Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Having control of force

Subclass of:

700 - Data processing: generic control systems or specific applications

700090000 - SPECIFIC APPLICATION, APPARATUS OR PROCESS

700245000 - Robot control

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
700260000 Having control of force 88
20120185098TELEMATIC INTERFACE WITH DIRECTIONAL TRANSLATION - Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.07-19-2012
20110022232CONTROL DEVICE FOR MOBILE BODY - A control device for a mobile body makes it possible to smoothly correct the deviation of an actual posture of a base body of a mobile body, which travels with the base body thereof moving up and down, from a desired posture of the base body while restraining an overshoot or an undershoot from occurring. To determine a required manipulated variable according to a feedback control law in order to converge a state amount deviation related to the posture of the base body of the mobile body to zero, the feedback gain of the feedback control law is determined by using the time series in a period from current time to predetermined time in the future in the time series of a desired inertial force of the mobile body or the base body. The required manipulated variable is determined by the calculation of the feedback control law on the basis of the determined feedback gain and an observed value of the state amount deviation.01-27-2011
20130166071PROCESSING TOOL AND PROCESSING METHOD - A processing tool, especially drilling tool, includes a processing element (06-27-2013
20090012648Robotic Arms With Coaxially Mounted Helical Spring Means - A robotic arm comprising a plurality of segments, each comprising articulated links, and means for causing each segment to bend so the arm can follow a serpentine path. A helical spring is provided coaxially with the arm to urge the links to an initial datum position, and to distribute the bending over the links of each segment.01-08-2009
20120035764SURGICAL ROBOT AND ROBOTIC CONTROLLER - The present invention was developed by a neurosurgeon and seeks to mimic the results of primate neurological research which is indicative of a human's actual neurological control structures and logic. Specifically, the motor proprioceptive and tactile neurophysiology functioning of the surgeon's hands and internal hand control system from the muscular level through the intrafusal fiber system of the neural network is considered in creating the robot and method of operation of the present invention. Therefore, the surgery is not slowed down as in the art, because the surgeon is in conscious and subconscious natural agreement and harmonization with the robotically actuated surgical instruments based on neurological mimicking of the surgeon's behavior with the functioning of the robot. Therefore, the robot can enhance the surgeon's humanly limited senses while not introducing disruptive variables to the surgeon's naturally occurring operation of his neurophysiology. This is therefore also a new field, neurophysiological symbiotic robotics.02-09-2012
20120109379ROBUST OPERATION OF TENDON-DRIVEN ROBOT FINGERS USING FORCE AND POSITION-BASED CONTROL LAWS - A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.05-03-2012
20100280661HIERARCHICAL ROBOT CONTROL SYSTEM AND METHOD FOR CONTROLLING SELECT DEGREES OF FREEDOM OF AN OBJECT USING MULTIPLE MANIPULATORS - A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. Hie controller controls the manipulators dining the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.11-04-2010
20080312772MOTION CONTROL SYSTEM, MOTION CONTROL METHOD, AND MOTION CONTROL PROGRAM - The present invention provides a motion control system control a motion of a second motion body by considering an environment which a human contacts and a motion mode appropriate to the environment, and an environment which a robot actually contacts. The motion mode is learned based on an idea that it is sufficient to learn only a feature part of the motion mode of the human without a necessity to learn the others. Moreover, based on an idea that it is sufficient to reproduce only the feature part of the motion mode of the human without a necessity to reproduce the others, the motion mode of the robot is controlled by using the model obtained from the learning result. Thereby, the motion mode of the robot is controlled by using the motion mode of the human as a prototype without restricting the motion mode thereof more than necessary.12-18-2008
20090177324Robot system and method for maxibags sampling in ore concentration processes - At present, the molybdenum sampling process in maxibags is carried out manually and it has the disadvantage of being carried out manually which causes the system efficiency to decrease due to the less representativeness of the samples obtained.07-09-2009
20090177325ACTUATOR AND ROBOT - An actuator and a robot are capable of properly adjusting the compliance of the motions of links in response to external forces according to an environment or application. The actuator sets a drive command angular velocity on the basis of a desired motor angular velocity, which is the resultant angular velocity of a desired link angular velocity and a desired driven angular velocity. The component of the desired link angular velocity included in a resultant desired velocity imparts stiffness to the motion of a link, while the component of the desired driven angular velocity included in the resultant desired velocity imparts flexibility to the motion of the link. Thus, the balance between the stiffness and the flexibility of the motion of the link is adjusted by adjusting the resultant ratio between the desired link angular velocity and the desired driven angular velocity.07-09-2009
20090210093Contact displacement actuator system - A robot displacement device for use with a robotic frame shaped to approximate and be coupleable to at least a portion of the human body and configured to mimic movement of the human body. The device employs a plurality of force sensors which are attached to the robotic frame which detect a baseline controlling interface force status relationship between the sensors and the extremities of the human operator. Based on the output force signal from the sensors and the force and direction of gravity relative to the robotic frame, the computation system calculates at least a rotational force required to maintain the controlling force status relationship. That system then generates and transmits an actuation signal to a drive system attached to the robotic frame which displaces a portion of the robotic frame in order to maintain the controlling force status relationship.08-20-2009
20100262291POWER ASSIST DEVICE AND ITS CONTROL METHOD - It is possible to provide a power assist device which can maintain a stable contact state without causing an oscillation phenomenon even if a robot is brought into contact with an environment. A method for controlling the power assist device is also provided. The power assist device includes: an inner force sensor which detects an operation force applied by an operator; an operation handle having the inner force sensor; a robot arm which supports the operation handle; an actuator which drives the robot arm; the actuator and a control device which measure or estimate a force applied when the robot arm is brought into contact with an environment; and the actuator and the control device which detect or estimate a motion speed of the operation handle. The control device acquires a corrected external force according to the operation force detected by the inner force sensor and an external force detected by the actuator and the control device as external force derivation means and controls the actuator so that the corrected external force acts on the operation handle.10-14-2010
20090069942ROBOT APPARATUS AND METHOD OF CONTROLLING THE SAME - A robot apparatus having a multi-link structure including a plurality of links and joints serving as link movable sections, and in which at least some of the links are driven by combination of position control and force control is disclosed. The apparatus includes: position control means for performing the position control on the links, which are driven by position control and force control; position control means with force constraint for placing the force control before the position control so as not to cause the magnitude of an external force to exceed a set value; force control means for performing the force control on the links; and integrated force/position control means for controlling driving of the joints by switching the position control means, the position control means with force constraint, and the force control means, and unifies the position control and the force control.03-12-2009
20100312394FORCE SENSOR AND INDUSTRIAL ROBOT INCLUDING THE SAME - A force sensor includes a base unit, an elastic supporting unit, an action unit supported by the elastic supporting unit, and a detection unit that detects at least one of an external force acting on the action unit and a moment acting on the action unit. The detection unit includes a light source, a diffraction grating, a photodetector array that receives an interference image formed by light that has been emitted from the light source and diffracted by the diffraction grating and outputs signals having different phases, and a calculation unit that calculates a displacement of the action unit with respect to the base unit on the basis of the signals and calculates at least one of the external force and the moment acting on the action unit on the basis of the displacement.12-09-2010
20110010012POWER ASSIST DEVICE AND METHOD OF CONTROLLING THE POWER ASSIST DEVICE - A method of controlling a power assist device that includes an operating handle, a force sensor, a robot arm, an actuator that drives the robot arm, and a conveying portion for conveying the robot arm. When a body in motion, the conveying portion is controlled to move in synchronization with the body, and when the motion of the body is stopped or has resumed, the drive of the robot arm is stopped for a predetermined time, and does not resume until after a predetermined time has elapsed.01-13-2011
20110082587SYSTEM WITH BRAKE TO LIMIT MANUAL MOVEMENT OF MEMBER AND CONTROL SYSTEM FOR SAME - A system includes a moveable member configured to permit a user to manually move at least a portion of the moveable member to permit an object coupled to the moveable member to be manipulated in space and thereby facilitate the performance of a task using the coupled object. The moveable member is configured to couple to at least a first object and a second object that is interchangeable with the first object and has a substantially different weight than the first object. A brake is configured to limit manual movement of at least the portion of the moveable member to inhibit manipulation in space of the coupled object, both when the moveable member is coupled to the first object and when the moveable member is coupled to the second object.04-07-2011
20090018700APPARATUS AND METHOD FOR ROBOT HANDLING CONTROL - A robot arm is provided with an end effecter for grasping an object and a force sensor for detecting a force acted upon the end effecter. In the state in which end effecter grasps an object, when there is a change in the force acting on the end effecter detected by the force sensor, outputted is a signal for releasing the force of the end effecter grasping the object. The object grasped by the end effecter can be taken out as if the object were handed from person over to person.01-15-2009
20110040411POWER ASSIST DEVICE AND CONTROL METHOD THEREFOR - A control method for a power assist device provided with an operation handle, a force sensor that detects an operation force applied to the operation handle and an orientation of the operation force, a robot arm, and an actuator. When the orientation of the operation force is detected to be within a predetermined angle range with respect to a preset advancing direction of the operation handle, the actuator is controlled so as to move the operation handle along the advancing direction by employing only a component of the operation force along the advancing direction; and when the orientation of the operation force is detected to be outside the predetermined angle range, the actuator is controlled to move the operation handle by the operation force applied to the operation handle and the orientation of the operation force.02-17-2011
20110040410APPARATUS AND METHOD CONTROLLING LEGGED MOBILE ROBOT - Disclosed is an apparatus and method adjusting motion of each joint of a robot to compensate for friction force of each joint such that the sole of the foot of the robot clings to the ground. The motion of each joint is adjusted as if gravity acts on each joint of the robot in a direction opposite to gravity and the robot is held in an erect state. Therefore, the robot can stand while keeping its balance without falling.02-17-2011
20110098860CONTROL DEVICE FOR LEGGED MOBILE ROBOT - A control device for a legged mobile robot has a unit which generates the time series of a future predicted value of a model external force manipulated variable as a feedback manipulated variable for reducing the deviation of the posture of the robot. A desired motion determining unit sequentially determines the instantaneous value of a desired motion such that the motion of the robot will reach or converge to a reaching target in the future in the case where it is assumed that the time series of an additional external force defined by the time series of a future predicted value of the model external force manipulated variable is additionally applied to the robot on a dynamic model.04-28-2011
20110087374ROBOT SYSTEM - First calculation means calculates a TCP velocity error vector Verr when wrist axes performs rotational following movement, second calculation means selects a component, including the sign, of the TCP velocity error vector Verr, third calculation means decomposes the selected velocity error vector into a joint velocity vector ωerr, fourth calculation means integrates the joint velocity ωerr and calculates a position correction amount vector θadd, and the position correction amount vector θadd is fed back to position control means with torque limits.04-14-2011
20110218676ROBOT, CONTROL DEVICE FOR ROBOT ARM AND CONTROL PROGRAM FOR ROBOT ARM - A robot arm, which is driven by an elastic body actuator and has a plurality of joints, is provided with an arm-end supporting member that supports the robot arm when made in contact with a supporting surface that is placed on an arm-end portion of the robot arm and a control unit that controls a force by which the arm-end supporting member and the supporting surface are made in contact with each other, and further controls a position and orientation of the arm-end portion of the robot arm.09-08-2011
20130297072CONTROL APPARATUS AND METHOD FOR MASTER-SLAVE ROBOT, MASTER-SLAVE ROBOT, CONTROL PROGRAM, AND INTEGRATED ELECTRONIC CIRCUIT - A control apparatus for a master-slave robot includes a force correction section detecting unit that detects a section at which force information from at least one of force information and speed information is corrected, and a force correcting unit that corrects the force information at a section detected as a force correction section by the force correction section detecting unit. A small external force applied to a slave manipulator is magnified and transmitted to a master manipulator, or an excessive manipulation force applied to the master manipulator is reduced and transmitted to the slave manipulator.11-07-2013
20110093120APPARATUS AND METHOD FOR ADJUSTING PARAMETER OF IMPEDANCE CONTROL - An apparatus has a parameter initial value calculator, a force reference impression part, an evaluation data measurement part, an allowable value setting part, a viscosity parameter calculator, an end determining part, and an inertia parameter adjusting part. The force reference impression part intermittently supplies a force reference to an impedance controller. The evaluation data measurement part measures setting time of time response, an overshoot amount, and the number of vibration times. The allowable value setting part sets allowable values of the overshoot amount and the setting time. The viscosity parameter calculator calculates a viscosity parameter with which the setting time becomes shortest. The end determining part determines the end or continuation of the process by comparing the adjustment values with the allowable values. The inertia parameter calculator adjusts the inertia parameter according to the adjustment values of the overshoot amount and the setting time.04-21-2011
20120072025ROBOT APPARATUS - There is provided a robot apparatus that can rapidly obtain an ellipse indicating a stiffness characteristic, even if lengths of two links are different from each other.03-22-2012
20110130879IN-VIVO TENSION CALIBRATION IN TENDON-DRIVEN MANIPULATORS - A method for calibrating tension sensors on tendons in a tendon-driven manipulator without disassembling the manipulator and without external force references. The method calibrates the tensions against each other to produce results that are kinematically consistent. The results might not be absolutely accurate, however, they are optimized with respect to an initial or nominal calibration. The method includes causing the tendons to be slack and recording the sensor values from sensors that measure the tension on the tendons. The method further includes tensioning the tendons with the manipulator positioned so that it is not in contact with any obstacle or joint limit and again recording the sensor values. The method then performs a regression process to determine the sensor parameters that both satisfy a zero-torque constraint on the manipulator and minimize the error with respect to nominal calibration values.06-02-2011
20120221146ROBOT AND CONTROL DEVICE FOR SAME - A robot is provided with: a base section; three motors set on the base section; a support so set that an axial centerline is perpendicular to a surface of the base section; pulleys; three wires into which nonlinear springs are incorporated; an output shaft connected to a load; a differential mechanism having a pinion gear connected to the output shaft and also having an affixation member disposed at the upper end of the support; a universal joint disposed at the ring of the differential mechanism; and a wire guide disposed at the affixation member of the differential mechanism. Two side gears of the differential mechanism and two motors are connected in one-to-one correspondence by means of two wires through the pulleys, and the remaining motor and the universal joint are connected by means of the remaining wire which is passed through the wire guide.08-30-2012
20120239197ROBOTIC GRIPPER - A robotic gripper. Each of two gripper fingers is attached to a bearing carriage. Each bearing carriage defines a rack gear and is adapted to ride on a bearing rail. A single pinion gear has two gear elements. Each of the two gear elements are meshed with one of the two rack gears so as to drive the two bearing carriages in opposite direction upon rotation of the pinion gear. A worm gear is fixed to the single pinion gear. A worm screw is meshed to the worm gear and adapted to cause rotation of the worm gear and the single pinion gear and a gripping action or a releasing action of the two gripping fingers, depending on the rotation of the worm screw. A motor is adapted to drive the worm screw in a first rotary direction and a second rotary direction.09-20-2012
20120239198CONTROL DEVICE FOR POWER DEVICE - In a power device 09-20-2012
20120330463Method for Mounting Components by Means of an Industrial Robot - The invention relates to a method for mounting a component (12-27-2012
20130304258MICRO-FORCE GUIDED COOPERATIVE CONTROL FOR SURGICAL MANIPULATION OF DELICATE TISSUE - A method and system for micro-force guided cooperative control that assists the operator in manipulating tissue in the direction of least resistance. A tool holder receives a surgical tool adapted to be held by a robot and a surgeon. A first sensor measures interaction forces between a tip of the surgical tool and tissue of a region of interest. A second sensor measures interaction forces between the surgeon and a handle to the surgical tool. A data processor is configured to perform an algorithm to actively guide the surgical tool by creating a bias towards a path of least resistance and limit directional tool forces of the surgical tool as a function of handle input forces and tip forces. This function offers assistance to challenging retinal membrane peeling procedures that require a surgeon to delicately delaminate fragile tissue that is susceptible to hemorrhage and tearing due to undesirable forces.11-14-2013
20120095598CONTROL DEVICE FOR ROBOT, CONTROL METHOD AND COMPUTER PROGRAM - A control device for a robot including: a hybrid dynamics calculator calculating joint forces that act on immovable joints and the joint accelerations that are generated at movable joints by performing a hybrid dynamics calculation that includes inverse dynamics and forward dynamics using an auxiliary model in which the actuated joints of the robot having the actuated joints and the unactuated joints are immovable; a forward dynamics calculator calculating the acceleration that is generated by known force that acts on the robot using a main model; a joint force determination unit determining the joint force; and a joint force controller controlling the joint force of each joint of the robot.04-19-2012
20120150349HAPTIC INTERFACE HANDLE WITH FORCE-INDICATING TRIGGER MECHANISM - Method and system for telematic control of a slave device (06-14-2012
20130173058METHOD AND SYSTEM FOR CONTROLLING LIFTING OPERATION OF WEARABLE ROBOT - Disclosed herein is a method and system for controlling the lifting operation of a wearable robot. A final force that must be applied by the robot to an object upon conducting a lifting operation is derived based on a difference between a weight force applied by the object to the robot and an apply force applied by a wearing user to the robot. A target position to which the robot lifts the object is set. A spring-damper virtual force model is applied to an end of the robot and to joints of the robot, the final force is converted into final torques required by the joints of the robot by being incorporated into the virtual force model, and then the joints of the robot are operated based on the final torques. The final force is fixed once the robot has lifted the object to the target position.07-04-2013
20130090764IMPROVISED EXPLOSIVE DEVICE DEFEAT SYSTEM - A robot system (04-11-2013
20130238132Method And Device For Controlling A Peripheral Component Of A Robot System - In a method according to the invention for controlling a peripheral component (09-12-2013
20130131867STEADY HAND MICROMANIPULATION ROBOT - A cooperative-control robot includes a base component, a mobile platform arranged proximate the base component, a translation assembly operatively connected to the base component and the mobile platform and configured to move the mobile platform with translational degrees of freedom substantially without rotation with respect to said the component, a tool assembly connected to the mobile platform, and a control system configured to communicate with the translation assembly to control motion of the mobile platform in response to forces by a user applied to at least a portion of the cooperative-control robot. The translation assembly includes at least three independently operable actuator arms, each connected to a separate position of the mobile platform. A robotic system includes two or more the cooperative-control robots.05-23-2013
20130151009ROBOT, ROBOT CONTROL APPARATUS, ROBOT CONTROL METHOD, AND ROBOT CONTROL PROGRAM - A robot includes a multi-joint robot arm, an external force acquiring unit arranged at the multi-joint robot arm to acquire an external force, and an impedance control unit that causes the multi-joint robot arm to operate as a virtual spring-mass-damper system based on the external force acquired by the external force acquiring unit. The impedance control unit has an impedance map storage unit that defines impedance parameters at each of points of the work region, and an impedance map variable unit that changes the distribution of the impedance parameters in the impedance map storage unit in accordance with the current arm end position or the current arm end velocity of the multi-joint robot arm.06-13-2013
20130184869ROBOT CONTROLLER, ROBOT SYSTEM, ROBOT CONTROL METHOD - A robot controller includes a force control unit that outputs a correction value of a target track of a robot based on a detected sensor value acquired from a force sensor, a target value output unit that obtains a target value by performing correction processing on the target track based on the correction value and outputs the obtained target value, and a robot control unit that performs feedback control of the robot based on the target value. Further, the force control unit performs first force control when an external force direction indicated by the detected sensor value is a first direction, and performs second force control different from the first force control when the external force direction is a second direction opposite to the first direction.07-18-2013
20110288683GRIP POSITION CALCULATOR AND METHOD OF CALCULATING GRIP POSITION - The grip position calculator determines a grip position where the fingers can grip a workpiece in any orientation of the workpiece. The calculator then determines an initial position where the finger tips can grip the workpiece and set the initial position as a point of calculation. Then an allowable gripping force is calculated which is an index that indicates an allowable force to be applied to the workpiece at point. Then other allowable forces are calculated for a plurality of points near the point of calculation. Then the point of calculation is selected as a possible gripping position if the allowable force a point is greater than any of the allowable forces. Otherwise, one of the points is selected for another point of calculation where the greatest allowable force (De) has been calculated and return to calculating an allowable gripping force.11-24-2011
20130253705CONTROL SYSTEM FOR A GRASPING DEVICE - A method for operating a grasping device and grasping devices therefrom are provided. The grasping device is configured to use a plurality of parallel, bi-directional state flow maps each defining a sequence of poses for a plurality of joints in the grasping device. The method include receiving at least one control signal, determining a current pose of the grasping device within the one of the plurality of state flow maps currently selected for the grasping device, and selectively actuating the plurality of joints to traverse the sequence of poses, where a direction for traversing the sequence of poses is based on the at least one control signal.09-26-2013
20130197697FORCE FEEDBACK SYSTEM - A force feedback system and method are provided. The force feedback system includes a communication module, a processor and a motor drive module. The processor is for receiving and processing mechanical arm signals corresponding to a movement of the plurality of mechanical arms and the motor drive module is for activating the plurality of actuators. The method involves providing an interface between a controller and aplurality of mechanical arms, receiving and processing mechanical arm signals corresponding to movement of the mechanical arms activating a plurality of actuators and generating a force feedback.08-01-2013
20110160907CONTROL DEVICE FOR ROBOT - A control device for a robot determines, as a desired driving force to be imparted to a joint, a component value corresponding to the displacement amount of each joint out of a desired generalized force vector τcmd that satisfies the relationship indicated by expression 01 given below by using basic parameter group of M, N, and Jacobian matrixes Jc and Js, a desired value ↑C of the motion acceleration of a contact portion representative element representing a motion of a contact portion of a robot 06-30-2011
20110160906CONTROL DEVICE FOR MOBILE ROBOT - A control device for a mobile robot, in which the desired value of a motion state amount of a mobile robot includes at least the desired value of a vertical component of a first-order differential value of the translational momentum of the entire mobile robot. The desired value is determined by a state amount desired value determiner such that the observed value of the vertical position of an overall center-of-gravity point of the mobile robot is converged to a predetermined desired value according to a feedback control law. A control input determiner carries out the processing of inverse dynamics calculation, using the desired value of the motion state amount thereby to determine the desired driving force for each joint. The operation of an actuator is controlled on the basis of the determined desired driving force.06-30-2011
20110166709ROBOT AND CONTROL METHOD - A robot one of transfers an article to an external subject and receives the article from the human subject and flexibly copes with changes in human intention. If a pushing force applied to robot hands is sensed, the robot hands grip and pull the article to inform the external subject that the robot hands are prepared to receive the article from the external subject, and transfers the article to the external subject or takes the article from the external subject according to whether the pushing force or a pulling force applied to the robot hands is sensed. If the pulling force applied to a robot hands is sensed, the robot pushes the article to inform the external subject that the robot hands are prepared to transfer the article to the external subject, and transfers the article to the external subject or takes the article from the external subject according to whether the pushing force or the pulling force applied to the robot hands is sensed.07-07-2011
20110172823ROBOT AND CONTROL METHOD THEREOF - A robot and a control method thereof may adjust a yaw moment generated from a foot contacting a ground to achieve stable walking of the robot. The robot, which may have an upper body and a lower body, may include a main controller starting walking of the robot through only motions of joints of the lower body and adjusting a motion of the upper body such that a yaw moment generated from a foot the lower body during walking of the robot is less than the maximum static frictional force of a ground to perform stable walking of the robot, and sub controllers driving actuators of the joints according to a control signal of the main controller.07-14-2011
700261000 Having control of robot torque 42
20130079930OPERATIONAL SPACE CONTROL OF RIGID-BODY DYNAMICAL SYSTEMS INCLUDING HUMANOID ROBOTS - An operational space control solution is provided for rigid-body dynamical systems such as humanoid or legged robots. The solution includes an operational space controller that decomposes rigid body dynamics into task space dynamics and null space dynamics. Then, for systems that are fully actuated and have constraints, the controller provides control signals defining task space torques and null space torques for each actuator (e.g., a motor for a rotary joint between two rigid links). In some embodiments, a minimum torque vector is determined such that the controller is a minimum-torque operational space controller. For systems that are underactuated, task and null space dynamics are again considered, and underactuation is addressed by using null space forces to indirectly apply torque at passive degrees of freedom such as at active joints to create task-irrelevant motion that moves passive joints to facilitate task performance by the robot or rigid-body dynamical system.03-28-2013
20130041509ARTICULATED ARM ROBOT, CONTROL METHOD AND CONTROL PROGRAM - An articulated arm robot includes a support part capable of extending and contracting upward and downward, a first arm part with one end joined to the support part through a first joint to be rotatable about a yaw axis and having a second joint rotatable about a roll axis between both ends, a second arm part with one end joined to the other end of the first arm part through a third joint to be rotatable about the yaw axis or a pitch axis, an end effector part joined to the other end of the second arm part through a fourth joint to be rotatable about the yaw axis or the pitch axis, and drivers that respectively cause the first to fourth joints to rotate and the support part to extend and contract, and a controller that performs drive control of the drivers of the first to fourth joints by switching the arm between a SCARA mode where the first, second and third arm parts rotate only in a horizontal plane and a perpendicular mode where the second and third arm parts rotate only in a vertical plane.02-14-2013
20130211595CONTROL METHOD OF ROBOT APPARATUS AND ROBOT APPARATUS - A control method of a robot apparatus, the robot apparatus including a link and a pair of actuators, obtaining each driving force command value of each of the actuators, and controlling each of the actuators, the control method including: a torque command value calculation step of using the target stiffness, the target trajectory, angular velocity of the target trajectory, and angular acceleration of the target trajectory to calculate a torque command value; a determination step of determining whether each of the driving force command values is a value 0 or greater; a change step of performing at least one of a change of increasing the target stiffness and a change of reducing the angular acceleration; and a driving force command value calculation step of using the target stiffness and the torque command value to calculate each of the driving force command values.08-15-2013
20130060383INDUSTRIAL ROBOT HAVING AN APPARATUS FOR DRIVING AN ATTACHABLE/DETACHABLE FOUR-BAR LINK MECHANISM - The invention relates to an industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism, comprising: a base frame having a rotating joint for a robot body; a pivot frame which is coupled to the rotating joint and which has a rotating joint; a column frame which is coupled to the rotating joint of the pivot frame, and which has a straight-line joint; a motor arranged in the pivot frame to rotate the column frame; a decelerator attachably/detachably mounted on the rotating joint of the pivot frame or directly on the pivot frame to receive driving force from the motor; and a four-bar link installed between an output shaft of the decelerator and the column frame.03-07-2013
20110282493Medical WorkStation And Operating Device For The Manual Movement Of A Robot Arm - The invention relates to a medical workstation and an operating device (11-17-2011
20100152898JOINT-SPACE IMPEDANCE CONTROL FOR TENDON-DRIVEN MANIPULATORS - A system and method for controlling tendon-driven manipulators that provide a closed-loop control of joint torques or joint impedances without inducing dynamic coupling between joints. The method includes calculating tendon reference positions or motor commands by projecting a torque error into tendon position space using a single linear operation. The method calculates this torque error using sensed tendon tensions and a reference torque and internal tension. The method can be used to control joint impedance by calculating the reference torque based on a joint position error. The method limits minimum and maximum tendon tensions by projecting the torque error into the tendon tension space and then projecting ii back into joint space.06-17-2010
20100280662TORQUE CONTROL OF UNDERACTUATED TENDON-DRIVEN ROBOTIC FINGERS - A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.11-04-2010
20110172825WALKING CONTROL APPARATUS OF ROBOT AND METHOD OF CONTROLLING THE SAME - A walking control apparatus of a robot includes joint portions provided in each of a plurality of legs of the robot, a state database to store state data of each of the legs and state data of the joint portions corresponding to the state of each of the legs, when the robot walks, a position instruction unit to store desired positions corresponding to the state data of the joint portions, an inclination sensing unit to sense an inclination of an upper body of the robot, a torque calculator to calculate torques using the inclination of the upper body and the desired positions, and a servo controller to output the torques to the joint portions to control the walking of the robot. Since the robot walks by Finite State Machine (FSM) control and torque servo control, the rotation angles of the joint portions do not need to be accurately controlled. Thus, the robot walks with low servo gain and energy consumption is decreased. Since the robot walks with low servo gain, each of the joints has low rigidity and thus shock generated by collision with surroundings is decreased.07-14-2011
20110172824WALKING ROBOT AND METHOD OF CONTROLLING THE SAME - Disclosed herein are an apparatus and method for controlling stable walking of a robot based on torque. In a method of enabling stable walking by controlling torque of a hip joint portion using a Finite State Machine (FSM) without solving a complicated dynamic equation, torque of a stance leg is finally calculated using pose control torque of an upper body, pose control torque of a swing leg, and initial pose control torque of a stance leg supporting the upper body. Accordingly, the robot may stably walk with torque balance. Since gravity compensation torque is applied, a torso of the robot is not inclined and the pose of the robot is stably maintained.07-14-2011
20090287354ROBOT AND METHOD OF CONTROLLING COOPERATIVE WORK THEREOF - Disclosed are a robot, which performs cooperative work with a plurality of robot manipulators through impedance control, and a method of controlling cooperative work of the robot. The method includes calculating absolute coordinate positions of end effectors, respectively provided at a plurality of manipulators to perform the work; calculating a relative coordinate position from the absolute coordinate positions of the end effectors; calculating joint torques of the plurality of manipulators using the relative coordinate position; and controlling the cooperative work of the plurality of manipulators according to the joint torques.11-19-2009
20100138043LEGGED MOBILE ROBOT AND METHOD OF CONTROLLING THE SAME - When a swinging leg (e.g., the leg link LR) lands on road surface, a control unit 06-03-2010
20090055025SYSTEM AND METHOD ENABLING SENSORLESS ACTUATOR - An actuator having a two-parameters energy converter is coupled to a transducer and is driven by a controller. Prior to assembly and operation of the actuator, a calibration procedure is performed. The calibration procedure, together with the unique controller, enable accurate control of the output parameters of the actuator. In one example, the parameters are rate and force, and the calibration and controller enable accurate control of the rate and force at the output of the actuator by measuring only the rate at the output of the energy converter. Consequently, no sensors are needed at the output of the actuator, i.e., at the output of the transducer, where the load is applied.02-26-2009
20100161130Control apparatus of multi-finger hand and grasping method using the same - A grasping method of a multi-finger hand including calculating positions of tips of plural actual fingers; calculating positions of tips of plural virtual fingers using the calculated positions of the tips of the plural actual fingers; judging that a central position among the calculated positions of the tips of the plural virtual fingers is a central position of a virtual object based on the calculated positions of the tips of the plural virtual fingers; and controlling joint torques of the respective actual fingers corresponding to the tips of the virtual fingers such that motions of the tips of the plural virtual fingers are carried out while uniformly maintaining the relative positional relationships of the tips of the plural virtual fingers based on the central position of the virtual object.06-24-2010
20130218345WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot capable of implementing a balancing action to ensure a stable walking on uneven ground based on an FSM-based walking control method, and a control method thereof, is capable of implementing stable walking by controlling torques of the hip joint, the knee joint and the ankle joint by use of FSM without calculating complicated Dynamics Equations. The walking robot ensures stable walking on uneven ground through a simple calculation by use of the angle formed by the ground and the both feet The walking robot is made to be applied to a robot provided with joints having six degrees of freedom through a simple calculation of compensation angles.08-22-2013
20110010013SINGLE WHEEL ROBOT SYSTEM AND ITS CONTROL METHOD - This invention relates to a single wheel robot system and its control method. The robot is an intelligent self-control and thus self-balancing unicycle riding robot. The control method is the balance control method of the static imbalance unicycle robot. The single wheel robot includes mechanical body and control system; the body contains a single wheel in the substructure which can rotate around for balance; the control system comprises state sensors, motion controller, servo-driven controllers, and a power system. Among them, the motion controller receive signals from the state sensors, in accordance with control procedures for processing of the received signal, thereby issuing control instructions. The servo drive controller receives the control instructions and controls the motors of the robot to adjust posture to be balanced.01-13-2011
20100185330Robot walking control apparatus and method thereof - Disclosed are a robot walking control apparatus, which removes an ineffective motion, generated by a robot walking based on torque, by selecting a motion state of the robot based on torque and controlling torques of joints of the robot so that a ZMP of the robot is located in a safety area, when the walking of the robot is controlled, and a method thereof.07-22-2010
20110178639HUMANOID ROBOT AND WALKING CONTROL METHOD THEREOF - A humanoid robot that achieves stable walking based on servo control of a joint torque and a walking control method thereof. The humanoid robot calculates a joint position trajectory compensation value and a joint torque compensation value using a measurement value of a sensor, compensates for a joint position trajectory and a joint torque using the calculated compensation value, and drives a motor mounted to each joint according to the compensated joint torque.07-21-2011
20110071680INTEGRATED HIGH-SPEED TORQUE CONTROL SYSTEM FOR A ROBOTIC JOINT - A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).03-24-2011
20100076601FROG-LEG-ARM ROBOT AND CONTROL METHOD THEREOF - The frog-leg-arm robot is provided with a torque motor connected to a wrist rotation shaft to supply torque to a rotation shaft to which the torque motor itself is connected and a control unit in which, when each of arms constituting the frog-leg-arm robot is able to shift from the present posture to any plurality of postures including a targeted posture by a driving device, the torque motor is electrically controlled so that the torque is supplied to the wrist rotation shaft in a direction in which each of the arms is able to shift to the targeted posture.03-25-2010
20120065781REDUCER ABNORMALITY DETERMINATION METHOD, ABNORMALITY DETERMINATION DEVICE, AND ROBOT SYSTEM - The invention provides a method and a device capable of precisely and simply extracting data used for abnormality determination and life diagnosis of a drive system of an industrial robot while executing a normal action program. Regarding a torque signal Tf outputted from a motor driver for controlling a motor in accordance with a position command Xs generated based on an operation program of a robot to the motor, a highpass filter is applied after gravity compensating torque and interference torque due to other shafts of the robot are removed from the torque signal Tf, and an abnormality in a reducer is determined based on an extracted oscillating component of the reducer.03-15-2012
20130158712WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot includes hip joints of plural legs, a pose detector to detect a pose, a walking state judger to judge a walking state from the pose, a target angle trajectory generator to judge support and swing legs based on the walking state, to judge whether or not the swing leg contacts a surface prior to a prestored time, to shorten the next support cycle executed by the swing leg upon judging that the swing leg contacts a surface prior to the prestored time, and to generate target angle trajectories of the hip joints based on the shortened support cycle, a torque calculator to calculate torques tracking the target angle trajectories, and a controller to output the torques to the hip joint to control walking of the walking robot.06-20-2013
20120059518WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot and a control method thereof. The robot includes at least one joint unit on each leg, a sensing unit to sense angle and angular velocity of the at least one joint unit, a memory unit to store data of the angle and angular velocity during stable walking, a target trajectory generation unit to generate a target trajectory, a control torque calculation unit to check stability of the at least one joint unit by comparing the sensed angle and angular velocity with the target trajectory, and, if an unstable joint unit is present, to calculate a control torque of the unstable joint unit to trace the target trajectory, and a servo control unit to transmit the calculated control torque to the unstable joint unit, thereby controlling torques of joint units using an FSM without solving the complicated dynamic equation, thus achieving stable walking.03-08-2012
20120072026ROBOT SYSTEM CONTROLLING METHOD, ROBOT SYSTEM, AND CONTROL APPARATUS FOR QUADRUPEDAL ROBOT - An object of the present invention is to provide a robot system controlling method and robot system which perform link angle control and joint stiffness control through feedback control.03-22-2012
20120316682BALANCE CONTROL APPARATUS OF ROBOT AND CONTROL METHOD THEREOF - A balance control apparatus of a robot and a control method thereof. The balance control method of the robot, which has a plurality of legs and an upper body, includes detecting pose angles of the upper body and angles of the plurality of joint units, acquiring a current capture point and a current hip height based on the pose angles and the angles of the plurality of joint units, calculating a capture point error by comparing the current capture point with a target capture point, calculating a hip height error by comparing the current hip height with a target hip height, calculating compensation forces based on the capture point error and the hip height error, calculating torques respectively applied to the plurality of joint units based on the compensation forces, and outputting the torques to the plurality of joint units to control balance of the robot.12-13-2012
20100250001SYSTEMS AND METHODS FOR TRACKING AND BALANCING ROBOTS FOR IMITATING MOTION CAPTURE DATA - Various embodiments of the invention provide a control framework for robots such that a robot can use all joints simultaneously to track motion capture data and maintain balance. Embodiments of the invention provide a framework enabling complex reference movements to be automatically tracked, for example reference movements derived from a motion capture data system.09-30-2010
20120165987WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot and a control method thereof. The control method of the walking robot which walks using two legs includes applying first virtual gravity torque including a vector component in the anti-gravity direction to respective joints of a support leg from among the two legs during walking, and applying second virtual gravity torque including a vector component in the gravity direction to respective joints of a swing leg from among the two legs during walking. Thereby, the walking robot implements a natural walking motion having a low energy consumption rate.06-28-2012
20120316684Momentum-Based Balance Controller For Humanoid Robots On Non-Level And Non-Stationary Ground - A momentum-based balance controller controls a humanoid robot to maintain balance. The balance controller derives desired rates of change of linear and angular momentum from desired motion of the robot. The balance controller then determines desired center of pressure (CoP) and desired ground reaction force (GRF) to achieve the desired rates of change of linear and angular momentum. The balance controller determines admissible CoP, GRF, and rates of change of linear and angular momentum that are optimally close to the desired value while still allowing the robot to maintain balance. The balance controller controls the robot to maintain balance based on a human motion model such that the robot's motions are human-like. Beneficially, the robot can maintain balance even when subjected to external perturbations, or when it encounters non-level and/or non-stationary ground.12-13-2012
20120316683BALANCE CONTROL APPARATUS OF ROBOT AND CONTROL METHOD THEREOF - A balance control apparatus of a robot and a control method thereof. The balance control method of the robot, which has a plurality of legs and an upper body, includes detecting pose angles of the upper body and angles of the plurality of joint units, acquiring a current capture point and a current hip height based on the pose angles and the angles of the plurality of joint units, calculating a capture point error by comparing the current capture point with a target capture point, calculating a hip height error by comparing the current hip height with a target hip height, calculating compensation forces based on the capture point error and the hip height error, calculating a target torque based on the calculated compensation forces, and outputting the calculated target torque to the plurality of joint units to control balance of the robot.12-13-2012
20120232698PRODUCTION APPARATUS - A production apparatus according to an embodiment includes a robot and outer wall portions. The outer wall portions surround the robot from its lateral sides. Furthermore, at least a part of the outer wall portions is provided within the movable range of the robot.09-13-2012
20130173059METHOD AND SYSTEM FOR CONTROLLING DRIVING OF WEARABLE ROBOT - A system for controlling driving of a wearable robot may include a drive unit for operating a drive joint of the robot, a measurement unit for measuring an actual angle and an actual angular velocity of the drive joint in the robot, a sensing unit for determining a human torque applied by a wearing user to the drive joint, and a control unit for determining a target angular velocity of the robot by applying the determined human torque to an admittance model and for determining a required torque that may be input to the drive unit of the robot by applying an optimal control gain to a difference between the target angular velocity and the actual angular velocity of the robot.07-04-2013
20100234999MULTI-JOINT ROBOT AND CONTROL PROGRAM THEREOF - The present invention provides a multi-joint robot that, when the loads acting on some of joints are overloaded, controls the joints so as to continue the work as far as possible while easing the overloaded state. The load estimate unit (09-16-2010
20130173060METHOD OF OPERATING A WEARABLE ROBOT - Disclosed herein is a method of obtaining the intended manipulation torque of a user for a wearable robot. The method allows the wearable robot, the motion of each joint of which is operated by a motor and which is capable of measuring a variation in current in the motor of each joint and calculating a torque at each joint, to simply and rapidly extract the intended manipulation torque of the user using both an acceleration value (e.g., measured by an acceleration sensor installed on a gripper), and the current variation of the motor, in a state in which the wearable robot does not know the weight of a weight object to be lifted with the gripper. Accordingly, the wearable robot may be suitably controlled at a comparatively lower cost.07-04-2013
20130144439WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot to prevent slippage of a swing foot on the ground and a control method thereof includes generating a target angle trajectory for each joint unit of legs, calculating a torque, which tracks the target angle trajectory, for each joint unit, determining whether slippage of a swing foot connected to a swing leg of the two legs occurs, calculating a final torque to be provided to each joint unit of the swing leg based on a velocity sensed from the swing foot if occurrence of slippage of the swing foot is determined, and providing the calculated final torque to each joint unit. By sensing whether slippage of the swing foot occurs when the swing foot touches the ground and restricting a torque to be applied to each joint unit based on the sensed result, stable walking of the robot is realized.06-06-2013
20090306825MANIPULATION SYSTEM AND METHOD - A method, computer program product, and system for robotic manipulation is provided. The method may include receiving, at a computing device, an input indicating an existence of an object having at least one characteristic and identifying the at least one characteristic via the computing device. The method may further include determining a robotic manipulating algorithm for the object based upon, at least in part, the at least one characteristic, the robotic manipulating algorithm defining instructions for enabling a robot to manipulate the object. Numerous other embodiments are also within the scope of the present disclosure.12-10-2009
20110213498DESIRED MOTION EVALUATION APPARATUS OF LEGGED MOBILE ROBOT - A desired motion evaluation apparatus of a legged mobile robot uses virtual surfaces (S09-01-2011
20100286828LIP MOVING DEVICE FOR USE IN ROBOTS - Various embodiments of a lip moving device for use in robots are provided. A lip moving device has first and second lip members. The first and second lip members are made from a flexible material. First and second driving parts apply torques to both ends of the first lip member, while third and fourth driving parts apply torques to both ends of the second lip member. The first and third driving parts are mounted in a first frame. The second and fourth driving parts are mounted in a second frame. The first and second frames are pivotally coupled to a supporting part. An adjusting part pivots the first and second frames relative to the supporting part to adjust a distance between the first and second frames.11-11-2010
20130245829ROBOT CONTROL METHOD, ROBOT CONTROL DEVICE, AND ROBOT CONTROL SYSTEM - A CPU of a robot control device calculates load torque based on the inertia force, centrifugal force or Coriolis force, gravity force, friction torque, and actuator inertia torque applied to a joint axis of each link, each time an orientation parameter indicative of the link position and orientation allowed by a redundant degree of freedom is sequentially changed, under a constraint of end-effector position and orientation as target values. The CPU obtains the link position and orientation at which the ratio of the load torque to the rated torque of a rotary actuator provided for each joint is minimized, while the orientation parameter is being changed, and provides a feed-forward value that gives rise to each load torque obtained when the ratio of the load torque to the rated torque of the rotary actuator is minimized, to a control command generated to the rotary actuator of each joint axis for achieving the end-effector position and orientation as target values.09-19-2013
20120143376WALKING ROBOT AND METHOD FOR CONTROLLING POSTURE THEREOF - A walking robot having joints which move using a torque servo, a posture of the robot being stably controlled, and a method of controlling a posture of the robot. It is possible to maintain a stable angle of the upper body while keeping an erect posture and balance using the COG of the robot and the inclination and the direction of the upper body and the pelvis of the robot, even in an external variation including external force or an inclination angle of the ground. Even in a state in which terrain information is not known in advance, the robot may keep an erect posture in a direction of gravity. Even when a plane where the robot stands is gradually inclined, the postures of the upper body and the legs of the robot may be kept while actively changing the angle of the ankle joint.06-07-2012
20130211596CONTROL METHOD OF ROBOT APPARATUS AND ROBOT APPARATUS - A control method of a robot apparatus, the robot apparatus including a link and a pair of actuators, obtaining each driving force command value of each of the actuators, and controlling each of the actuators, the control method including: a torque command value computation step; a change computation step of computing a difference between the joint stiffness command value and a value and performing a computation of subtracting a value from the joint stiffness command value; an iterative step of iterating the computations of the torque command value computation step and the change computation step until the difference converges to a value equal to or smaller than a predetermined value; and a driving force command value computation step to compute each of the driving force command values when the difference is converged to a value equal to or smaller than the predetermined value.08-15-2013
20120158183WALKING ROBOT AND CONTROL METHOD THEREOF - A robot which naturally walks with high energy efficiency similar to a human through optimization of actuated dynamic walking, and a control method thereof. The control method includes defining a plurality of unit walking motions, in which stride, velocity, rotating angle and direction of the robot are designated, through combination of parameters to generate target joint paths, and constructing a database in which the plurality of unit walking motions is stored, setting an objective path up to an objective position, performing interpretation of the objective path as unit walking motions, generating walking patterns consisting of at least one unit walking motion to cause the robot to walk along the objective path based on the interpretation of the objective path, and allowing the robot to walk based on the walking patterns.06-21-2012
20120158182WALKING CONTROL APPARATUS AND METHOD OF ROBOT - A walking control apparatus and method of a robot. The walking control method include confirming a swing leg and a support leg by judging a walking state of the robot when a walking velocity of the robot and a walking command are received by the robot, generating reference pitch knot points of a hip joint unit of the swing leg based on the walking state and the walking velocity of the robot, generating a target pitch angle trajectory of the hip joint unit of the swing leg using the reference pitch knot points, calculating torques tracking the target pitch angle trajectory, and outputting the torques to the hip joint unit of the swing leg to control the walking velocity of the robot. The walking velocity of the robot is rapidly and easily changed by adjusting at least one of a step length and a step time.06-21-2012
20120158181WALKING ROBOT AND POSE CONTROL METHOD THEREOF - A walking robot, respective joints of which are operated through torque servo control to achieve stable pose control, and a pose control method thereof. A virtual acceleration of gravity is calculated using the COG of the robot and gravity compensation torques to apply force to links are calculated from the calculated acceleration of gravity so as to actively cope with external changes including external force or a tilt of the ground, thereby allowing the robot to stably maintain an erect pose and a desired upper body angle. Further, the robot maintains the erect pose with respect to the direction of gravity even under the condition that data regarding whether or not the ground is level or tilted are not given in advance, and maintains uniform poses of an upper body and legs while actively changing angles of ankle joints even if the ground is gradually tilted.06-21-2012

Patent applications in class Having control of force

Patent applications in all subclasses Having control of force