Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Antiskid, antilock, or brake slip control

Subclass of:

701 - Data processing: vehicles, navigation, and relative location


701070000 - Indication or control of braking, acceleration, or deceleration

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
701078000 Control of brake pressure 58
701074000 Having particular means to determine a reference value for wheel slippage or pseudo-vehicle speed 32
701072000 During cornering or turning of vehicle 27
701076000 Fail-safe system 9
701073000 On split coefficient surface (u) 5
20100017088PRESSURE, TIRE FORCE AND FRICTION ESTIMATION DURING ANTILOCK CONTROL - A method for estimating a brake pressure, a longitudinal tire force and a tire-road μ during periods of antilock control that measures deceleration of a wheel during a period of constant brake pressure, reduces a brake pressure to cause slip on the wheel to begin reducing, measures reacceleration of the wheel after a point in time in which the change in brake pressure is completed, calculates a change in acceleration based on the measured reacceleration and the measured deceleration, estimates a change in brake pressure from a proportional relationship between the change in acceleration and a brake pressure value, estimates a brake pressure from the relationship between a time for valve activation during a change in acceleration and the change in brake pressure. The method also estimates a longitudinal tire force from a mathematical relationship between the change in acceleration, a tire radius, and the estimated brake pressure. The method also estimates tire-road μ by dividing a normal tire force by the estimated longitudinal tire force.01-21-2010
20130144500BRAKING FORCE DISTRIBUTION CONTROL DEVICE FOR A VEHICLE - Disclosed is a braking force distribution control device for a vehicle which has a braking apparatus capable of individually controlling braking forces of the wheels as required. Front or rear wheels having higher braking force sharing rate being referred to control reference wheels and the front or rear wheels having lower braking force sharing rate are referred to control object wheels. A difference value between braking slip index values of the left and right wheels of said control object wheels is referred to a reference difference value. A braking force distribution control is executed on the control object wheels so that the magnitude relationship in wheel speeds of the left and right wheels of the control object wheels is converse to that of the left and right wheels of the control reference wheels.06-06-2013
20130184956VEHICLE BRAKE HYDRAULIC PRESSURE CONTROL APPARATUS - A wheel deceleration calculating sections individually calculate, as negative values, wheel decelerations of front and rear wheels. If, at a time when the antilock braking control for at least one of the right and left front wheels is started or at a time when the antilock braking control for at least one of the right and left rear wheels is started, (i) a maximum value of the wheel decelerations calculated by the wheel deceleration calculating sections is equal to or larger than a first predetermined value and (ii) a difference between the wheel decelerations of the right and left front wheels or the right and left rear wheels which are in an antilock braking control state is equal to or larger than a second predetermined value, a split road determining section determines that road surfaces constitute a split road.07-18-2013
20120029783ROAD SURFACE FRICTION COEFFICIENT ESTIMATING DEVICE - A road surface friction coefficient estimating device includes a means which finds a first estimated value Mnsp_estm of an external force to be compared (S02-02-2012
20120078483Integrated controller for vehicle - In an integrated controller for a vehicle, a main control unit determines whether a road ahead is a split-μ road based on captured images obtained by left and right CCD cameras, and, if so, increases a braking intervention distance correction gain for correcting braking intervention distances set by a collision prevention control unit. The collision prevention control unit performs collision prevention control at a brake timing earlier than usual using the braking intervention distances corrected by the correction gain. Furthermore, when the road ahead is determined to be a split-μ road, the main control unit decreases a target torque correction gain for correcting a target torque set by an engine control unit to prevent the vehicle from becoming unstable as a result of a yaw moment acting on the vehicle generated by a generated driving force due to a difference in friction coefficient μ between left and right road surfaces.03-29-2012
701077000 Artificial intelligence (e.g., fuzzy logic) 2
20100121548CORRECTION METHOD FOR THE CORRECTION OF CHARACTERISTIC CURVES FOR ANALOGIZED HYDRAULIC VALVES IN MOTOR VEHICLE BRAKING SYSTEMS - A correction method in which characteristic curves and/or correction values are produced, by way of which the drive current for one or more electrically activated hydraulic values operated in an analog fashion is measured during a pressure regulation in such a way that, during the operation of an anti-lock regulation, one or a respective characteristic curve is first prescribed and then the prescribed characteristic curve is corrected, particularly in a learning process, wherein, after a pressure build-up phase, the current pressure model value (Pmod) is compared to and/or analyzed using a model locking pressure level (Pmax).05-13-2010
20100222980METHOD FOR CHECKING THE FUNCTION OF A BRAKE SYSTEM WITH A BRAKE BOOSTER - A method is described which is used to check the correct function of the under-pressure brake system of a motor vehicle having an internal combustion engine and in particular of the output signals of a pressure sensor. The pressure sensor is arranged in the under-pressure region of the brake system.09-02-2010
20090037065Method For Calculating The Control Current Of An Electrically Controllable Hydraulic Valve - A method shall render it possible that an especially favorable pilot control can be achieved with an electrically controllable hydraulic valve (02-05-2009
20130080014METHOD FOR OPERATING A BRAKE-SLIP REGULATING MEANS OF A BRAKE SYSTEM OF A VEHICLE - A method and device for operating a brake-slip regulating arrangement of a vehicle brake system in various operating modes, in accordance with driving conditions, including: activating, in an on-road operating mode, the arrangement on at least one rear axle and one front axle, even in the off-road operating mode, the arrangement continues to operate on at least one rear axle of the vehicle until the brake slip on at least one wheel of a front axle is less than or equal to a specified brake-slip limit; if the specified brake-slip limit is exceeded by the brake slip on the at least one wheel of the front axle, putting the arrangement out of operation on the rear axle and is not put into operation again until the brake slip on the at least one wheel of the front axle is again less than or equal to the specified brake-slip limit.03-28-2013
20130085650VEHICLE BRAKE CONTROL SYSTEM - A vehicle brake control system includes a regenerative braking control component, a frictional braking control component, a calculating component and a controlling component. The regenerative braking control component controls a regenerative braking device to provide a regenerative braking torque. The frictional braking control component controls a frictional braking device to provide a frictional braking torque. The calculating component calculates a regenerative braking torque filter processing value based on a fluctuation frequency of the regenerative braking torque. The controlling component, during a first condition, operates a motorized power assist control device based on the regenerative braking torque filter processing value, instead of the regenerative braking torque, to moderate the frictional braking torque, such that the regenerative braking torque and the moderated frictional braking torque provide a target braking torque based on a braking operation.04-04-2013
20130035836Method for Automatically Preventing Aquaplaning - The invention relates to a method for automatically preventing aquaplaning during the driving operation of a motor vehicle on a route, which method provides according to the invention that 02-07-2013
20130073164METHOD OF AVOIDING BRAKE DISC SCORING IN A VEHICLE - A method for avoiding reducing scoring of the brake disc or the brake drum of a vehicle driven under rainy conditions calculates a product of three parameters, and activates an automatic braking operation for the vehicle, regularly, whenever the product exceeds the pre-determined threshold level. The first parameter is a rain intensity based parameter, a measure of the current raining intensity. The second parameter is a brake-activation-free driving time parameter, representing the time elapsed since the braking system of the vehicle was activated last. The third parameter is a speed parameter, which represents a current speed of the vehicle. As the automatic braking operation is carried out, the particles of dust, water, snow and de-icing substances, adhered to the brake disc of the vehicle, and causing scoring of the brake disc, are quickly removed, thus, reducing disc scoring.03-21-2013
20130166166TIRE LOCALIZATION SYSTEMS AND METHODS IN TIRE PRESSURE MONITORING SYSTEMS - Embodiments relate to tire localization in tire pressure monitoring systems (TPMS). In embodiments, a TPMS includes a wheel unit and a control unit. Each wheel unit collects acceleration data and transmits that data to the control unit for processing. The control unit processes the data and, using additional data received from another vehicle system, for example an antilock braking system (ABS) or electronic stability control (ESC) system, correlates the data in order to localize each wheel unit to a particular wheel of the vehicle. Advantages include increased processing power at the control unit as compared to the wheel unit.06-27-2013
20090306871Compensation of reduced braking effect of a hydraulic brake system for a land craft - The invention relates to a hydraulic brake system and a method for controlling a hydraulic brake system for a land vehicle having a predetermined holding capacity for hydraulic fluid and at least one wheel brake. The invention is characterized by detecting if a current holding capacity of the brake system has increased in relation to the predetermined holding capacity and, if so, by feeding hydraulic fluid to the at least one wheel brake in a controlled manner and an amount corresponding at least to the increase in capacity.12-10-2009
20110125382Coefficient of Friction Based Limitation of the Torque of a Vehicle Control Loop - A process is provided for limiting a torque or an amount characteristic thereof of a control loop used for stabilizing a vehicle. A coefficient of friction is detected according to the process. The coefficient of friction is estimated by way of vehicle-internal quantities. As a function of the coefficient of friction, a limit value is determined for the torque or the amount characteristic thereof. The torque or the amount characteristic thereof will subsequently be limited to the limit value.05-26-2011
20100114446Motor Vehicle Electric System - A motor vehicle control system having a coil switch which is connected to the vehicle electric system is intended to permit reliable operation of a coil switch without power losses in the semiconductor switches. For this purpose, a step-up converter is connected between the vehicle electric system and the coil switch.05-06-2010
20120239267MOTORCYCLE - A motorcycle sets a target slip value based on an accelerator operation by a driver, and prevents a significant decrease in the output torque of the drive power source during execution of traction control to provide a comfortable ride. The motorcycle includes a target slip value calculating section that calculates a target slip value, based on an accelerator operation by a driver; and an actual slip value calculating section that calculates an actual slip value, based on the difference between the rotation speed of the front wheel and the rotation speed of the rear wheel. The motorcycle further includes a drive power source controller arranged and programmed to reduce the output torque of the drive power source, based on the difference between a criterion value different from the target slip value and the actual slip value when the actual slip value is lower than the target slip value.09-20-2012
20100125398Service Brake Control System For Optimized Regenerative Braking Of Medium Or Heavy Trucks - Braking control for a hybrid vehicle provides both service and regenerative mode braking for the driven wheels. A hybrid drive system is coupled to the driven wheels to provide traction power and which is capable of operating in a regenerative braking mode. The service brakes are provided by pneumatically actuated service brakes coupled to the driven wheels. Braking is initiated conventionally using an operator controlled brake actuator. A pressure regulator is placed in a pneumatic brake actuation line coupled from the operator controlled brake actuator to the pneumatically actuated service brakes for the driven wheels. The pressure regulator initially closes during braking, preventing operation of the service brakes up to the limit of the ability of the hybrid drive system to absorb torque for regenerative braking. When the torque limit for the hybrid drive system is reached, the regulator opens the actuation line progressively allowing the service brakes to supplement the hybrid drive system. During loss of traction events regenerative braking is discontinued to avoid interference with operation of anti-lock braking of the vehicle's service brakes.05-20-2010
20100280727ANTISKID CONTROL - COMBINED PAIRED/INDIVIDUAL WHEEL CONTROL LOGIC - An anti-skid brake control system for a multi-wheeled vehicle includes both a paired function and an individual function. The paired function controls the wheels of the vehicle in unison. The individual function controls the wheels of the vehicle individually. A paired/individual logic circuit alternatively activates and deactivates the paired function and the individual function. A method for controlling the skid of a vehicle utilizing a paired function and a individual function is also provided.11-04-2010
20090112433METHOD FOR CONTROLLING VALVE IN ELECTRONIC HYDRAULIC PRESSURE CONTROL SYSTEM - Disclosed is a method for controlling a valve in an electronic hydraulic pressure control system, capable of effectively controlling the valve such that differential pressure between a master cylinder and a wheel cylinder is constantly maintained. The method includes the steps of measuring pressure of the master cylinder, measuring pressure of the wheel cylinder, and controlling on/off operation of the valve based on a current value obtained according to the differential pressure between the master cylinder and the wheel cylinder.04-30-2009
20090118961Method for Regulating The Brake Pressure In Motorcycles - A brake system for motorcycles and a method for regulating the brake pressure in a motorcycle having an anti-lock function and having an integral brake function are provided. By means of the integral brake function, front wheel brake means are actuated in connection with brake actuation at a rear wheel (RW), and a brake pressure (p05-07-2009
20090118959System and method for supplying power to ABS for vehicle - A system and method for supplying power to an Anti-lock Braking System (ABS) for a vehicle includes: determining whether an ignition key has been turned on; comparing voltage of a first battery unit, configured to apply the power to an ABS actuation unit, with voltage of a second battery unit, connected to the first battery unit, if the ignition key has been turned on; determining whether the ABS actuation unit is operating if the voltage of the first battery unit is lower than the voltage of the second battery unit; and charging the first battery unit with the power if the ABS actuation unit is operating, and balancing the voltage of the first battery unit and the voltage of the second battery unit if the ABS actuation unit is not operating.05-07-2009
20090024293Vehicle Control Device - An actual vehicle actuator operation control input and a model operation control input are determined by an FB distribution law such that the difference between a reference state amount determined in a vehicle model and an actual state amount of an actual vehicle approximates zero, and then an actuator device of the actual vehicle and the vehicle model are operated on the basis of the control inputs. The value of a parameter of the vehicle model is set according to an actual vehicle motional state such that the attenuation property of a reference state amount when a drive manipulated variable is changed is higher than the attenuation property of an actual state amount. Accordingly, the actual vehicle actuator device is properly controlled independently of an actual vehicle motional state such that a state amount related to an actual vehicle motion approximates a vehicle state amount on a dynamic characteristic model.01-22-2009
20090204303Method for Determining Trailer Braking Output - A method for providing a trailer equipped with trailer brakes with an electronically controlled trailer braking output to help slow a vehicle/trailer combination as quickly as possible, but in a stable and balanced manner. In situations where a low friction environment is detected, such as a wet or icy road, the present method can brake the trailer in a more aggressive manner than a gain setting would normally allow. This gain-independent segment of the trailer braking output can result in a shorter stopping distance for the vehicle/trailer combination, without causing excessive trailer wheel lockup.08-13-2009
20080312801Apparatus for determining positions and movements of a brake pedal for a vehicle brake system - The present invention relates to an apparatus for determining a pedal displacement of a brake pedal for a vehicle brake system. In said case, a magnetic element disposed on a piston in the interior of a housing of a brake cylinder is used, which cooperates with a sensor element disposed at the outside of the brake cylinder in order to detect positions and movements of the piston. As positions and movements of the piston connected to the magnetic element correspond directly with positions and movements of a brake pedal connected rigidly and directly thereto or characterize said positions and movements in the case of an indirect connection to the brake pedal, it is possible on the basis of positions and movements, which are determined for the piston, to infer the underlying pedal displacement of the brake pedal.12-18-2008
20100312447Regenerative Brake Control System and Method - A regenerative brake control system for a vehicle includes a vehicle controller, a driveline torque distribution device interfacing with the vehicle controller, an electric machine interfacing with the driveline torque distribution device, a plurality of wheels coupled to the electric machine and at least one traction condition input indicating traction of the plurality of wheels provided to the vehicle controller. The vehicle controller engages the driveline torque distribution device and the electric machine apportions regenerative brake torque to the wheels in proportion to the traction of the wheels. A regenerative brake control method for a vehicle is also disclosed.12-09-2010
20100070150AIRCRAFT BRAKE CONTROL ARCHITECTURE HAVING IMPROVED ANTISKID REDUNDANCY - An electromechanical braking system includes first and second electromechanical actuator controllers (EMACs) that each independently generate a complete set of drive control signals for an associated set of electromechanical actuators (EMAs). The drive control signals are generated in accordance with an antiskid algorithm to impart antiskid control to the braking of wheels associated with the EMAs. Drive signals for some of the EMAs from the set of EMAs are output by drivers of the first EMAC and drive signals for the other EMAs from the set of EMAs are output by drivers of the second EMAC. Drive control signals from one of the EMACs are used to control output the drive signals for all the EMAs from the set of EMAs, regardless of the EMAC in which the associated drivers are present. The drive control signals from the other of the EMACs are used as a backup set of drive control signals.03-18-2010
20120303234BRAKE CONTROL SYSTEM IN VEHICLE - A brake control system in a vehicle which executes anti-lock brake control for controlling a braking force applied to a wheel to prevent the wheel from being locked during braking of the vehicle is provided. The brake control system includes an initiation determiner section for determining whether or not an initiation condition used to initiate the anti-lock brake control is met the initiation condition including a condition in which a decrease rate of a wheel speed which is a rotational speed of the wheel is not less than a predetermined threshold; and a brake control section for initiating control of the braking force applied to the wheel in the anti-lock brake control, if the initiation determiner section determines that the initiation condition is met.11-29-2012
20110251770REGENERATIVE BRAKING CONTROL USING A DYNAMIC MAXIMUM REGENERATIVE BRAKING TORQUE CALCULATION - Methods and systems for controlling regenerative braking in a vehicle having a regenerative braking system are provided. Values of one or more dynamic variables are obtained during operation of the vehicle. A maximum regenerative braking torque is calculated using the dynamic variable values. Regenerative braking torque is provided up to the maximum regenerative braking torque.10-13-2011
20090118960Vehicle Stability Control Apparatus - An apparatus for controlling the stability of a vehicle including a controller which is adapted to detect when conditions exist under which vehicle rollover is likely and, when such conditions exist, to trigger an alarm signal or initiate a control intervention by means of which the vehicle travel is controlled to reduce the likelihood of vehicle rollover, wherein the apparatus further includes an accelerometer, the accelerometer being configured to measure the acceleration of the vehicle along two non-parallel axes.05-07-2009
20110087415Vehicular Deceleration Aiding Device - A deceleration aiding device capable of achieving deceleration control which reflects a driver's intention more accurately according to a driver's intention to decelerate a vehicle, and by which the acceleration of the vehicle is difficult to exceed a road surface friction coefficient is provided. The deceleration aiding device includes: a road information acquisition unit (04-14-2011
20110264349TRAVEL CONTROLLING APPARATUS OF VEHICLE - A travel controlling apparatus of a vehicle includes a slip ratio detecting unit that obtains a slip ratio of front wheels and rear wheels depending on a travel state of the vehicle, a friction coefficient detecting unit that obtains a friction coefficient of the front wheels and the rear wheels depending on the travel state of the vehicle, a slip ratio stable region setting unit that sets a slip ratio stable region in which the friction coefficient becomes a predetermined value or more depending on the travel state of the vehicle, a braking/driving force controlling unit that controls a braking/driving force in the slip ratio stable region, and a slip ratio stable region changing unit that changes an upper limit value and a lower limit value in the slip ratio stable region depending on a variation of the friction coefficient when the slip ratio increases and when the slip ratio decreases.10-27-2011
20100023236VEHICLE SPEED CONTROL IN A CRUISE MODE USING VEHICLE BRAKES - A cruise control system includes a speed difference module that compares a current vehicle speed and a target cruise speed, and a brake module that selectively actuates a brake when the current vehicle speed is greater than the target cruise speed by a predetermined speed difference. A related method is also provided and includes comparing a current vehicle speed and a target cruise speed, and selectively actuating a brake when the current vehicle speed is greater than the target cruise speed by a predetermined speed difference. The method includes selectively actuating the brake based on a negative drive torque of a powerplant. The method also includes determining a desired braking force based on the current vehicle speed and the target cruise speed, and actuating the brake to generate an actual braking force less than or equal to the desired braking force.01-28-2010
20100138127ELECTRIC MOTORS - An electric motor includes one or more separate coil sets arranged to produce a magnetic field of the motor. The electric motor also includes a plurality of control devices coupled to respective sub-sets of coils for current control. A similar arrangement is proposed for a generator. A coil mounting system for an electric motor or generator includes one or more coil teeth for windably receiving a coil for the motor and a back portion for attachably receiving a plurality of the coil teeth. A traction control system and method for a vehicle having a plurality of wheels independently powered by a respective motor. A suspension control system and method for a vehicle having a plurality of wheels, each wheel being mounted on a suspension arm of the vehicle and being independently powered by a respective motor.06-03-2010
20110098903BRAKE CONTROL DEVICE - It is an object of the invention to provide a brake control device that can accurately detect a rear wheel lift off state and that is not easily affected by a road surface state, a wear condition of a tire, a slipping state of a front wheel and an operation of a driver etc.04-28-2011
20120065861METHOD AND DEVICE FOR PERFORMING CLOSED-LOOP OR OPEN-LOOP CONTROL OF THE DRIVING STABILITY OF A VEHICLE - The invention relates to a method and a device for performing open-loop or closed-loop control of the driving stability of a vehicle and for avoiding collisions with an object which is located in the traffic lane. The invention also relates to a closed-loop driving stability controller. The method according to aspects of the invention comprises: determining based on environmental signals whether a critical situation in terms of driving dynamics, in particular an imminent collision, exists, calculating an avoidance path if a critical situation in terms of driving dynamics exists, determining based on a plurality of input variables pressures for individual brakes of the vehicle, and activating preparatory measures of the driving dynamics regulator, in particular dynamic switching over of closed-loop control parameters if the critical situation in terms of driving dynamics exists. The device and the closed-loop driving stability controller are suitable for carrying out the method.03-15-2012
20120109483METHOD FOR CONTROLLING TORQUE AT ONE OR MORE WHEELS OF A VEHICLE - An exemplary method for controlling torque at one or more wheels of a vehicle, including controlling both positive torque (acceleration) and negative torque (braking) with a single torque command. According to one embodiment, the method interprets the acceleration and braking intent of the driver, takes into consideration certain special conditions (e.g., vehicle dynamic conditions like wheel slip, over- and under-steer, etc.), and generates one or more individual torque commands that are sent to individual wheels or corners of the vehicle. The individual torque commands may address certain chassis and powertrain functions like acceleration and braking, and may provide full-feature torque control (i.e., acceleration, braking, vehicle dynamics, etc.) on an individual wheel basis. It is also possible for the method to be used in a system where a number of the common chassis, powertrain and/or vehicle dynamic modules have been integrated into a single torque control module or the like.05-03-2012
20090132140ANTISKID CONTROL UNIT AND DATA COLLECTION SYSTEM FOR VEHICLE BRAKING SYSTEM - A wheel speed transducer including a magnetic device associated with a wheel and a sensor device associated with the axle of the wheel provides data indicative of the velocity of the wheel. A processor located at the axle receives the wheel speed data and processes it to perform antiskid control functions. The velocity data is stored in a data concentrator also associated with the axle. A tire pressure sensor, a brake temperature sensor and a brake torque sensor, each associated with the wheel, send data to the processor at the axle, for storage in the data concentrator. A transmitting antenna associated with the axle and in communication with the data concentrator transmits stored data to a receiving antenna associated with the wheel. A data port at the wheel and in communication with the receiving antenna provides an interface to an external device for receiving the data.05-21-2009
20120265419VEHICLE BRAKING SYSTEM AND CONTROL METHOD THEREOF - Disclosed herein is a vehicle braking system and control method. The vehicle braking control method includes detecting velocities of respective wheels provided at a vehicle, calculating a vehicle velocity based on the velocities of the respective wheels, calculating slip amounts of the respective wheels by comparing the vehicle velocity and the velocities of the respective wheels, calculating change rates of the slip amounts of the respective wheels, obtaining regenerative braking force corresponding to one of the slip amounts and the slip change rates of the respective wheels, and controlling regenerative braking using the obtained regenerative braking force.10-18-2012
20110276245METHOD FOR OPERATING A VEHICLE BRAKE SYSTEM - A method for operating a vehicle brake system during a wheel slip condition. According to an exemplary embodiment, the method involves receiving a requested brake torque, monitoring wheel slip, and if no wheel slip is detected then operating the vehicle brake system according to the requested brake torque. If, however, wheel slip is detected then the method may operate the vehicle brake system according to a modified brake torque that is less than the requested brake torque.11-10-2011
20120150409VEHICLE BRAKING FORCE CONTROL DEVICE - A vehicle braking force control device which, at a normal time, performs antilock brake control when the slip ratio of a wheel has become equal to or greater than a predetermined threshold. The control device acquires from the engine control unit an accelerator pedal position signal corresponding to an accelerator pedal position, a clutch connection signal corresponding to a state of connection of a clutch, and a power transmission signal corresponding to a state of power transmission of a transmission. When engine braking is large on the basis of the accelerator pedal position signal, the clutch connection signal, and the power transmission signal, the vehicle braking force control device changes the predetermined threshold value to an offset threshold value that makes it harder to perform the antilock brake control than at the normal time.06-14-2012

Patent applications in class Antiskid, antilock, or brake slip control

Patent applications in all subclasses Antiskid, antilock, or brake slip control