel cell containing the electrode material - The electrode material contains a complex oxide having a perovskite structure represented by a general formula ABO01-26-2012
20130196247OPTIMIZATION OF BZCYYb SYNTHESIS - The present invention relates to a novel method for preparing a BZCYYb material to be used in a solid oxide fuel cell. In particular, the method comprises mixing particular nano-sized and micro-sized ingredients and the size selection provides greatly improved performance characteristics of the resulting material. In particular, barium carbonate powder, zirconium oxide powder having particle diameters in the nanometer range, and cerium oxide powder having particle diameter in the micrometer range are used together with ytterbium oxide powder, and yttrium oxide powder.08-01-2013
20130196249FUEL CELL - A fuel cell includes a membrane electrode assembly and a separator. The separator includes a reactant gas inlet manifold, a reactant gas outlet manifold, a reactant gas channel, an inlet connection channel, an inlet buffer portion, an outlet buffer portion, and an outlet connection channel. A pressure drop through the inlet buffer portion is less than a pressure drop through the reactant gas channel when a reactant gas flows from the reactant gas inlet manifold to the reactant gas channel. A pressure drop through the outlet buffer portion is less than a pressure drop through the outlet connection channel when the reactant gas flows from the reactant gas channel to the reactant gas outlet manifold.08-01-2013
20130196250NOVEL SULFONATED POLYMERS USEFUL FOR FORMING FUEL CELL MEMBRANES - The invention relates to a polymer comprising at least one polymeric chain of a first type, the said chain comprising at least two blocks, the same or different, the said blocks comprising repeat units derived from the polymerisation of styrene monomers, the said units comprising at least one phenyl pendant group carrying at least one —SO08-01-2013
20130196248COMPOUND, COMPOSITION INCLUDING COMPOUND, COMPOSITE FORMED THEREFROM, ELECTRODE USING COMPOSITION OR COMPOSITE, COMPOSITE MEMBRANE USING COMPOSITE, AND FUEL CELL INCLUDING AT LEAST ONE SELECTED FROM ELECTRODE AND COMPOSITE MEMBRANE - A compound including a cage-type structure of silsesquioxane wherein a group represented by Formula 1 or a salt thereof is directly linked to at least one silicon atom of the silsesquioxane, a composition including the compound, a composite formed therefrom, electrodes and an electrolyte membrane that include the composite, a method of preparing the compound, and a fuel cell including the electrodes and the electrolyte membrane.08-01-2013
20130202985FLEXIBLE CIRCUIT BOARD AND METHOD FOR MANUFACTURING THE SAME, AND FUEL CELL USING THE FLEXIBLE CIRCUIT BOARD - There is provided a flexible circuit board capable of preventing corrosion and elution of a conductor layer constituting a current collector even under high-temperature and high-voltage working conditions while achieving sufficient electric connection with an MEA. A flexible circuit board having a current collector of a fuel cell provided thereon includes an insulating flexible base material 08-08-2013
20130202986REINFORCED ELECTRODE ASSEMBLY - A fuel cell, a reinforced membrane electrode assembly and a method of fabricating a reinforced membrane electrode assembly. The method comprises depositing an electrode ink onto a first substrate to form a first electrode layer, applying a first porous reinforcement layer on a surface of the first electrode layer to form a first catalyst coated substrate, depositing a first ionomer solution onto the first catalyst coated substrate to form a first ionomer layer, and applying a membrane porous reinforcement layer on a surface of the first ionomer layer to form a reinforced membrane layer.08-08-2013
20120094209ION-CONDUCTIVE COMPOSITE, MEMBRANE ELECTRODE ASSEMBLY (MEA), AND ELECTROCHEMICAL DEVICE - Provided are an ion-conductive composite containing ion-conductive fine particles and a vinylidene fluoride homopolymer or copolymer and having excellent ion conductivity, a membrane electrode assembly (MEA) including the ion-conductive composite as an electrolyte, and an electrochemical device, such as a fuel cell.04-19-2012
20120094208FUEL CELL - An oxidant gas conduit communicating with both an oxidant gas inlet communication hole and an oxidant gas outlet communication hole is formed in a surface of a cathode-side metallic separator which forms a fuel cell. Continuous linear guide ridges which protrude from intermediate height sections to the oxidant gas conduit side and form continuous guide conduits are provided on the cathode-side metallic separator. The linear guide ridges are continuously connected to ends of rectilinear conduit ridges which form rectilinear conduits, are provided with bend portions, and are set to lengths which are different from each other in a step-like manner.04-19-2012
20120094207CATALYST, PRODUCTION PROCESS THEREFOR, AND USE THEREOF - The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal element M, carbon, nitrogen and oxygen, wherein the catalyst shows peaks at 1340 cm04-19-2012
20130209912CATALYST - A platinum alloy catalyst PtXY, wherein X is a transition metal (other than platinum, palladium or iridium) and Y is a transition metal (other than platinum, palladium or iridium) which is less leachable than X in an acidic environment, has an atomic percentage in the alloy of platinum is from 20.5-40 at %, of X is from 40.5-78.5 at % X and of Y is from 1-19.5 at %.08-15-2013
20130209913NANOFIBER ELECTRODE AND METHOD OF FORMING SAME - In one aspect, a method of forming an electrode for an electrochemical device is disclosed. In one embodiment, the method includes the steps of mixing at least a first amount of a catalyst and a second amount of an ionomer or uncharged polymer to form a solution and delivering the solution into a metallic needle having a needle tip. The method further includes the steps of applying a voltage between the needle tip and a collector substrate positioned at a distance from the needle tip, and extruding the solution from the needle tip at a flow rate such as to generate electrospun fibers and deposit the generated fibers on the collector substrate to form a mat with a porous network of fibers. Each fiber in the porous network of the mat has distributed particles of the catalyst. The method also includes the step of pressing the mat onto a membrane.08-15-2013

Patent applications in class Specified electrode/electrolyte combination

Patent applications in all subclasses Specified electrode/electrolyte combination