Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Of gaseous reactant

Subclass of:

429 - Chemistry: electrical current producing apparatus, product, and process

429400000 - FUEL CELL, SUBCOMBINATION THEREOF, OR METHOD OF MAKING OR OPERATING

429428000 - Process or means for control of operation

429443000 - Arrangement or process for reactant control (e.g., pressure or concentration, etc.)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
429446000 Regulation of differential pressure 14
429445000 Depolarization or activation 1
20110274997Device Having Fluid Consuming Battery and Fluid Manager - An electronic device having a battery compartment sized to receive one or more fluid consuming batteries is provided. The device includes one or more fluid entry ports, which can be in the cover of the battery compartment. A fluid flow restrictor is compressed between the fluid entry ports in the device and the fluid entry ports in the fluid consuming battery such that a rate of flow of fluid from outside the device to the battery's fluid consuming electrode is controlled by a compressed portion of the fluid flow restrictor. The fluid flow restrictor can include a foam material. A seal can also be provided at or near the periphery of the fluid flow restrictor; the seal can be a more highly compressed portion of the fluid flow restrictor or a separate component such as an O-ring seal.11-10-2011
Entries
DocumentTitleDate
20100151344FUEL CELL AND ELECTRONIC DEVICE INCLUDING THE FUEL CELL - According to a first aspect of the present invention, a fuel cell includes a base body, a flow channel and an electrolyte member. The base body includes a layered body of a plurality of insulating layers. The flow channel links grooves of the different insulating layers. The electrolyte member contacts with a portion of the flow channel.06-17-2010
20100159342FUEL CELL SYSTEM AND ITS CONTROL METHOD - Disclosed is a fuel cell system including a fuel cell which generates a power, and control means for decreasing the amount of a reactant gas to be supplied to the fuel cell to an amount smaller than that during normal power generation to realize low-efficiency power generation of the fuel cell. The control means sets the voltage lower limit value of the fuel cell so that the amount of an anode gas (pumping hydrogen) to be formed in a cathode of the fuel cell during the low-efficiency power generation is a predetermined amount or less.06-24-2010
20120264028SEMI-PASSIVE BACKPRESSURE CONTROL VALVE - Backpressure control valves, methods of controlling backpressure, and fuel cell systems. In one form, the backpressure control valve is mountable in a body that defines an asymmetrical fluid passage. The backpressure control valve may include a shaft cooperative with the body, an asymmetrical blade cooperative with the shaft, and a biasing device operatively connected to the asymmetrical blade, wherein the asymmetrical blade is rotatable between a closed position and an open position. In another form, the method of controlling backpressure may include providing a backpressure control valve including an asymmetrical blade, and rotating the asymmetrical blade between a closed position and an open position. In still another form, the fuel cell system may include a fuel cell, a body that defines an asymmetrical oxidant passage, and a backpressure control valve mountable in the body.10-18-2012
20130052556ADVANCED CONTROLS ALGORITHM FOR AN ELECTRONIC PRESSURE REGULATOR SYSTEM WITH PULSED DISTURBANCES - A system and method for regulating the pressure within a volume between a pressure regulator and an injector that injects hydrogen gas into the anode side of a fuel cell stack. The method includes delaying a copy of the a pulsed signal that controls the opening and closing of the injector a predetermined period of time and provides a bias signal from a look-up table that is determined by a desired average mass flow of the hydrogen gas flow to the fuel cell stack and the pressure at an upstream location of the hydrogen gas flow from the pressure regulator. The method selects the bias signal as a pressure regulator control signal that controls the pressure regulator when the delayed pulse injector signal is high and selects an arbitrary value at or near zero as the pressure regulator control signal when a delayed pulse injector is low.02-28-2013
20130089800Fuel Cell System Having a Fuel Cell Arranged in a Housing - A fuel cell system includes at least one fuel cell arranged in a housing and an conveyor means for air supply for a cathode region of this fuel cell. A partial air flow branches off from the supply air to the fuel cell after the conveyor, the partial air flow flowing as bearing air and/or cooling air at least through a part of the conveyor. The partial air flow flows in the flow direction before or after the conveyor as scavenging air through the housing of the fuel cell.04-11-2013
20130071767FUEL CELL SYSTEM - A fuel cell system equipped with a fuel cell, a pressure control unit, and an exhaust. The pressure control unit is provided on the fuel gas flow path in which the fuel gas to be supplied to the fuel cell flows, and it is able to control the pressure of the fuel gas to be supplied to the fuel cell. The exhaust valve is provided on the fuel exhaust gas flow path in which the fuel exhaust gas exhausted from the fuel cell flows, and when the valve is opened, at least a portion of the fuel exhaust gas can be exhausted to outside the fuel exhaust gas flow path. The pressure control unit is controlled, so that before opening the exhaust valve, the pressure of the fuel gas to be supplied to the fuel cell is decreased beyond what it was up to that point. Then, when the pressure of the fuel gas to be supplied to the fuel cell is the decreased first pressure, the exhaust valve is opened.03-21-2013
20130164648FUEL-USING SYSTEM - An electromagnetic main stop valve which is opened by an electromagnetic force of a solenoid with energization of a valve body in a valve-closing direction by energizing unit is provided in a hydrogen tank. A current sensor and the accelerator opening-degree sensor for detecting a use gas flow rate in a fuel cell stack are provided. A pressure sensor for detecting a pressure in the hydrogen tank is provided. The control device sequentially sets the electromagnetic force of the solenoid so that a valve-opening amount is such an amount as to supply a use gas flow rate to the fuel cell stack based on detection values of the current sensor or the accelerator opening-degree sensor, and the pressure sensor. When the flow rate of hydrogen gas flowing into a gas supply path increases due to a hydrogen gas leak, the main stop valve is automatically closed.06-27-2013
20130164649FUEL CELL SYSTEM AND OPERATING METHOD THEREOF - An anode gas non-recirculation type fuel cell system includes a fuel cell, a buffer tank for purging impurity gas included in anode off-gas from the fuel cell stack, an impurity gas concentration detector for detecting impurity gas concentration in the buffer tank, and an anode gas supply unit for supplying anode gas to the fuel cell stack. When pressure-supplying impurity gas in the fuel cell stack to the buffer tank while pulsating a supply pressure by the anode gas supply unit, an activation control is executed by changing, by the anode gas supply unit, at least one of a pulsative pressure and a pulsative cycle of anode gas supply according to impurity gas concentration in the buffer tank. According to the system, it is possible to get adequate hydrogen gas concentration in a fuel cell stack and to remove impurity at its activation.06-27-2013
20120115060PROPORTIONAL VALVE HAVING AN IMPROVED SEALING SEAT - A proportional valve for controlling a gaseous medium, in particular hydrogen, including a nozzle body which has at least one pass-through opening, a closing element which releases and closes the pass-through opening on a valve seat, and an elastic sealing element, which provides a seal on the valve seat, the closing element being articulated with the aid of an articulated support.05-10-2012
20120040265FUEL CELL SYSTEM AND METHOD FOR CONTROLLING SAME - Disclosed is a fuel cell system which comprises a power generation means that includes a plurality of fuel cells that are connectable to one another in series or in parallel through connecting terminals, a fuel gas supply conduit through which fuel electrodes of all or part of the fuel cells are connected in series and an oxidant gas supply conduit through which air electrodes of all or part of the fuel cells are connected in series; a switching means that switches an electric connection condition between the connecting terminals and connecting means of an external load device; a fuel gas supply means that supplies the fuel gas supply conduit with a fuel gas and an oxidant gas supply means that supplies the oxidant gas supply conduit with an oxidant gas; a load detecting means that detects a load of the external load device; and a control means that selects, based on an already derived relation between overall electric power output curves corresponding to the number of the fuel cells that are mutually connected and an operation temperature zone, one of the power output curves in accordance with an input from the load detecting means and selects the number of mutually connected fuel cells that brings about the highest voltage of the fuel cells thereby to control the switching means, the fuel gas supply means and the oxidant gas supply means.02-16-2012
20110281191POLYMER ELECTROLYTE FUEL CELL, FUEL CELL STACK INCLUDING THE SAME, FUEL CELL SYSTEM, AND METHOD FOR OPERATING FUEL CELL SYSTEM - A polymer electrolyte fuel cell of the present invention includes: a membrane-electrode assembly (11-17-2011
20110300464Apparatus and method of recovering vapors - An apparatus and method is disclosed for recovering a flammable vapor emanating from a vent of a tank. The apparatus comprises an input conduit for connecting to the vent of the tank. An input manifold connects the input conduit to an input of a compressor with an output manifold connecting an output of the compressor to an input of a storage tank. An output conduit connects an output of the storage tank to the turbine generator for generating electrical power by processing the flammable vapor. An electrical connector directs electrical power from the turbine generator to drive the apparatus as well as to supply surplus power to an external load.12-08-2011
20110200903Fuel Cell Stack Improved Resistance To Flooding - In a fuel cell stack, first cells are provided only at and in the vicinity of the end part of the fuel cell stack that is overall negative during fuel cell electrical generation. Second cells are provided at other locations in the stack location, so that flooding is unlikely to occur.08-18-2011
20100266923FUEL CELL SYSTEM WITH ELECTROCHEMICAL HYDROGEN PUMP AND METHOD OF OPERATING SAME - A fuel cell system includes a plurality of fuel cells, a plurality of interconnects, and a hydrogen separation device, wherein the hydrogen separation device separates hydrogen from the fuel cell stack anode exhaust. The separated hydrogen is then reintroduced into the fuel cell stack to optimize overall system efficiency. Monitoring of the performance of the hydrogen separation device gives an indication as to the fuel cell system performance.10-21-2010
20120141899METHOD OF CONTROLLING WATER CONTENT OF FUEL CELL AND FUEL CELL SYSTEM - The present invention is to properly adjust a water content in a cell of a fuel cell in response to a wide variety of conditions. A method of controlling a water content in a cell of a fuel cell, wherein a flow rate and pressure of a hydrogen gas supplied to an anode electrode of the cell of the fuel cell are adjusted so as to satisfy a restrictive condition in order to control a water content in the cell of the fuel cell. A water content state in the cell is detected and, based on the detection result, a flow rate and pressure of the hydrogen gas are adjusted so that a water content in the cell equals a target water content.06-07-2012
20110200904EXTERNAL MANIFOLD FOR MINIMIZING EXTERNAL LEAKAGE OF REACTANT FROM CELL STACK - A fuel cell assembly (08-18-2011
20110200905GAS CONTROL AND OPERATION METHOD OF A FUEL CELL SYSTEM FOR WATER AND GAS DISTRIBUTION - A gas control and operation method of a fuel cell system for improved water and gas distribution is disclosed. The present invention provides for a mechanization of a fuel cell system that allows control of the anode reactant and anode effluent through the anode portions of the fuel cell system to improve water and gas distribution on the anode side of the fuel cells that increases the voltage stability of the fuel cells.08-18-2011
20100279193FUEL CELL SYSTEM AND METHOD FOR OPERATING THE SYSTEM - The present invention is a fuel cell system including a fuel cell, an injector which is provided in a hydrogen supply channel of the fuel cell and which adjusts a gas state of an upstream side of the hydrogen supply channel to supply a gas toward a downstream side, and a control device which drives and controls the injector. The control device controls an operation of the injector based on a driving state of an associated device including the fuel cell system 11-04-2010
20110207011FUEL CELL SYSTEM - There is disclosed a fuel cell system capable of stably operating auxiliary devices driven at a high voltage and the like, even in a case where a poisoned electrode catalyst is recovered or a fuel cell is warmed up. On detecting that the electrode catalyst is poisoned, a controller derives a target operation point which is sufficient for recovering an activity of the poisoned electrode catalyst. Then, shift of the operation point from a usual operation point to a low-efficiency operation point is realized so that an output power is held to be constant.08-25-2011
20120196202MANIFOLD ASSEMBLY FOR CONTROLLING GAS FLOW AND FLOW DISTRIBUTION IN A FUEL CELL STACK - A manifold assembly for use with a fuel cell stack for the purpose of ensuring a desired flow distribution to fuel cells within the stack, with the most commonly desired being uniform flow distribution. Said manifold assembly comprising: an external manifold for abutting and sealingly enclosing a face of the fuel cell stack, wherein the manifold comprises an enclosure for one of: providing inlet gas to the fuel cell stack and receiving exhaust gas from said fuel cell stack; and one or more baffles disposed in the enclosure of the external manifold, the one or more baffles one of: (a) controlling gas flow distribution and direction of the inlet gas from the enclosure to fuel cells of the fuel cell stack to achieve a predetermined distribution or a uniform distribution; and (b) controlling gas flow distribution of the exhaust gas flow within the enclosure to achieve the predetermined distribution or the uniform distribution of gas to fuel cells of the fuel cell stack. A multi-stack fuel cell system including a baffling assembly with one or more baffles for providing a predetermined gas flow distribution to each fuel cell stack in the fuel cell system is also described. The baffling assembly is provided at a system level and comprises one or more baffles in an intake assembly and/or in an exhaust assembly of the multi-stack fuel cell system, so that each fuel cell stack receives a predetermined amount of gas.08-02-2012
20100151343Fuel cell system and gas leakage detection device - A fuel cell system according to one aspect of the invention is operated in an ordinary mode and in a gas leakage detection mode. The fuel cell system includes fuel cells, a fuel gas supplier configured to supply a fuel gas to the fuel cells, a shutoff valve provided in a flow path for leading a flow of the fuel gas supply from the fuel gas supplier to the fuel cells and configured to shut off the fuel gas supply, and a variable pressure regulator provided in the flow path between the shutoff valve and the fuel cells to regulate a pressure of the fuel gas in a downstream in a flow direction of the fuel gas supply to a variable pressure value. In the ordinary mode, the fuel cell system sets the pressure value of the variable pressure regulator to an ordinary power generation pressure value for ordinary power generation. In the gas leakage detection mode, on the other hand, the fuel cell system closes the shutoff valve, sets the pressure value of the variable pressure regulator to a higher value than the ordinary power generation pressure value, and performs leakage detection of the fuel gas from the shutoff valve. Such setting of the pressure value in the variable pressure regulator desirably enables high-speed reduction of the fuel gas pressure in the flow path between the shutoff valve and the variable pressure regulator.06-17-2010
20100167153FUEL CELL APPARATUS - Provided is a fuel cell apparatus having a gas permeation mechanism for spontaneously controlling the supply amount of oxidizer from a reduced amount to an amount sufficient for normal operation after a reduction process at the time of activation. The fuel cell apparatus includes a control portion for controlling a potential difference between a fuel electrode and an oxidizer electrode to such a value as to reduce an oxide film of a catalyst used in the oxidizer electrode, and a gas permeation mechanism provided in a flow path through which supplied air flows, wherein the gas permeation mechanism includes a member which allows a gas permeation rate to be controlled depending on surrounding environment.07-01-2010
20110117469FUEL CELL STACK CONDITIONED TO OPERATE SAFELY WITH FAILED CELLS - The oxidant inlets of the reactant gas flow field grooves (05-19-2011
20130137007HYDROGEN CONCENTRATION CONTROL DEVICE AND METHOD FOR FUEL CELL SYSTEM - Disclosed is a device and method for controlling hydrogen concentration of a fuel cell system to maintain the concentration of hydrogen of an anode at a proper level in accordance with the concentration supplied to a fuel cell. More specifically, a hydrogen concentration measuring sensor is directly provided in a hydrogen storage device, the hydrogen concentration and the impurity concentration in an anode channel of the fuel cell system are estimated based on a measured hydrogen concentration, and when it is determined that the hydrogen concentration in the anode channel falls under a reference value at which the fuel cell system can be stably operated, purge control for discharging the gases (hydrogen and impurities) in the anode channel to the outside is performed, so that the hydrogen concentration in the anode channel of the fuel cell system can be maintained equal to or higher than the reference value.05-30-2013
20110212376AMPEROMETRIC SENSOR - A carbon monoxide sensor includes a housing providing an analyte inlet. Multiple electrodes are arranged in the housing and include a sensing electrode in communication with the analyte inlet. The sensing electrode includes a catalytic material niobium that is configured to oxidize carbon monoxide. Output elements are connected to the electrodes and are configured to provide a carbon monoxide signal in response to an analyte reacting with the sensing electrode.09-01-2011
20110076584FUEL CELL SYSTEM - Provided is a fuel cell system capable of ensuring responsiveness during acceleration even when a motor with a smaller torque as compared to the related art is used. A control apparatus reduces the revolution speeds of motors of an air compressor, a circulation pump and a cooling pump by a coasting operation, without performing a regenerative control, when a load required from a fuel cell (electrical power required by various motors and auxiliary apparatuses) is being reduced and a travel speed is equal to or higher than a set speed. With such a configuration, even when a driver later reaccelerates a vehicle by, for example, pressing down an accelerator, required acceleration force is smaller as compared to the related art, and thus a motor with a small torque can be employed.03-31-2011
20100304263VALVE HAVING VALVE ELEMENT DISPLACED BY AT LEAST ONE OF A MOVEMENT OF A DIAPHRAGM AND A MOVEMENT OF AN ACTUATOR, AND FUEL CELL USING THE VALVE - A valve and a fuel cell using the same are provided, the valve having a fluid inlet, a fluid outlet, a flow path communicating therebetween, a valve element provided in the flow path, a diaphragm which is disposed so as to separate the inside from the outside of the flow path and which is to be deformed by the difference in pressure between the inside and the outside of the flow path, a valve shaft connecting between the valve element and the diaphragm, and an actuator provided for the diaphragm. In the valve described above, the valve element is displaced by at least one movement of the diaphragm and the actuator to open and close the valve. Accordingly, the valve has a simple structure which can be easily miniaturized and which is unlikely to be degraded even when a corrosive fluid flows through the valve.12-02-2010
20110008699FUEL CELL SYSTEM AND CONTROL UNIT FOR FUEL CELL SYSTEM - This invention provides a fuel cell system which can render the distribution of water in an electrolyte membrane even without lowing the pressure of a fuel system (01-13-2011
20110250518UTILIZATION-BASED FUEL CELL MONITORING AND CONTROL - Fuel cell systems and methods for controlling the operation of components of the fuel cell system, which may include a fuel source and a fuel cell stack. In some examples, a fuel source is adapted to provide supply fuel to a fuel cell stack at a supply pressure. The fuel cell stack produces electric current at a production amperage. In some examples, a control system is adapted to control operation of the fuel cell stack based on a pressure detected at the fuel cell stack. In some examples, a target production amperage is determined based on the detected pressure, such that when electric current is produced at the target production amperage for the detected pressure, the fuel cell stack consumes a predetermined proportion of the supply fuel.10-13-2011
20110020721Consumer battery comprising a fuel cell - Consumer battery which comprises an electricity generating unit (EGU) 01-27-2011
20110020722FUEL CELL AND BIPOLAR PLATE HAVING MANIFOLD SUMP - A device for use in a fuel cell includes a bipolar plate having flow field channels, a manifold fluidly connected with the flow field channels for conveying a reactant gas, and a sump fluidly connected with the manifold.01-27-2011
20110053028Fuel cell system - The present invention provides a technology related to a fuel cell system capable of adjusting a discharge amount of an odorant discharged to an outside of a moving body according to a state of the moving body. The fuel cell system mounted to a moving body includes: a fuel cell which generates electric power by electrochemically reacting a hydrogen gas with an oxidation gas; and a adjusting portion which adjusts an amount of an odorant to be discharged to an outside of the moving body according to a state of the moving body, the odorant being included in an anode off-gas discharged from an anode side of the fuel cell.03-03-2011
20100323263FUEL CELL SYSTEM - Disclosed is a fuel cell system including a fuel cell, a pipe forming a fuel supply passage through which a fuel gas supplied from a fuel supply source flows to the fuel cell, an on/off valve which regulates a gas state on the upstream side of the fuel supply passage to supply the gas to the downstream side, and control means for controlling the opening/closing operation of the on/off valve. The control means sets a required time from the opening time of the on/off valve to the closing time of the valve so that the vibration level of the pipe on the upstream side of the on/off valve is a predetermined reference level or less.12-23-2010
20100159341FUEL CELL SYSTEM - In the present invention, after the initial setting of the FC entry target pressure, the FC entry target pressure is maintained at this initial-setting value until the concentration of impurities in the gas supplied to the anode in the fuel cell falls below a certain value. This initial-setting value is set to a pressure higher than the FC entry target pressure set in response to the FC electric current during normal power generation. If the concentration of impurities in the gas supplied to the anode in the fuel cell has fallen below the certain value, then the FC entry target pressure is sought using a map showing the relationship between the FC electric current detected in step S06-24-2010
20100159343Gas Storage System - Among other things, a gas storage system includes a group of capsules and an activation element coupled to the group. The group of capsules are formed within a substrate and contain gas stored at a relatively high pressure compared to atmospheric pressure. The activation element is configured to deliver energy in an amount sufficient to cause at least one of the capsules to release stored gas.06-24-2010
20100190079METHOD AND ALGORITHM TO DETECT FROZEN ANODE PRESSURE SENSOR - A method for performing a plausibility check of a fuel cell stack anode side pressure sensor to determine whether the pressure sensor is providing an accurate measurement. Prior to system start-up when a cathode side compressor is not providing cathode air to a fuel cell stack, and the cathode side of the stack is at ambient pressure, a pressure measurement from a differential pressure sensor between the anode side and the cathode side of the fuel cell stack is provided. The differential pressure sensor reading is added to a pressure measurement from an ambient pressure sensor, where the sum should be about the same as the pressure measurement from the anode side pressure sensor if the anode side pressure sensor is operating properly.07-29-2010
20100190078SHUTDOWN STRATEGY FOR ENHANCED WATER MANAGEMENT - A system and method for providing a fuel cell stack purge to remove excess water during system shut-down. A compressor is operated at a shut-down speed to force water out of the cathode flow channels and draw water through the membrane from the anode flow channels so that a desired amount of water is removed from the fuel cell stack without over drying the membrane. The cathode shut-down purge flow can be introduced in the forward or reverse direction. Further, the flow of hydrogen fuel can be directed so that it flows through the anode flow channels in an opposite direction to push water out of an anode outlet manifold into the anode flow channels so that it will also be drawn through the membrane by the cathode airflow. Finally, a brief rehydration step is added after the shut-down purge to achieve the desired water content in the cells.07-29-2010
20110189573ONLINE ANODE PRESSURE BIAS TO MAXIMIZE BLEED VELOCITY WHILE MEETING EMISSION CONSTRAINT - A method that employs a model based approach to determine a maximum anode pressure set-point based on existing airflow in the exhaust gas line. This approach maximizes anode flow channel velocity during bleed events while meeting the hydrogen emission constraint, which in turn increases the amount of water purged from the anode flow channels to increase stack stability.08-04-2011
20120148933FUEL CELL DEVICE - A fuel cell device is improved for operating conditions during a partial load operation. The fuel cell device comprises a cell stack formed by electrically connecting fuel cells for generating power by fuel gas and oxygen-containing gas; a fuel gas supply unit for supplying the fuel gas to the fuel cells; and a power adjustment unit for adjusting the amount of current that is supplied to an external load and a controller for controlling the fuel gas supply unit and the power adjustment unit. The controller adjusts, during the partial load operation of the fuel cell device and when the fuel gas supplied to the cell stack is at low flow rate. The a relationship between a fuel utilization rate of the cell stack and the amount of power generated by the cell stack can be nonlinear.06-14-2012
20120301807PIEZOELECTRIC INJECTOR FOR FUEL CELL - A fuel supply system for a fuel cell is described. One embodiment of the fuel supply system includes a fuel supply vessel; a fuel spending line in fluid communication with the fuel supply vessel and the fuel cell; a piezoelectric injector in fluid communication with the fuel spending line; and a pressure sensor connected to the fuel spending line and positioned between the fuel supply vessel and the fuel cell. A method for controlling the pressure to a fuel cell is also described.11-29-2012
20100255397FUEL CELL SYSTEM - To improve a response performance in a fuel cell system in which an on/off valve such as an injector is disposed in a fuel supply passage, by decreasing a pressure adjusting error occurring when the drive cycle of the on/off valve fluctuates. A fuel cell system comprises a fuel cell, a fuel supply passage for supplying to the fuel cell a fuel gas supplied from a fuel supply source, an on/off valve for adjusting a gas state on the upstream side of the fuel supply passage to supply the gas to the downstream side thereof, and control means for driving and controlling the on/off valve. The control means calculates a feed-forward correction flow rate based on the drive cycle of the on/off valve, corrects the command value of the gas injection flow rate of the on/off valve by use of the feed-forward correction flow rate, and drives and controls the on/off valve based on the command value.10-07-2010
20110318664FUEL CELL SYSTEM AND DRIVING METHOD FOR THE SAME - A fuel cell system including a fuel cell stack having a plurality of unit cells is provided. A method of driving the fuel cell stack is also provided. The method may include supplying a fuel to a fuel cell stack, supplying an oxidizer to the fuel cell stack, controlling supply of the fuel and the oxidizer to operate the fuel cell stack, calculating a total operation time of the fuel cell, and/or varying a stack activation period in which the oxidizer is blocked to the fuel cell stack according to the total operation time and a stack activation cycle of which the stack activation period is generated.12-29-2011
20120015274FUEL CELL AND FLOW FIELD PLATE WITH FLOW GUIDES - A flow field plate for use in a fuel cell includes a non-porous plate body having a flow field with a plurality of channels extending between a channel inlet end and a channel outlet end, a first flow distribution portion adjacent the channel inlet end for distributing a fluid to the plurality of channels, and a second flow distribution portion adjacent the channel outlet end for collecting the fluid from the plurality of channels. A first flow guide within the first flow distribution portion establishes a desired flow distribution to the plurality of channels, and a second flow guide within the second flow distribution portion establishes a desired flow distribution from the plurality of channels.01-19-2012
20120058409HYDROGEN/GAS PRESSURE CONTROLLED HIGH PRESSURE TANK VALVES ARCHITECTURE - A valve for a pressure vessel system includes a housing including a cavity and a hollow fluid flow portion. A membrane actuator is disposed in the cavity of the housing. A piston is disposed in the cavity and in the hollow fluid flow portion of the housing. A spring is disposed in the hollow fluid flow portion of the housing. The spring biases a piston head toward a fluid flow port formed in the hollow fluid flow portion. The piston head seals the fluid flow port when the biasing of the piston head by the spring is not countered by an opposite deflection of the membrane actuator.03-08-2012
20120064427FUEL CELL SYSTEM - The fuel cell system includes: a fuel cell stack which is supplied with reaction gas, and performs electricity generation; a reaction gas supplier which supplies the reaction gas to the fuel cell stack; a ground fault detector which detects a ground fault from the fuel cell stack; and a reaction gas increasing member which increases an amount of a reaction gas supply to the fuel cell stack, when the ground fault is detected by the ground fault detector.03-15-2012
20120208102FLUID REGULATING MICROVALVE ASSEMBLY FOR FLUID CONSUMING CELLS WITH SPRING-LIKE SHAPE-RETAINING APERTURE COVER - A fluid regulating microvalve assembly for use to control fluid flow to a fluid consuming electrode, such as an oxygen reduction electrode, in an electrochemical cell is proposed. The microvalve assembly includes a stationary valve body having an aperture and microactuators movable from a first closed aperture position to at least a second position where fluid is able to pass through the microvalve body aperture. These microactuators control the movement of spring-like shape-retaining interior aperture covers, which covers can be belleville springs or flat springs. The fluid regulating microvalve assembly can utilize cell potential or a separate source. The latter assembly can be located outside or inside the cell housing, for example between a fluid inlet aperture and the fluid consuming electrode. Using a printing process to deposit at least one of the layers is proposed for making the multilayer microvalve assembly for a fluid depolarized battery.08-16-2012
20110070516SOLID POLYMER ELECTROLYTE FUEL CELL - A fuel cell is formed by sandwiching a membrane electrode assembly between a first separator and a second separator. The membrane electrode assembly includes a cathode, an anode, and a solid polymer electrolyte membrane interposed between the cathode and the anode. In the membrane electrode assembly, a catalyst area of an electrode catalyst layer of the cathode and an electrode catalyst layer of the anode terminates at a position spaced upwardly from lower ends of an oxygen-containing gas flow field and a fuel gas flow field.03-24-2011
20120070758FUEL GAS SUPPLY DEVICE OF FUEL CELL SYSTEM - A fuel gas supply device for supplying fuel gas to a fuel cell stack includes a control valve provided in a fuel gas path connecting a fuel tank and the fuel cell stack, an upstream-side pressure sensor and a downstream-side pressure sensor for detecting an upstream-side pressure and a downstream-side pressure, and a programmable controller. The programmable controller calculates a required opening based on a target fuel gas pressure and the downstream-side pressure and calculates an opening time and a closing time based on the required opening and the upstream-side pressure, or calculates an opening time and a closing time based on the target fuel gas pressure and the downstream-side pressure and calculates a required opening based on the opening time and the upstream-side pressure, and controls the control valve using the calculated required opening, opening time and closing time.03-22-2012
20120122006 Power Generation System Using an Alkaline Fuel Cell and Fuel Gas for Alkaline Fuel Cells Used in the System - A power generation system includes an alkaline fuel cell provided with an electrolyte membrane which is an anion exchange membrane and a pair of electrodes (an anode and a cathode) arranged on the both sides of the electrolyte membrane. The alkaline fuel cell can generate an electric power by supplying a fuel gas and an oxidizing agent gas to the anode side and the cathode side, respectively. The power generation system uses a hydrogen gas containing a basic compound such as ammonia as the fuel gas to be supplied to the anode side.05-17-2012
20120122005VALVE FOR FUEL CELL, AND FUEL CELL VEHICLE - A valve-closing pressure chamber and a valve-opening pressure chamber are arranged on both sides of a main diaphragm inside an outlet shutoff valve. An upper supply/discharge tube and a lower supply/discharge tube are connected to a housing forming the outlet shutoff valve. The upper and lower supply/discharge tube supply and discharge air to and from the valve-closing pressure chamber and the valve-opening pressure chamber, respectively. An opening end, which is on the pressure chamber side, of each supply/discharge tube is obliquely cut relative to the direction of axis of the supply/discharge tube, which increases the opening area of the opening end. This prevents water present in the pressure chamber from adhering to the opening end of each supply/discharge tube and prevents the adhered water from freezing. This in turn prevents the opening end of the supply/discharge tube from being closed or the opening area from being reduced. As a result, operation performance of the outlet shutoff valve is enhanced.05-17-2012
20100248062FUEL CELL SYSTEM - A fuel cell system having an on-off valve, such as an injector, disposed in a fuel supply flow path restrains a pressure detection error of a fuel gas in the vicinity of the on-off valve to a small level. The fuel cell system includes a fuel cell, a fuel supply flow path for supplying a fuel gas, which is supplied from a fuel supply source, to the fuel cell, an on-off valve which adjusts the condition of a gas on an upstream side of the fuel supply flow path and then supplies the gas to a downstream side, and a control means which controls the drive of the on-off valve at a predetermined drive cycle, wherein the control means sets the upper limit value of a duty ratio at each drive cycle of the on-off valve.09-30-2010
20100248063HYDROGEN SUPPLY SYSTEM FOR FUEL CELL AND METHOD FOR CONTROLLING THE SAME - The present invention provides a method for controlling a hydrogen supply system for a fuel cell, the method comprising: a hydrogen filling step in which high pressure hydrogen is supplied to a high pressure line connecting first to Nth hydrogen tanks to be filled in the first to Nth hydrogen tanks; a hydrogen supply step in which only hydrogen in the first hydrogen tank provided adjacent to a fuel cell stack is supplied to the fuel cell stack during driving of a vehicle; and a hydrogen transfer step in which hydrogen is transferred from the second to Nth hydrogen tanks to the first hydrogen tank during parking or stopping of the vehicle.09-30-2010
20120214079FUEL CELL SYSTEM - This fuel cell system is for suppressing a backflow of water from an exhaust pipe outlet that discharges a reactant-off gas, without decreasing the performance and fuel consumption of a fuel cell, the exhaust pipe being configured to switch between a main discharge pipe and a sub discharge pipe by a switching means to discharge the reactant-off gas. The sub discharge pipe includes a rising gradient portion formed to incline upwards above a gradient of the main discharge pipe and a falling gradient portion formed to incline downwards at the downstream of the rising gradient portion. The switching valve switches to allow the reactant-off gas to be discharged from the main discharge pipe if an amount of reactant-off gas to be discharged is equal to or above a threshold value of an amount of discharge, and allow the reactant-off gas to be discharged from the sub discharge pipe if the amount of reactant-off gas to be discharged is below the threshold value of the amount of discharge.08-23-2012
20120171591CURRENT COLLECTOR PLATES OF BULK-SOLIDIFYING AMORPHOUS ALLOYS - Collector plates made of bulk-solidifying amorphous alloys, the bulk-solidifying amorphous alloys providing ruggedness, lightweight structure, excellent resistance to chemical and environmental effects, and low-cost manufacturing, and methods of making such collector plates from such bulk-solidifying amorphous alloys are provided.07-05-2012
20120077104FLUID COMPRESSOR AND FUEL CELL VEHICLE - An air compressor as a fluid compressor includes: a suction port and a delivery port provided at upper and lower portions, respectively, of a pump chamber; a suction passage in communication with the inside of the pump chamber via the suction port; a delivery passage in communication with the inside of the pump chamber via the delivery port (03-29-2012
20120251914Derivation of Control Parameters of Fuel Cell Systems for Flexible Fuel Operation - A method of operating a fuel cell system includes characterizing the fuel or fuels being provided into the fuel cell system, characterizing the oxidizing gas or gases being provided into the fuel cell system, and calculating at least one of the steam:carbon ratio, fuel utilization and oxidizing gas utilization based on the step of characterization.10-04-2012
20110003226FUEL CELL APPARATUS AND METHOD OF FABRICATION - A fuel cell is described. The fuel cell includes current collectors, each of which includes a substrate of lightweight material, such as Kapton material. Micro channels are formed via laser machining or chemical etching into the substrate. The current collectors further include conductive layers sputtered on the substrate, and protective coating on the conductive layers. A variety of materials are available for the conductive layers. The fuel cell so developed is particularly well suited to mobile applications, such as electronic devices.01-06-2011
20110236783INTERDIGITATED FLOW FIELD FOR SOLID PLATE FUEL CELLS - A fuel cell includes a first flow field plate for an anode side and a second flow field plate for a cathode side where each of the first flow field plates include channels configured to provide matching interdigitated flow fields. The fuel cell includes the first flow plate that receives fuel and a second flow plate arranged on an opposite side of the polymer electrolyte membrane for receiving an oxidant. Each fuel flow plate includes ribs that separate inlet channels from outlet channels. Inlet flow entering the inlet channel is directed over these ribs into an adjacent outlet channel. The outlet channel then provides for outlet flow of the fuel, oxidant and water. Because a solid plate polymer electrolyte fuel cell does not include flow field plates having a porous configuration, water management is difficult to balance and is accomplished through the polymer electrolyte membrane. The disclosed fuel flow plates are matched to define and manage water flow through the polymer electrolyte membrane of the fuel cell.09-29-2011
20100233562GAS DETECTION SYSTEM, VEHICLE, AND CHECKUP METHOD FOR GAS DETECTION SYSTEM - A gas detection system functions to detect a specific gas present in a certain space. The gas detection system includes a gas concentration detector arranged to detect concentration of the specific gas as a gas concentration. The gas detection system also has a determination module configured to determine whether the gas concentration detected by the gas concentration detector exceeds a set threshold value. In response to input of a checking instruction for checking up the gas concentration detector into the determination module, the determination module uses a threshold value for checkup purpose, in place of the set threshold value. This arrangement effectively enhances the convenience in the process of checking up the gas concentration detector.09-16-2010
20120094202DEVICE FOR PRODUCING ELECTRICITY FOR A SUBMARINE COMPRISING A FUEL CELL - The invention relates to a submarine comprising a device for producing electricity including a fuel cell, means for feeding oxygen gas, means for feeding hydrogen fuel, and means for discharging the gas effluents, characterized in that the fuel cell (04-19-2012
20120088177ADAPTIVE COMPRESSOR SURGE CONTROL IN A FUEL CELL SYSTEM - A fuel cell system having an adaptable compressor map and method for optimizing the adaptable compressor map is provided. The method includes the steps of establishing an initial operating setpoint for an air compressor based on the adaptable compressor map; monitoring a surge indicator; adjusting the adaptable compressor map based on the monitored surge indicator; determining a desired operating setpoint based on the adjusted adaptable compressor map; and establishing an adapted operating setpoint for the air compressor based on the adaptable compressor map following the adjustment thereof. The steps are repeated until the adaptable compressor map for the air compressor is optimized.04-12-2012
20120288780ACOUSTIC SPEED OF SOUND MEASUREMENT USING BANDPASS FILTERING OF AUTOMOTIVE PRESSURE SENSORS - A fuel cell system that determines the concentration of hydrogen gas in an anode loop. The fuel cell system includes at least one fuel cell, an anode inlet, an anode outlet, an anode loop, a source of hydrogen gas and an injector for injecting the hydrogen gas. First and second pressure sensors are provided in the anode loop and are spaced a known distance from each other. A controller responsive to the output signals from the first and second pressure sensors filters the sensor signals from the first and second pressure sensors and determines the concentration of hydrogen gas in the anode loop based on the time difference between the filtered sensor signal from the first pressure sensor and the filtered sensor signal from the second pressure sensor.11-15-2012
20100167152Fuel Cell System - Disclosed is a fuel cell system (07-01-2010
20130115540FUEL CELL OPERATION WITH A FAILED OPEN INJECTOR - A system and method for controlling hydrogen gas flow to an anode side of a fuel cell stack using a pressure regulator in the event that an injector that normally injects the hydrogen gas into the fuel cell stack has failed in a stuck open position. During normal operation, the control of the injector is determined based on the pressure of an anode sub-system and the position of the pressure regulator is determined based on a supply pressure between the pressure regulator and the injector. If it is determined that the injector is stuck in an open position, then the position of the pressure regulator is controlled to the anode pressure instead of the supply pressure. If the pressure regulator is an electrical pressure regulator, then it is pulsed to mimic normal system operation. Alternately, another valve, such as a shut-off valve, can be employed to provide the flow pulsing.05-09-2013
20130157162REDOX FLOW BATTERY AND METHOD OF OPERATING THE SAME - A redox flow battery in which a positive electrode electrolyte stored in a positive electrode tank and a negative electrode electrolyte stored in a negative electrode tank are supplied to a battery element to charge and discharge the battery is provided, the positive electrode electrolyte in the redox flow battery containing a Mn ion as a positive electrode active material, the negative electrode electrolyte containing at least one of a Ti ion, a V ion, and a Cr ion as a negative electrode active material, in which the redox flow battery includes a negative-electrode-side introduction duct in communication with inside of the negative electrode tank from outside thereof, for introducing oxidizing gas into the negative electrode tank, and a supply mechanism for supplying the oxidizing gas into the negative electrode tank via the negative-electrode-side introduction duct.06-20-2013
20110212377FUEL CELL SYSTEM AND MOBILE ARTICLE - There is disclosed a fuel cell system including a fuel cell, a fuel supply system to supply a fuel gas to the fuel cell, an injector which adjusts a gas state on an upstream side of the fuel supply system to supply the gas to a downstream side, and a control unit which drives and controls the injector in a predetermined drive cycle. The control unit sets the drive cycle of the injector in accordance with an operation state of the fuel cell.09-01-2011
20130149626SYSTEM AND METHOD FOR DEVICE POWER MANAGEMENT - A method for controlling fuel cartridge supply for a device powered by a fuel cell system, the fuel cell system including a fuel cell stack that converts fuel from the fuel cartridge into electrical power, the method including receiving operation data from each of a plurality of devices at a first time period, calculating a future fuel cartridge demand from the operation data, the future fuel cartridge demand associated with a second time period after the first time period, calculating a target fuel cartridge manufacturing volume from the future hydrogen cartridge demand, and sending the target fuel cartridge manufacturing volume to a manufacturing facility.06-13-2013
20130149627OPERATING METHOD OF FUEL CELL SYSTEM - Conventional fuel cell systems had the problem of impurity gases flowing back from a buffer tank and a reduction in the voltages of unit cells when the supply pressure of an anode gas is caused to pulsate at startup. An operating method include setting any one of the amplitude and cycle of the pulsation of the supply pressure of the anode gas to a fuel cell stack (FS) in accordance with the permeability of a nitrogen gas from a cathode side to an anode side. The method makes it possible to suppress unnecessary pulsation of the supply pressure of the anode gas at startup, and thus to maintain the concentration of a hydrogen gas in the fuel cell stack (FS) at an optimum level while preventing degradation in the mechanical strength of a membrane electrode structure that constitutes each unit cell (FC) of the fuel cell stack (FS).06-13-2013
20110236782FUEL CELL SYSTEM - The power generation performance of a fuel cell is improved by reducing a concentration overvoltage of an anode, without increasing the cost thereof. A fuel cell system is provided with a fuel cell that generates electricity by means of electrochemical reactions between a fuel containing liquefied ammonia and an oxidizing agent, a fuel supply unit that supplies the fuel to the fuel cell, an oxidizing agent supply unit that supplies the oxidizing agent to the fuel cell, a temperature measurement unit that measures the temperature of the fuel cell, and a control unit that controls the pressure of the fuel to be supplied from the fuel supply unit to the fuel cell in accordance with the temperature of the fuel cell.09-29-2011
20100285382FUEL CELL SYSTEM AND MOBILE ARTICLE - The fuel cell system is provided with a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, an injector for regulating the gas state upstream in the fuel supply system and supplying the gas downstream, and control means for driving and controlling the injector at a predetermined drive cycle. The control means sets the working state of the injector in response to the operating state of the fuel cell.11-11-2010
20100316926FUEL CELL SYSTEM - A fuel cell system performs feedback control with respect to a reactive gas supplying apparatus based on a proportional obtained by multiplying a deviation of an actual flow quantity from a target value of a reactive gas supplied to the fuel cell from the reactive gas supplying apparatus by a proportional gain and an integral term obtained by multiplying the deviation by an integration gain to perform time integration in such a manner that the actual flow quantity coincides with the target value, and changes an update arithmetic operation of the integral term in accordance with a value of the deviation.12-16-2010
20120003559FUEL GAS SUPPLY SYSTEM FOR A POWER-CONSUMING MEMBER, AND CONTROL MEMBER USABLE FOR SUCH A SYSTEM - The invention relates to a fuel gas supply system for a power-consuming member, particularly a gaseous hydrogen supply system for a fuel cell or a heat engine, the system including at least one upstream end comprising a movable mechanical actuator for selectively controlling the opening of an insulation valve of a pressurized fuel gas tank to be coupled to the at least one upstream end, the supply system including a member for controlling the movement of the mechanical actuator, characterized in that the control member is mechanically connected to the actuator via a selectively movable mechanical movement transmission member, the control member being offset relative to the actuator so as to remotely ensure the offsetting of the actuator via mechanical forces.01-05-2012
20120021322FUEL CELL STACK FLOW DIVERSION - A fuel cell system has a compressor delivering compressed gas to a fuel cell stack and a control valve affecting the flow of compressed gas. A load dump condition is determined for the fuel cell stack. The flow through the compressor is increased and the additional flow diverted away from the fuel cell stack by the control valve to provide additional load for the fuel cell stack. The fuel cell stack may then be operated at a higher output power for the purpose of generating more waste heat to more rapidly warm itself.01-26-2012
20130202980DEVICE FOR FUEL CELL SYSTEM - A method of replacing a gas in a fuel cell system is provided, which comprises the steps of detecting that a fuel cartridge is connected to the fuel cell system having a fuel cell and supplying a fuel from the fuel cartridge on the basis of the detection to start replacement of gas in the fuel cell system. Thereby, a simple gas replacement method is provided for replacing the gas other than the fuel, which has entered the fuel cell system that is supplied with the fuel from the fuel cartridge, with the fuel. Especially, a user does not have to perform the gas replacement operation manually. The gas replacement can be automatically performed.08-08-2013
20130202978CATHODE CHANNEL SHUTOFF IN A FUEL CELL - In at least one embodiment, a fuel cell comprising a cathode flow field and a strip is provided. The cathode flow field plate defines a plurality of cathode channels for receiving a first fluid from a cathode source when the fuel cell is in an operational state. The strip includes a flexible first portion positioned about the plurality of cathode channels, the flexible first portion for moving toward the plurality of cathode channels to prevent a flow of the first fluid therein when the fuel cell is in an inoperative state.08-08-2013
20130202979PIPING UNIT FOR FUEL CELL, FUEL CELL UNIT EQUIPPED WITH PIPING UNIT AND FUEL CELL SYSTEM - A piping unit includes a cathode gas supply passage arranged to supply a cathode gas, and a cathode gas discharge passage arranged to discharge a cathode off-gas. The cathode gas supply passage includes a cathode supply valve, upstream cathode gas piping and downstream cathode gas piping. The cathode gas discharge passage includes a cathode exhaust valve, upstream cathode off-gas piping and downstream cathode off-gas piping. The cathode gas supply passage and the cathode gas discharge passage are connected with each other by cathode bypass piping and are integrated with each other by joining the cathode supply valve with the upstream cathode off-gas piping.08-08-2013
20120070757FUEL CELL VEHICLE - The pressure-adjusting valve provided in the cathode outlet of a fuel cell stack constituting a fuel cell system has a function of adjusting the oxidizing gas pressure in the fuel cell stack according to the adjustment of the valve opening degree. When the exhaust pipe is flooded with water, the pressure inside the exhaust pipe varies from the atmospheric pressure and the opening degree of the pressure-adjusting valve changes. The flooding estimation signal output processing unit of the control unit outputs a flooding estimation signal indicating that the exhaust pipe is flooded when an opening degree difference that is a difference between the opening degree of the pressure-adjusting valve and a preset opening degree corresponding to the operation directed pressure is equal to or greater than a preset threshold opening degree difference. The processing of inhibiting the flowing is performed based on this signal.03-22-2012

Patent applications in class Of gaseous reactant

Patent applications in all subclasses Of gaseous reactant