Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Having particular sensor

Subclass of:

700 - Data processing: generic control systems or specific applications

700090000 - SPECIFIC APPLICATION, APPARATUS OR PROCESS

700245000 - Robot control

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
700259000 Vision sensor (e.g., camera, photocell) 190
Entries
DocumentTitleDate
20090216374MITIGATING EFFECTS OF BIODYNAMIC FEEDTHROUGH ON AN ELECTRONIC CONTROL DEVICE - Biodynamic feedthrough in a master control system can be mitigated. An accelerometer is used to measure the acceleration of an environment. In one embodiment, mitigation damping forces can then be determined based on the velocity of an effector of a haptic manipulator and the measured accelerations. The haptic manipulator applies the mitigation damping forces as force feedback. In another embodiment, biodynamic feedthrough can be filtered from the input signal. Parameters for a model can be accessed based on the position of the effector, and the model can be used to predict biodynamic feedthrough from the measured accelerations.08-27-2009
20130085604ROBOT APPARATUS, ROBOT SYSTEM, AND METHOD FOR PRODUCING A TO-BE-PROCESSED MATERIAL - A robot apparatus includes a robot arm and a held-state detector. The robot arm includes a first holder configured to hold a to-be-held object. The held-state detector is coupled to the robot arm and is configured to detect a held state of the to-be-held object held by the first holder while the robot arm is transferring the to-be-held object.04-04-2013
20120173021CONTROL APPARATUS AND CONTROL METHOD FOR ROBOT ARM, ROBOT, CONTROL PROGRAM FOR ROBOT ARM, AND ROBOT ARM CONTROL-PURPOSE INTEGRATED ELECTRONIC CIRCUIT - Motion information of a robot arm stored in a motion information database is acquired. A person manipulates the robot arm, and correction motion information at the time of the motion correction is acquired. An acquiring unit acquires environment information. A motion correction unit corrects the motion information while the robot arm is in motion. A control rule generating unit generates a control rule for allowing the robot arm to automatically operate based on the corrected motion information and the acquired environment information. The motion of the robot arm is controlled based on the generated control rule.07-05-2012
20100017034BEAT TRACKING APPARATUS, BEAT TRACKING METHOD, RECORDING MEDIUM, BEAT TRACKING PROGRAM, AND ROBOT - A beat tracking apparatus includes: a filtering unit configured to perform a filtering process on an input acoustic signal and to accentuate an onset; a beat interval reliability calculating unit configured to perform a time-frequency pattern matching process employing a mutual correlation function on the acoustic signal of which the onset is accentuated and to calculate a beat interval reliability; and a beat interval estimating unit configured to estimate a beat interval on the basis of the calculated beat interval reliability.01-21-2010
20110190934ARCHITECTURE FOR ROBUST FORCE AND IMPEDANCE CONTROL OF SERIES ELASTIC ACTUATORS - An SEA architecture for controlling the torque applied by an SEA that has particular application for controlling the position of a robot link. The SEA architecture includes a motor coupled to one end of an elastic spring and a load coupled to an opposite end of the elastic spring, where the motor drives the load through the spring. The orientation of the shaft of the motor and the load are measured by position sensors. Position signals from the position sensors are sent to an embedded processor that determines the orientation of the load relative to the motor shaft to determine the torque on the spring. The embedded processor receives reference torque signals from a remote controller, and the embedded processor operates a high-speed servo loop about the desired joint torque. The remote controller determines the desired joint torque based on higher order objectives by their impedance or positioning objectives.08-04-2011
20100049366SURROUNDINGS MAPPING APPARATUS CAPABLE OF APPLYING QUICKLY CHANGED SURROUNDINGS INFORMATION IN MOBILE ROBOT AND METHOD THEREOF - A method of responding to environmental change to build an environment map of a mobile apparatus and an apparatus thereof are disclosed. The apparatus includes a traveling unit traveling a mobile apparatus according to a command, a distance measuring unit measuring a distance from the mobile apparatus to a moving object, an environment map-generating unit generating an environment map based on a measured distance, a moving object detecting unit detecting the moving object moved after generating the environment map by comparing a distance from the mobile apparatus to the moving object with the newly measured distance, and a controlling unit updating the environment map according to the command by selectively applying changed environment information containing the moving object to the built environment map when the moving object is detected. Thus, the changed environmental information can be rapidly and precisely applied to build the environment map.02-25-2010
20100076599MANUALLY DRIVEN DETERMINATION OF A REGION OF INTEREST (ROI) OR A PATH OF INTEREST (POI) FOR A ROBOTIC DEVICE - A robotic device is manually driven along a perimeter of a Region Of Interest (ROI) or along a Path Of Interest (POI) for future autonomous operation. An Initial Point (IP) is established by identifying a unique machine recognizable feature, for example, a Radio Frequency Identification (RFID) tag located at the IP. The robotic device is then manually driven along the perimeter or along the path and sensors carried by the robotic device collects data to characterize the ROI or POI. The sensors may include sonar, vision systems, laser, or radar devices for measuring relative positions of a wall, stairs, or obstacles. Wheel odometry may be used to track distances traveled and data fusion exercised to combine the odometry data with the sonar and/or laser measurements to model the ROI or POI. Characterization is performed by collecting points along a wall, fitting a line to the points, and finding the intersections of consecutive lines.03-25-2010
20090149995CHARGING APPARATUS FOR MOBILE ROBOT - A charging apparatus for a mobile robot enabling the mobile robot to move relatively freely even during charging using a wiring member, while preventing occurrence of an inconvenience such as damage to the wiring member, is provided. The charging apparatus includes a charging power source, a control board which controls the charging power source, and a wiring members for use in supplying electric power from the charging power source to a battery mounted on the mobile robot. The wiring member connected to the mobile robot to follow the movement of the robot. The charging apparatus further includes a detector which detects tension applied to the wiring member. When the wiring members is pulled, an appropriate measure to stop the mobile robot or disconnect the wiring member from the robot is taken in accordance with a signal from the tension detector.06-11-2009
20130035793Device For Influencing Navigation Of An Autonomous Vehicle - A device for controlling the reflection of incident beams to influence navigation of an autonomous device having a navigation sensor comprising a beam emitter and a beam detector for detecting reflected emitted beams. The device comprises at least one surface having a geometry configured to direct a reflection from the emitted beam in a predetermined direction so that a suitable amount of the reflected beam can be detected by the detector.02-07-2013
20130035792METHOD AND SYSTEM FOR CONTROLLING A DEXTEROUS ROBOT EXECUTION SEQUENCE USING STATE CLASSIFICATION - A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.02-07-2013
20130138248THOUGHT ENABLED HANDS-FREE CONTROL OF MULTIPLE DEGREE-OF-FREEDOM SYSTEMS - Systems and methods are provided for controlling a multiple degree-of-freedom system. Plural stimuli are provided to a user, and steady state visual evoked response potential (SSVEP) signals are obtained from the user. The SSVEP signals are processed to generate a system command. Component commands are generated based on the system command, the plurality of components commands causing the multiple degree-of-freedom system to implement the system command.05-30-2013
20130041507ROBOTIC CANE DEVICES - A robotic cane may include a grip handle, a cane body extending from the grip handle at a first end, a motorized omni-directional wheel coupled to a second end of the cane body, a balance control sensor, and a controller module. The balance control sensor provides a balance signal corresponding to an orientation of the robotic cane. The controller module may receive the balance signal from the balance control sensor and calculate a balancing velocity of the motorized omni-directional wheel based at least in part on the balance signal and an inverted pendulum control algorithm. The controller module may further provide a drive signal to the motorized omni-directional wheel in accordance with the calculated balancing velocity. The calculated balancing velocity is a speed and direction of the motorized omni-directional wheel to retain the robotic cane in an substantially upright position.02-14-2013
20100100239ROBOT MECHANISM FOR INSPECTION OF LIVE-LINE SUSPENSION INSULATOR STRING - Disclosed herein is a robot mechanism for inspection of a live-line suspension insulator string. A robot body of the robot mechanism reciprocates along the live-line suspension insulator string and includes upper and lower robot frames configured to encircle the insulator string, a battery module provided to either end of the robot body, an actuation module for moving the robot body along the insulator string, an inspection module for electrically inspecting an insulator, a connection module for coupling the robot body to an installation/dismantlement mechanism, a wing opening/closing module for manually separating the robot body from the insulator string, a measurement module for measuring electrical properties of the insulator, a controller for controlling operation of the robot body, and a crack detection unit for detecting cracks formed in the insulator.04-22-2010
20090157227Apparatus, method, and medium for sensing slip in mobile robot - An apparatus, method, and medium for sensing a slip in a mobile robot is provided. The apparatus for sensing a slip in a mobile robot includes a driving motor control unit to control a driving motor that rotates a plurality of driving wheels of the mobile robot, a first rotation sensor to sense a first rotation angle of the mobile robot by using the difference between traveling distances of the plurality of driving wheels, a second rotation sensor to sense a second rotation angle of the mobile robot by sensing a rotation of the mobile robot, and a slip-sensing unit to sense the slip of the mobile robot by comparing the first rotation angle with the second rotation angle. The driving motor control unit controls the driving motor to travel straight in a specified pattern.06-18-2009
20100042258Manipulation of objects - A system for manipulation of objects. The system includes N objects, where N is greater than or equal to 2 and is an integer; and a mechanism for controlling and 2D locating of the N objects. A method for manipulating objects. The method includes the steps of receiving information from N objects, where N is greater than or equal to 2 and is an integer, at a centrally controlling and 2D locating controller; determining 2D locations by the controller of the N objects; and transmitting from the controller directions to the N objects for the N objects to move. An apparatus for tracking. The apparatus includes N objects, where N is greater than or equal to 2 and is an integer, each object having an emitter which emits light; and a mechanism for 2D sensing of the N objects over time from the light emitted by each emitter. The present invention pertains to a method for tracking. The method includes the steps of emitting light from N objects, where N is greater than or equal to 2 and is an integer; and sensing 2D locations of the N objects over time from the emitted light from the N objects.02-18-2010
20100030382INHALABLE PARTICULATE ENVIRONMENTAL ROBOTIC SAMPLER - A robotic sensor measures air quality characteristics as experienced by a toddler, such as a child of six to twelve months in age. The robot includes an air quality sensor, a terrain drive train, a sensor drive train and a control circuit that controls the terrain drive train and the sensor drive train. The control circuit directs the terrain drive train to traverse an area at a speed and a start and stop rate consistent with that of a child and directs the sensor drive train to control the monitoring height at which the air quality sensor measures the air quality characteristic in a manner consistent with that of the child.02-04-2010
20120185092ROBOTIC ARM POSITION CONTROLLING DEVICE AND ROBOTIC ARM HAVING SAME - A robotic arm position controlling device includes a number of gyroscope sensors, an A/D convertor electrically connected to the gyroscope sensors, a storage connected to the A/D convertor and a processor. The gyroscope sensors each is configured for detecting and measuring movements of an arm segment and generating an analog signal associated with the detected movement of the arm segment. The A/D convertor is configured to convert the analog signal to digital signal. The storage is configured to store the converted digital signal and position information associated with predetermined positions of the arm segments. The processor is configured to determine the position of each of the arm segments based upon the converted digital, and determine of the position of each of the arm segments is deviated from the corresponding predetermined position, and control the driving motors to move the deviated arm segment to the predetermined position.07-19-2012
20130046409ROBOT AND ROBOT SYSTEM - A robot according to embodiments includes a speed reducer, a first shaft, a rotary electric machine, a second shaft, and a brake. The speed reducer reduces and outputs rotation to be input into an input unit. The first shaft is connected to the input unit. The rotary electric machine rotates the first shaft. The second shaft is connected to the input unit. The brake regulates the rotation of the second shaft.02-21-2013
20130073086ROBOT AND ROBOT CONTROL METHOD - An arm drive mechanism which rotates an arm, an angle sensor which detects a rotation angle of the arm drive mechanism and outputs angle information, an angular velocity sensor which is attached to the arm, detects angular velocity acting on the arm and outputs angular velocity information, a control command generating unit which outputs a control command value prescribing a rotational operation of the arm, a gain adjusting unit which incrementally or decrementally changes and thus adjusts a gain of the angular velocity information, and an arm operation control unit which controls an operation of the arm based on the control command value, the angle information and the gain-adjusted angular velocity information, are provided.03-21-2013
20130073085ROBOT CONTROL APPARATUS, DISTURBANCE DETERMINATION METHOD, AND ACTUATOR CONTROL METHOD - A robot control apparatus includes an actuator; a generator unit; a first detection unit; a first computation unit to compute current positional data of the arm; a second computation unit to compute an input value; a third computation unit to compute an estimation value of a driving torque for driving the actuator; a fourth computation unit to compute a difference between the estimation value of the driving torque and a true value of the driving torque; and a second detection unit to detect a disturbance applied to the arm, wherein the second detection unit includes an update unit to estimate a parameter of a time-series model and updating the time-series model of the first sampling period by applying the parameter, and a determination unit to determine whether a disturbance occurs, by comparing the time-series model of the first sampling period with a time-series model of a second sampling period.03-21-2013
20130060382METHOD OF ACCURATE MAPPING WITH MOBILE ROBOTS - A robotic mapping method includes scanning a robot across a surface to be mapped. Locations of a plurality of points on the surface are sensed during the scanning. A first of the sensed point locations is selected. A preceding subset of the sensed point locations is determined. The preceding subset is disposed before the first sensed point location along a path of the scanning. A following subset of the sensed point locations is determined. The following subset is disposed after the first sensed point location along the path of the scanning. The first sensed point location is represented in a map of the surface by an adjusted first sensed point location. The adjusted first sensed point location is closer to each of the preceding and following subsets of the sensed point locations than is the first sensed point location.03-07-2013
20130060381PARALLEL LINK ROBOT, PARALLEL LINK ROBOT SYSTEM, AND METHOD OF CONTROLLING PARALLEL LINK ROBOT - A parallel link robot includes a base, three servo motors disposed in the base, three arms, and a robot controller. Each of the three arms includes a first link and a second link that respectively include a first joint and a second joint. Each of the three arms is driven by a corresponding one of the three servo motors. The robot controller determines whether or not any of the first and second joints of the arms is dislocated on the basis of the torques of the three servo motors.03-07-2013
20090299525AUTONOMOUS MOVING BODY AND METHOD FOR CONTROLLING MOVEMENT THEREOF - An autonomous moving body includes: an omnidirectional moving mechanism for moving the moving body; a detecting unit for detecting an obstacle; and a movement control unit for generating a movement instruction signal for avoiding the obstacle detected by the detecting unit while maintaining a frontal direction of the moving body to be substantially constant and transmitting the generated signal to the omnidirectional moving mechanism.12-03-2009
20090069941LEGGED ROBOT AND ITS CONTROL METHOD - There is provided a legged robot that performs motion by changing a joint angle, which includes a trajectory generating section to calculate a center-of-gravity trajectory in designated stepping motion from the stepping motion including at least one of walking motion, running motion and stopping motion, and generate a center-of-gravity trajectory by superimposing a designated travel velocity onto a travel velocity of a center of gravity in the calculated center-of-gravity trajectory in stepping motion, and a trajectory updating section to store the generated center-of-gravity trajectory and update all the stored center-of-gravity trajectories so as to be continuous, and a trajectory reproducing section to calculate time-varying data of a target value of the joint angle based on the updated center-of-gravity trajectory, and a joint driving section to rotate a joint of the legged robot based on the calculated time-varying data of a target value of the joint angle.03-12-2009
20130066468TELEPRESENCE ROBOT, TELEPRESENCE SYSTEM COMPRISING THE SAME AND METHOD FOR CONTROLLING THE SAME - A telepresence robot may include a manual navigation unit configured to move the telepresence robot according to navigation information received from a user device; an autonomous navigation unit configured to detect environment of the telepresence robot and control the movement of the telepresence robot using the detected result; a motion control unit comprising a database related to at least one motion, the motion control unit configured to receive selection information on the motion of the database and actuate the telepresence robot according to the selection information; and an output unit configured to receive expression information of a user from the user device and output the expression information. The telepresence robot may be applied to various fields such as language education by a native speaking teacher, medical diagnoses, teleconferences, or remote factory tours.03-14-2013
20120116587Sonar Scanner - Detecting an object using sound waves includes outputting a sound wave from a transducer, receiving an echo after outputting the sound wave, obtaining a threshold value based on the echo and plural other echoes that are within a predetermined range of the echo, and determining if the echo is a result of the sound wave based on the threshold value.05-10-2012
20130166069ROBOT AND POWER CONSUMPTION ESTIMATING SYSTEM - Provided is a robot comprising a device manipulating section that turns ON and OFF a plurality of devices that operate by receiving power from a power supply; a power value acquiring section that acquires a first total power value that is a power value before one of the devices is turned ON or OFF by the device manipulating section and a second total power value that is a power value after the device is turned ON or OFF, via a power sensor that measures a total power value supplied to the plurality of devices from the power supply; and a power consumption estimating section that estimates power consumption of the device based on the first total power value and the second total power value.06-27-2013
20120239195ROBOTIC GRASPING DEVICE WITH MULTI-FORCE SENSING AT BASE OF FINGERS - A robotic grasping device (09-20-2012
20100198406ELECTRONIC PET SYSTEM AND CONTROL METHOD OF AN ELECTRONIC PET - An electronic pet system includes an electronic pet and a glove. The electronic pet includes a first central processing unit (CPU) and a wireless receiver. The glove includes a plurality of accelerometers, a wireless transmitter, and a second CPU. When the glove is moved, acceleration of the accelerometers will be measured. If the measurements of acceleration match a predetermined instruction, the electronic pet will be directed to make a move according to the predetermined instruction.08-05-2010
20120046789WALKING ROBOT AND CONTROL METHOD THEREOF - A torque-based walking robot and a control method thereof which stably controls walking of the robot. In the control method, in which high rigidity, equal to that achieved through a position-based control method, is achieved using a torque-based control method without switching between the position-based control method and the torque-based control method while the robot is in motion, a difference between a target torque and a measured torque is forcibly generated by limiting a torque range measurable by each torque sensor, thereby increasing voltage applied to each actuator, and thus achieving high rigidity, equal to that achieved through the position-based control method, using the torque-based control method without switching between the position-based control method and the torque-based control method.02-23-2012
20110282491DRIVE FORCE CONTROL IN MEDICAL INSTRUMENT PROVIDING POSITION MEASUREMENTS - Control systems and methods for a remote joint use position measurements to determine and control the force that an actuator applies to the joint through a linkage. The use of force and feedback allows control of a medical instrument having a linkage that provides non-negligible compliance between the joint and a proximal actuator and particularly allows precise instrument operation even when the position of the distal joint cannot be directly related to the proximal motor position.11-17-2011
20110301757ADAPTABLE CONTAINER HANDLING ROBOT WITH BOUNDARY SENSING SUBSYSTEM - An adaptable container handling robot includes a chassis, a container transport mechanism, a drive subsystem for maneuvering the chassis, a boundary sensing subsystem configured to reduce adverse effects of outdoor deployment, and a controller subsystem responsive to the boundary sensing subsystem. The controller subsystem is configured to detect a boundary, control the drive subsystem to turn in a given direction to align the robot with the boundary, and control the drive subsystem to follow the boundary.12-08-2011
20090281661APPLICATION OF LOCALIZATION, POSITIONING & NAVIGATION SYSTEMS FOR ROBOTIC ENABLED MOBILE PRODUCTS - A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.11-12-2009
20110295427METHODS AND SYSTEMS FOR INSPECTION SENSOR PLACEMENT - Methods and systems are provided for positioning a remote sensor within a target object. An articulated robotic system is coupled to the remote sensor. A positioning system determines a position of the target object to be inspected and determines a first position of the remote sensor. A control system calibrates a virtual representation of the target object with respect to the position of the target object, and tracks movement of the remote sensor relative to the target object.12-01-2011
20110295426ROBOTIC SNAKES FOR USE IN NON-DESTRUCTIVE EVALUATION AND MAINTENANCE OPERATIONS - At least one serpentine body is provided for maintenance operations on an object. At least one serpentine body is coupled to at least one sensor, and at least one serpentine body is coupled to at least one tool. The at least one sensor is configured to inspect the object, and the at least one tool is configured to modify the object.12-01-2011
20100114373SYSTEMS AND METHODS FOR SCANNING A WORKSPACE VOLUME FOR OBJECTS - A representative robotic machine includes an end-of-arm that is located in a work area; and a safety scanner system that scans for objects in a workspace volume around the end-of-arm. The safety scanner system determines whether to stop operations of the robotic machine based on the presence of the objects in the workspace volume.05-06-2010
20110270444SYSTEM AND METHOD FOR JUDGING SUCCESS OR FAILURE OF WORK OF ROBOT - A system for judging success or failure of a work of a robot includes a position command generating unit, a contact position detecting unit, and a work success/failure judging unit. The position command generating unit generates a position command enabling movement of a fingertip of the robot so that a position and posture detecting unit, which is attached to the fingertip of the robot and has an elastic transformation area, is brought into contact with a predetermined position relating to a work target after the predetermined work is performed for the work target by the robot. The contact position detecting unit calculates a contact position that is a position of a tip end of the position and posture detecting unit at the time of being in contact with the predetermined position based on a value of an external force applied to the fingertip and the position of the tip end of the position and posture detecting unit. The work success/failure judging unit judges the predetermined work to be successful when the calculated contact position is within a predetermined range and judges the predetermined work to be failed when the calculated contact position is not within the predetermined range.11-03-2011
20090149994Method, medium, and apparatus for correcting pose of moving robot - A method, apparatus, and medium for correcting a pose of a moving robot are provided. The method includes sensing an entrance using a distance-sensing sensor mounted on the moving robot, storing first distance data of the sensed entrance, after the moving robot travels, newly sensing the entrance using the distance-sensing sensor, and correcting the pose of the moving robot using the first distance data and second distance data corresponding to the entrance newly sensed after the moving robot travels.06-11-2009
20080294288Autonomous Mobile Robot - A mobile robot is equipped with a range finder and a stereo vision system. The mobile robot is capable of autonomously navigating through urban terrain, generating a map based on data from the range finder and transmitting the map to the operator, as part of several reconnaissance operations selectable by the operator. The mobile robot employs a Hough transform technique to identify linear features in its environment, and then aligns itself with the identified linear features in order to navigate through the urban terrain; while at the same time, a scaled vector field histogram technique is applied to the combination of range finder and stereo vision data to detect and avoid obstacles the mobile robot encounters when navigating autonomously. Also, the missions performed by the mobile robot may include limitation parameters based on distance or time elapsed, to ensure completion of the autonomous operations.11-27-2008
20080243308Method and Apparatus for Using an Optical Mouse Scanning Assembly in Mobile Robot Applications - A method and apparatus of using an optical mouse scanning assembly for mobile robot platforms is disclosed. The optical mouse scanning assembly is disposed on a portion of the body of the robot platform that faces a propagation surface. In relation to this propagation surface various parameters, such as propagation velocity, slippage of limbs and relative displacement are determinable for the mobile robot in relation to a propagation surfaces.10-02-2008
20120035763ROBOTIC DEVICE, METHOD FOR CONTROLLING ROBOTIC DEVICE, AND COMPUTER PROGRAM - A robotic device includes a first calculation section adapted to calculate a first angular velocity of a first arm operating due to a first actuator provided with a first angle sensor based on rotational angle detection data of the first angle sensor of the fist actuator, a second calculation section adapted to calculate a second angular velocity of the first arm taking an arm linkage device as an axis based on angular velocity detection data of an inertial sensor provided to the first arm linked via the arm linkage device including the first actuator, which is a calculation object of the first calculation section, and a third calculation section adapted to calculate a torsional angular velocity between the first actuator and the first arm with a low-frequency component eliminated.02-09-2012
20100324734ROBOT CLEANER AND METHOD OF CONTROLLING TRAVEL OF THE SAME - A robot cleaner that travels straight through alignment of drive wheels to move the robot cleaner and a method of controlling travel of the same. Information related to a movement angle of the robot cleaner is detected from angle information of a caster wheel rotating depending upon a state of a floor, such as a carpet in a state in which texture of the carpet occurs in one direction, and, when the movement angle of the robot cleaner deviates due to slippages of the drive wheels, rates of rotation of the drive wheels are adjusted to correct the slippages of the drive wheels such that the robot cleaner easily travels straight.12-23-2010
20090069939ROBOT PROGRAMMING DEVICE FOR PALLETIZING OPERATION BY ROBOT - A robot programming device capable of reducing the operation of a robot in the field required for generating a program for palletizing operation, and shortening a time to generate the palletizing program. The robot programming device includes a storing part for storing three-dimensional models of the plurality kinds of units, a conveyor, a recognition device, a robot and a plurality of pallets; a layout making part for making a layout, in a virtual space, of the three-dimensional models stored in the storing part; a displaying part for displaying the layout made by the layout making part; an information setting part for setting information regarding each component displayed on the displaying part; and a program generating part for generating a palletizing program for the robot based on the layout of the three-dimensional models and the information set by the information setting part.03-12-2009
20090088899Industrial robot - An industrial robot including a tool flange at an end of an outer arm of the robot. A tool is secured to the tool flange. A sensor is configured to sense forces and/or torques applied to a tool secured to the tool flange. The sensor is built into the structure of the robot in the region of the tool flange.04-02-2009
20090259338ROBOTIC SYSTEM AND TRAINING METHOD FOR REHABILITATION USING EMG SIGNALS TO PROVIDE MECHANICAL HELP - A robotic system for rehabilitation using EMG signals to provide mechanical help includes EMG electrodes (10-15-2009
20120296472FORCE CONTROL ROBOT - A force control robot which controls a motion of a robotic arm based on a detection value of a force detector, the force control robot including: the robotic arm having one end as a fixed end and another end as a movable end; an end effector connected to the movable end of the arm through an elastic member, the end effector having a grip driving portion and a grip mechanism portion configured to grip a part; the force detector configured to detect an external force exerted on the grip mechanism portion of the end effector, based on a deformation amount of the elastic member; an end effector controller disposed at the movable end of the arm and configured to control the grip driving portion of the end effector; and a robotic controller configured to control the motion of the arm.11-22-2012
20100168916TOUCH SENSITIVE ROBOT WITH TOUCH SENSOR BELT - An exemplary touch sensitive robot includes a body, a touch sensor, a driver, and a controller. The body includes a control panel. The touch sensor includes a first conductive belt wrapped on the body, a second conductive belt provided around but spaced away from the first conductive belt, a power source applying a voltage to two distal ends of the first conductive voltage, and a voltage sensor interconnected between an end of the first conductive belt and an end of the second conductive belt. The second conductive belt is electrically deformable and contacts the first conductive belt when touched by a user so that a measured voltage of the voltage sensor change dependently of the location of the touch. The controller is for controlling the driver to spin the body based upon the measured voltage to orient the control panel to the user.07-01-2010
20100152896ROBOT, CONTROLLING DEVICE AND CONTROLLING METHOD FOR ROBOT, AND CONTROLLING PROGRAM FOR ROBOT-CONTROLLING DEVICE - Based upon a force in a vertical direction exerted between an object and a hand and an angle made by the hand relative to a horizontal face, a transporting force estimation unit estimates a transporting force applied in the vertical direction by a person, and based upon the estimated force, a force controlling operation is carried out so as to set a force in the vertical direction of the robot arm of a robot system to a predetermined force.06-17-2010
20090030552Robotics visual and auditory system - It is a robotics visual and auditory system provided with an auditory module (01-29-2009
20100145517ROBOT MECHANISM FOR NONDESTRUCTIVE AGING EVALUATION OF CABLE - The present disclosure relates to a robot mechanism for nondestructive aging evaluation of a cable. The robot mechanism includes at least two inspection modules, and a coupler disposed between the at least two inspection modules and connected to each of the inspection modules to adjust a separation between the inspection modules. Each of the inspection modules approaches a cable and automatically inspects an aged state of the cable. The robot mechanism automatically measures an aged state of a cable in a nondestructive manner and establishes a database of cable aging, so that normal operation of the cable can be ensured through stable management of the cable by evaluating a replacement time and the aged state of the cable based on the database.06-10-2010
20100145519INDUSTRIAL ROBOT AND METHOD TO OPERATE AN INDUSTRIAL ROBOT - In an industrial robot and a method for operating an industrial robot, a robot arm is pivotable with respect to multiple axes. At least one of the axes has an drive associated therewith for controlling movement of the robot arm with respect to that axis. The electrical drive includes a three-phase synchronous motor that is operated with associated electrical currents and electrical voltages. A signal representing at least one of said electrical currents and electrical voltages is supplied to a computerized control unit that determines, from the signal, the position of the axis associated with the electrical drive. The computerized control unit controls operation of the electrical drive dependent on this determined position.06-10-2010
20110208357Autonomous Mobile Robot - A mobile robot is equipped with a range finder and a stereo vision system. The mobile robot is capable of autonomously navigating through urban terrain, generating a map based on data from the range finder and transmitting the map to the operator, as part of several reconnaissance operations selectable by the operator. The mobile robot employs a Hough transform technique to identify linear features in its environment, and then aligns itself with the identified linear features in order to navigate through the urban terrain; while at the same time, a scaled vector field histogram technique is applied to the combination of range finder and stereo vision data to detect and avoid obstacles the mobile robot encounters when navigating autonomously. Also, the missions performed by the mobile robot may include limitation parameters based on distance or time elapsed, to ensure completion of the autonomous operations.08-25-2011
20090132087Learning Capture Points for Humanoid Push Recovery - A system and method is disclosed for controlling a robot having at least two legs, the robot subjected to an event such as a push that requires the robot to take a step to prevent a fall. In one embodiment, a current capture point is determined, where the current capture point indicates a location on a ground surface that is the current best estimate of a stepping location for avoiding a fall and for reaching a stopped state. The robot is controlled to take a step toward the current capture point. After taking the step, if the robot fails to reach a stopped state without taking any additional steps, an updated current capture point is determined based on the state of the robot after taking the step. The current capture points can be stored in a capture point memory and initialized based on a model of the robot.05-21-2009
20090088900Ultrasonic distance sensor and robot cleaner using the same - Disclosed herein are an ultrasonic distance sensor that is capable of extending an ultrasonic wave transmitted from a wave transmitter to sense the distance between an object located in a wide region and an installation body having the sensor installed therein and a robot cleaner using the same. The ultrasonic distance sensor includes a wave transmitter to transmit an ultrasonic wave, an ultrasonic wave extender to extend the ultrasonic wave, and a wave receiver to receive the ultrasonic wave reflected from an object.04-02-2009
20090177322ROBOTIC PLATFORM FOR AUTONOMOUS AUTOMOTIVE VEHICLE DEVELOPMENT - A robotic platform for autonomous automotive vehicle development. The platform includes a frame having a plurality of wheels rotatably mounted to the frame. A motor mechanism is associated with at least one of the wheels and the motor mechanism is responsive to drive signals to rotatably drive its associated wheel. At least one sensor is mounted to the vehicle which provides an output signal representative of a parameter relevant to the position of the robotic platform. A programmable control circuit is programmed to generate drive signals in response to the sensor output(s) to simulate the operation of an automotive vehicle for vehicle development.07-09-2009
20090326714Robotic Arms - A robotic arm of the “top following” type, which can advance into an environment is covered is covered by a sensorised skin. The arm can thus detect a parameter of the environment, and the shape can be adjusted accordingly.12-31-2009
20090062960METHOD AND SYSTEM FOR ROBOT CALIBRATIONS WITH A CAMERA - Described herein is a method and system for performing calibrations on robotic components. In one embodiment, a method for performing robotic calibrations includes manually calibrating a center of a robot blade aligned with respect to a target. The method further includes recording a first positional value of the center of the robot blade aligned with respect to a camera. The method further includes automatically determining a second positional value of the center of the robot blade aligned with respect to the camera. The method further includes automatically recalibrating the robot blade based on an offset between the second positional value and the first positional value exceeding a tolerance offset from the first positional value.03-05-2009
20090055022OBSTACLE FOLLOWING SENSOR SCHEME FOR A MOBILE ROBOT - A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem aimed at the surface for detecting the surface. The sensor subsystem includes an emitter which emits a signal having a field of emission and a photon detector having a field of view which intersects the field of emission at a region. The subsystem detects the presence of an object proximate the mobile robot and determines a value of a signal corresponding to the object. It compares the value to a predetermined value, moves the mobile robot in response to the comparison, and updates the predetermined value upon the occurrence of an event.02-26-2009
20120197438DUAL ARM ROBOT - The dual arm robot includes a first arm including a first hand, a first visual sensor and a first force sensor, and a second arm including a second hand, a second visual sensor and a second force sensor, uses each visual sensor to detect positions of a lens barrel and a fixed barrel to hold and convey them to a central assembling area, uses the first visual sensor to measure a position of a flexible printed circuits to insert the flexible printed circuits into the fixed barrel, and uses outputs of the force sensors to fit and assemble the fixed barrel onto the lens barrel under force control. The dual arm robot converts a position coordinate of a workpiece detected by each visual sensor to a robot coordinate to calculate a trajectory of each hand and drive each arm, to thereby realize cooperative operation of the two arms.08-02-2012
20090093908Target Position detection apparatus for robot - A target position detection apparatus for a robot includes: a robot including an arm configured to be freely moved in at least two directions of X and Y axes, the arm having a wrist axis provided at a distal end of the arm and configured to be freely moved in a horizontal direction, and the wrist axis being provided with an end effector; and a control unit adapted for driving a memory to store a teaching point therein and controlling an operation of the robot such that the end effector will be moved toward the teaching point stored in the memory. The control unit is further adapted for changing a pressing force of the end effector against a target by changing a control loop gain, and bringing the end effector into contact with the target, while setting the control loop gain of the wrist axis lower than a predetermined value at least from a position adjacent to the teaching point at which the target is located, so as to capture a position in a state in which the end effector is in contact with the target, thereby detecting the position of the target.04-09-2009
20090099693SYSTEM AND METHOD FOR CONTROL OF EMOTIONAL ACTION EXPRESSION - A system for control of emotional action expression including an emotion engine for creating an emotion according to information provided from a plurality of sensors, and an emotional action expression/actuation control unit for detecting an emotion platform profile and an emotion property from the created emotion and determining the action expression corresponding to the created emotion to control a target actuator. A control unit controls the motion of the target actuator under the control of the emotional action expression/actuation control unit.04-16-2009
20120197437CLEANING ROBOT AND CONTROL METHOD THEREOF - A cleaning robot including a roller unit, a sensing unit, a first control unit and a second control unit is disclosed. The roller unit includes a plurality of rollers. The sensing unit receives a reflection signal and generates a detection signal according to the reflection signal. When the detection signal is less than or equal to a reference signal, the first control unit controls the traveling direction of the rollers according to the detection signal such that a distance between the cleaning robot and a wall is equal to a first distance. When the detection signal is larger than the reference signal, the second control unit controls the traveling direction of the rollers according to the detection signal such that a distance between the cleaning robot and a wall is equal to a second distance larger then the first distance.08-02-2012
20090254218ROBOT CONFINEMENT - A robot lawmnower includes a body, a drive system carried by the body, at least one caster wheel supporting the body, a grass cutter carried by the body, a controller in communication with the drive system, and a bump sensor in communication with the controller. The controller is configured to maneuver the robot to turn in place and to redirect the robot in response to the bump sensor sensing contact with an obstacle. The drive system is configured to maneuver the robot across a lawn and includes differentially driven right and left drive wheels positioned rearward of a transverse center axis defined by the body. The at least one caster wheel is positioned substantially forward of the right and left drive wheels, and the grass cutter is positioned at least partially forward of the right and left drive wheels and at least partially behind the at least one caster wheel.10-08-2009
20100168917Walking robot and method of controlling the same - Disclosed is a method of absorbing an impact generated when a foot of a walking robot lands on the ground to perform the walking of the walking robot. When the foot of the walking robot lands on the ground, an F/T sensor installed on the sole or the ankle of the foot measures external force and the posture of the sole of the foot is adjusted in a direction of complying with the external force, and thus an impact transmitted to the walking robot in landing is absorbed. Further, the posture adjusting speed of the sole of the foot is adjusted according to walking speeds (stopped, walking, running).07-01-2010
20100161127MULTIPLE PRIORITY OPERATIONAL SPACE IMPEDANCE CONTROL - A system and method for providing multiple priority impedance control for a robot manipulator where impedance laws are realized simultaneously and with a given order of priority. The method includes a control scheme for realizing a Cartesian space impedance objective as a first priority while also realizing a joint space impedance objective as a second priority. The method also includes a control scheme for realizing two Cartesian space impedance objectives with different levels of priority. The method includes instances of the control schemes that use feedback from force sensors mounted at an end-effector and other instances of the control schemes that do not use this feedback.06-24-2010
20100161128SYSTEM AND METHOD FOR CONTROLLING AUTOMATIC PARKING - An automatic parking control system includes a movable parking robot to load and carry a vehicle to be parked, a parking guide server for providing the parking robot with a moving path to the target parking space, and one or more posts, installed nearby an accessible parking area, for controlling a moving path of the parking robot in real time through communications with the parking robot.06-24-2010
20100185326Robot - Disclosed is a robot setting a display unit corresponding to an eye level of the user. The robot includes a body unit, a display unit, and at least one sliding section. The display unit is provided with a detection unit, which detects a position of a user, to rotate together with the body unit according to an eye level of the user. The sliding section connects the body unit with the display unit such that the body unit and the display unit rotate longitudinally and transversely according to a detection result of the detection unit.07-22-2010
20100228395TOUCH SENSITIVE ROBOT - A touch sensitive robot includes a body having a control panel, a touch sensor, a driver, and a controller. The touch sensor includes a first conductive belt, a second conductive belt, a power source, and a current sensor. The first conductive belt is wrapped on the body. The second conductive belt is wrapped around but spaced away from the first conductive belt. The power source and the current sensor are connected in series between the first conductive belt and the second conductive belt to form a closed circuit when a point of the second conductive belt is touched to contact the first conductive belt. The current sensor is for measuring the flow of the electrical current of the close loop. The controller is for controlling the driver to turn the body based upon the measurement of the current sensor to orient the control panel to the touch point.09-09-2010
20100217439Map building apparatus and method - Disclosed are a map building apparatus and method using a distance measurement. According to an aspect, by creating a first map and a second map respectively using the characteristics of different characteristic areas based on a distance-voltage characteristics of a distance measurement sensor, and combining the first map with the second map, a grid map is created. Accordingly, since a map regarding a peripheral environment is created using plural areas of the distance-voltage characteristics, a more accurate map may be created.08-26-2010
20100145516HIGH VOLTAGE MONITORING SYSTEM AND METHOD FOR SPRAY COATING SYSTEMS - In accordance with one embodiment, a system may include a high voltage coating applicator, a voltage sensor, and a coating system controller configured to automate a voltage measurement of the high voltage coating applicator by the voltage sensor. In another embodiment, a system may include a non-contact sensor and a controller coupled to the non-contact sensor, wherein the controller is configured to obtain a measurement indicative of voltage at a distance between an electrostatic spray device and the non-contact sensor. In the embodiment, the controller is also configured to adjust voltage, fluid flow, distance, or a combination thereof, of the electrostatic spray device in response to the measurement.06-10-2010
20100324733Robot And Method For Monitoring The Torque On Such A Robot - In order to increase the safety of a robot that may come into contact with other robots, objects or humans, the invention provides that said robot comprises at least two joints and parts that are moveable in relation to each other via at least one joint. At least one sensor (12-23-2010
20110130877Mobile Fragrance Delivery System - A fragrance delivery system for a mobile robot. A fragrance containment and attachment device for a mobile robot allowing the robot to expel a fragrance in the space or region in which the robot is in operation.06-02-2011
20110238215PROGRAMMING METHOD FOR A ROBOT, PROGRAMMING APPARATUS FOR A ROBOT, AND ROBOT CONTROL SYSTEM - An operator inputs a sensing instruction at a sensing point, which is a rough taught point, in a teaching mode (S09-29-2011
20110130878HEAD FOR POSITIONING A TOOL ON IRREGULAR SURFACES - The invention relates to a head for positioning a tool on irregular surfaces, formed by a tool-holder assembly which is coupled to a robot arm (06-02-2011
20100250000OPTIC FIBER CONNECTION FOR A FORCE SENSING INSTRUMENT - In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument. A method of passing data between an instrument and a manipulator via optical connectors is also provided.09-30-2010
20090105880Device and method for controlling robot arm, robot and program - In a robot arm controlling device, a mechanical impedance set value of the arm is set by an object property-concordant impedance setting device based on information of an object property database in which information associated with properties of an object being gripped by the arm is recorded, and a mechanical impedance value of the arm is controlled to the set mechanical impedance set value by an impedance controlling device.04-23-2009
20090069940LEGGED ROBOT AND ITS CONTROL METHOD - There is provided a legged robot that performs motion by changing a joint angle, which includes a section of generating a center-of-gravity trajectory of the legged robot based on a trinomial equation obtained by discretizing a ZMP equation and a target ZMP, a section of calculating time-varying data of a target value of the joint angle based on the generated center-of-gravity trajectory, and a section of rotating a joint of the legged robot based on the calculated time-varying data of a target value of the joint angle, wherein the ZMP equation involves an angular momentum according to a center-of-gravity velocity.03-12-2009
20090037023INFORMATION PROCESSING SYSTEM, ROBOT APPARATUS, AND CONTROL METHOD THEREFOR - Provided is an information processing system including a display device for displaying an image on a display screen, and a robot apparatus for performing input/output of information from/to a user. The information processing system acquires a position of the display screen in a real space, and moves the robot apparatus based on the acquired position of the display screen.02-05-2009
20130144437MODULE AND METHOD FOR MEASURING REPULSIVE FORCE FOR WALKING ROBOT - Disclosed is a module for measuring repulsive force for a walking robot. More specifically the module includes a base frame and plurality of installation units provided on the base frame and surrounded by a plurality of side surfaces configured as inclined surfaces having a predetermined angle and a top surface formed in a horizontal plane. The module also includes a 1-axis force sensor provided on each side surface and the top surface of the installation unit. A control unit calculates a sum force of the respective installation units from measurement data of the force sensor and calculates the ground reaction force (GRF) by integrating the sum force of the respective installation units.06-06-2013
20100332032Displacement correcting method and displacement correcting program in automatic operation system - In an automatic operation system including: a positioning robot having a holding tool and an inertial sensor at a tip end portion of an arm thereof; a working robot having an operation tool at a tip end portion of an arm thereof; and a robot control device, a positioning correcting method of the present invention includes: conveying and positioning the holding tool, which holds a work, by the positioning robot at a positioning reference position of the holding tool corresponding to an operation position of the work; detecting a displacement amount of the holding tool from the positioning reference position by the robot control device based on an inertial force of the inertial sensor when the working robot carries out a predetermined operation with respect to the work; and correcting based on the detected displacement amount the positioning reference position of the holding tool to a position of the holding tool before the holding tool is displaced.12-30-2010
20110010011ROBOT - A robot includes an arm including a plurality of joints, arm members that form the arm, each arm member supporting a load, actuators that drive the joints and that are supported by the arm members, a load sensor embedded in at least one of the arm members to measure the load applied to the at least one of the arm members, a controller that controls movements of the actuators on the basis of a result of the measurement performed by the load sensor, and a wire hole through which a sensor line extend from a space inside the at least one of the arm members to a space inside the arm, the sensor line connecting the load sensor to the controller.01-13-2011
20110029133ROBOT, AND CONTROL APPARATUS, CONTROL METHOD, AND CONTROL PROGRAM FOR ROBOT - A robot arm provided with a body unit shifting mechanism that connects a base unit and a body unit so as to be relatively shifted, and joint lock mechanisms that are capable of mechanically securing respective joints is disposed on the body unit, and a robot operation control unit controls to switch between a robot arm operation mode in which the robot arm is operated with one of the joints of the robot arm brought into a free state, and a body unit shift mode in which the body unit is shifted with the joint being brought into a locked state.02-03-2011
20100145518ROBOT AND METHOD THEREOF - Disclosed herein are a robot generating a message using a robot hand, and a control method thereof. When a user types characters using a robot hand, a hand body part and a finger part of the robot hand output displacement signals and a command reading unit accordingly generates a message corresponding to the displacement signals. The message is transmitted to a robot controlling unit. In addition, the message is outputted by sound or displayed to be easily checked by the user.06-10-2010
20110245972Sensing escape device of automatic cleaner - A sensing escape device of an automatic cleaner includes a control module, a motion module and an inclination limitation sensing module. The control module controls the motion module to drive the movement of the automatic cleaner in mode between a forward mode with head portion as a head and a backward mode with tail portion as a head. The inclination limitation sensing module coupled to the control module includes a critical inclination angle sensing unit outward disposed on a rear bottom of the main body. When the critical inclination angle sensing unit is externally contacted, the inclination limitation sensing module generates a signal and transfers the signal to the control module, to make the control module drive the motion module to switch into the backward mode. The automatic cleaner moves backward immediately when climbing a ramp, to avoid misjudging actions such as a suspension of the motor-driven wheel unit.10-06-2011
20100131100Robot Hand for Industrial Robot - (Problem) A pair of finger bodies should be able to easily sandwich a workpiece without being interfered by other adjacent workpieces, and should be able to easily and rapidly change a standby open clearance depending on an external diameter of multiple workpieces in various sizes.05-27-2010
20090216373Mobile Device for Irradiation and Detection of Radiation - A mobile equipment endowed with a neutrons source possibly in combination with other radiation sources including a robot system that, moving on a controlled trajectory, realize the conditions to observe from different positions the radiation emerging from a specimen either mobile or fixed, properly irradiated, is described.08-27-2009
20100063628NAVIGATIONAL CONTROL SYSTEM FOR A ROBOTIC DEVICE - An autonomous cleaning apparatus includes a chassis, a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system. The controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus. The autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller. The sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal. The processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system.03-11-2010
20100057256FITTING DEVICE FOR ADJUSTING STATE OF CLOGGING CAUSED IN FIT - A fitting device for fitting a fitting workpiece, which is held by a robot, to a workpiece to be fitted by force control, comprises: a force detecting portion for detecting a force and moment acting on a control point of the fitting workpiece; a judging portion for judging whether or not clogging is caused between the fitting workpiece and the workpiece to be fitted at the time of fitting; and a changing portion for changing a position of the control point according to a distance by which the fitting workpiece enters the workpiece to be fitted and for pressing the fitting workpiece against the workpiece to be fitted in a direction perpendicular to the fitting direction so as to adjust a posture of the fitting workpiece on the basis of the control point that has been changed, in the case where it is judged by the judging portion that clogging is caused. Due to the foregoing, posture of the fitting workpiece can be appropriately adjusted in a short period of time so that the fitting workpiece can be fitted into the workpiece to be fitted.03-04-2010
20110040408ROBOTIC HAND - A robotic hand assembly comprising: a hand section comprising: at least one digit provided with at least one actuatable joint; and a control section comprising: at least one actuation device, the at least one actuation device comprising: a sensing module configured to sense a force applied to a tendon coupled at a first end to the at least one actuatable joint; and an actuation module configured to actuate the at least one actuatable joint.02-17-2011
20110257786PORTABLE ROBOTIC ARM - A portable robotic arm comprises a base, a plurality of motorized joints, a plurality of body members and a manipulator. Each motorized joint is operative to rotate in its respective rotation plane and on its respective joint axis, which is normal to the respective rotating plane. Each body member is sequentially connected to one other body member through one of the motorized joints. A last body member is connected to the base through a last motorized joint. A manipulator is connected to a first body member through a first motorized joint. At least two consecutive rotation planes are placed at an angle from each other that is greater than 0 degrees and smaller than 90 degrees. Optionally, the manipulator comprises three fingers and a tool port centered between the three fingers. A tool connected in the manipulator's tool port may be gripped with the three fingers. The robotic arm and a wheelchair support for the robotic arm may also be provided as a kit.10-20-2011
20130197695METHOD AND DEVICE FOR CONTROLLING MECHANICAL ARTICULATED ARM - A control method of a mechanical articulated arm, wherein at least two tilt sensors are arranged in different positions of the articulated arm, comprising: calibrating zero positions of tilt sensors when articulated arm does not have elastic deformation, setting position of tail end of articulated arm as point P and point P′ before and after elastic deformation of articulated arm, and selecting point R on the articulated arm; detecting angles of two different positions of the articulated arm with the tilt angles before and after the elastic deformation, obtaining the angle offset Δθ of the articulated arm due to the elastic deformation, and calculating the length parameter L08-01-2013
20110054690ELECTRO-MECHANISM FOR EXTENDING THE CAPABILITIES OF BILATERAL ROBOTIC PLATFORMS AND A METHOD FOR PERFORMING THE SAME - The present invention discloses an electro-mechanism for extending the capabilities of a bilateral robotic platforms and a method for performing the same. The electro-mechanism includes an attitude sensor to provide indication of the side over which a bilateral robotic platform operates and an actuator to tilt a mast to an upright position with respect to the ground in order to maximize the performance of the components integrated therewith. The electro-mechanism also provides means to elevate an environmental sensor to provide a superior position for information gathering with respect to the bilateral robotic platform.03-03-2011
20110054689ROBOTS, SYSTEMS, AND METHODS FOR HAZARD EVALUATION AND VISUALIZATION - A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.03-03-2011
20110125323LOCALIZATION BY LEARNING OF WAVE-SIGNAL DISTRIBUTIONS - A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.05-26-2011
20110257787ROBOT CONTROL APPARATUS FOR FORCE CONTROL - A robot control apparatus includes a force measuring unit for acquiring the force data required for the control operation, a calculating unit for calculating the force exerted by gravity on the force measuring unit and the dynamic terms generated by the motion of the robot arm, of all the forces exerted on the force measuring unit from the working tool, a compensation unit for compensating the force measured by the force measuring unit using the force exerted by gravity and the dynamic terms calculated by the calculating unit, and a command adjusting unit for adjusting the operation command for the robot arm in accordance with the force exerted on the force measuring unit by the dynamic terms and gravity in the case where each of the dynamic terms is larger than a predetermined threshold value.10-20-2011
20090171505DEVICE AND METHOD FOR CONTROLLING ROBOT ARM, ROBOT, AND ROBOT ARM CONTROL PROGRAM - A control device (07-02-2009
20110125324ROBOT CLEANER AND CONTROLLING METHOD OF THE SAME - A robot cleaner and a method of controlling a robot cleaner are provided. The robot cleaner is capable of automatically compensating for and adjusting a moving angle and a position using an appropriate sensor and control algorithm while performing a cleaning operation in a relatively large space. This may reduce a position error, allow a cleaning region to be effectively identified as a region to be cleaned or a region having already been cleaned, thus improving cleaning performance and efficiency.05-26-2011
20100191374SECONDARY POSITION FEEDBACK CONTROL OF A ROBOT - A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.07-29-2010
20110190933Robotic Vehicle - A mobile robot that includes a chassis, a drive system disposed on the chassis and configured to maneuver the robot over a work surface, a deck system, and a control system connected to the drive system and the deck system. The deck system includes a payload deck configured to receive a removable payload and a deck shifter configured to move the payload deck relative to the chassis. The control system includes a control arbitration system and a behavior system in communication with each other. The behavior system executes a behavior that evaluates and provides an outcome evaluation on a predicted outcome of a robot command. The control arbitration system selects and executes a robot command based at least in part on the outcome evaluation.08-04-2011
20110190935RECONFIGURABLE BALANCING ROBOT AND METHOD FOR MOVING OVER LARGE OBSTACLES - An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.08-04-2011
20100030380DISTANCE SENSOR SYSTEM AND METHOD - A distance measuring system and method employing a laser distance sensor may have utility in various applications. In accordance with one aspect of the present invention, a laser distance sensor may acquire accurate distance measurements with a short baseline.02-04-2010
20100030381SERVO MOTOR MONITORING AND HOOD/DECK EXCHANGE TO ENHANCE THE INTERIOR COATING PROCESS - A method and system for handling a swing metal panel using a robot's drive axis servo motor feedback to eliminate the need for the sensors and breakaway devices is provided. Using the servo motor feedback for this function reduces cost and improves reliability. The method also applies the servo motor feedback to hold a panel in position and exchange the panel between robots during the painting or coating process.02-04-2010
20100017033ROBOTIC SYSTEMS WITH USER OPERABLE ROBOT CONTROL TERMINALS - Robotic systems and methods employ at least some communications between peripheral controllers, for example vision controller, conveyor controller, camera controller and/or inspection controller, that is independent of a robot controller or robot motion controller. Such may include a parallel communications path.01-21-2010
20120041594System and Method for Determining the Location of a Machine - A system is employed for defining a position (location) of a receiving element inside an area surrounded by a wire loop, along the perimeter (a perimeter wire loop), of a work area or other bounded area. In particular, the system can determine whether the receiver is inside or outside the loop, and evaluate its distance from the perimeter wire.02-16-2012
20120041593ELEVATOR SYSTEM THAT AUTONOMOUS MOBILE ROBOT TAKES TOGETHER WITH PERSON - An elevator system which an autonomous mobile robot and human user can utilize safely and efficiently. The system has an available area detection unit to detect an available area in a cage, and a riding possibility/impossibility determination unit to determine whether or not the autonomous mobile robot can get on the cage based on information on size and position of the available area detected by the available area detection unit. The autonomous mobile robot gets on the cage only when the riding possibility/impossibility determination unit determines that riding is possible.02-16-2012
20090281660Gunshot detection stabilized turret robot - A mobile, remotely controlled robot comprising a robot drive subsystem for maneuvering the robot, a turret on the robot, a turret drive for moving the turret, a noise detection subsystem for detecting the probable origin of a noise, a robot position and movement sensor subsystem, a turret position sensor subsystem, and one or more processors, responsive to the noise detection subsystem, the robot position and movement sensor subsystem. The turret position sensor subsystem is configured to control the turret drive to orient the turret to aim a device mounted thereto at the origin of the noise and to maintain said aim as the robot moves.11-12-2009
20110071678TENDON DRIVEN FINGER ACTUATION SYSTEM - A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.03-24-2011
20110166708PAINTING DEVICE AND ASSOCIATED METHOD - Exemplary painting devices for painting components, e.g., motor vehicle bodies or parts thereof, and associated exemplary methods are disclosed. An exemplary painting device may include a multi-axis painting robot positioning an atomizer, a robot controller for controlling the painting robot, and a controls enclosure comprising the robot controller. An exemplary controls enclosure may be a load-bearing column that mechanically supports the painting robot.07-07-2011
20120022690ROBOT CONTROL APPARATUS - In an embodiment of the present invention, with the purpose of more accurately calculating a disturbance torque generated by an external force acting on a robot, friction parameters contained in algorithms, such as a friction coefficient and a dead-zone threshold value, are dynamically changed based on the mode of operation, the operation speed, and the like. In this manner, a drive torque is estimated with high accuracy.01-26-2012
20120059516DAMAGE-PREVENTING SYSTEM FOR MANIPULATOR - An industrial robot with a manipulator arm including at least one manipulator element and an electric motor driving the at least one manipulator element. An energy reservoir supplies the electric motor with electricity when a power failure or power loss occurs to move the manipulator element from a working position to a safe parking position. Also a method of parking a manipulator arm of an industrial robot.03-08-2012
20100131101Signal Modulator for Visual Indicator - An apparatus in an example comprises a manipulator, a force sensor, a signal modulator, and a visual indicator. The manipulator is employed by a user. The force sensor determines a force signal from a force applied by the manipulator on a part of an environment of the user. The signal modulator is adjustable by the user to select a switch point for the visual indicator based on relative fragility of the part of the environment. The signal modulator employs the force signal and the switch point to control the visual indicator for the user.05-27-2010
20110035054System for Extending The Observation, Surveillance, and Navigational Capabilities of a Robot - The invention is a system that is integrated with an existing robotic system in order to extend its observation, surveillance, and navigational capabilities. The system comprises: a sensor module comprising imaging and other types of sensors that is attached to the robotic device of the robotic system and a system control station comprising a communication link to the robot control station of the existing robotic system. Both the system control station and the sensor module comprise processing units that are configured to work in complete harmony. These processing units are each supplied with software that enables using information supplied by the sensors and other components in the sensor module to provide the robotic systems with many advanced capabilities that could not be achieves prior to attachment of the sensor module to the robot.02-10-2011
20100094462Robot Control System - Communication is performed between a sensor unit (04-15-2010
20120232696Autonomous Moving Floor-Treating Robot and Control Method Thereof for Edge-Following Floor-Treating - An autonomous moving floor-treating robot and a control method thereof for edge-following floor-treating are provided. The control method includes the following steps: the floor-treating robot collides with an obstacle and is deflected toward the direction away from the obstacle by a basic angle after the collision, measures an initial signal strength value by a side-looking sensor after the deflection, and then moves on and treats the floor; a real-time signal strength value is acquired by said side-looking sensor alter the robot runs for a predetermined time; the difference value between said two signal strength values is compared, and whether the difference value is in a predetermined range is judged, if yes, the robot keeps moving and treating the floor, if not, the robot is driven to be deflected by an adjusting angle and acquires the current real-time signal strength value; the difference value between said current and the last real-time signal strength values is compared, and whether the difference value is in a predetermined range is judged, if yes, the robot keeps moving and treating the floor, if not, the steps of deflection, comparing and so on are implemented. The present invention is unaffected by the media of the obstacle, and can effectively treat the edge region of the ti obstacle.09-13-2012
20120130541METHOD AND APPARATUS FOR ROBOT TEACHING - A method and apparatus are disclosed for the direct and safe teaching of a robot. The apparatus consists of a plurality of tactile sensors and electronic circuitry encapsulated in a compact enclosure, and a handle protruding from the enclosure. The handle provides an easy means for an operator to apply an external force and to act on the sensors that generate electronic signals to the robot controller. The signals, proportional to the applied force, carry information that sets boundaries for safe operations, thus protecting the operator from any harm and the robot from damage.05-24-2012
20120165983WALKING ROBOT AND CONTROL METHOD THEREOF - A walking robot and a control method thereof. The control method includes performing transition of a second leg to a toe-off state, when ground reaction force applied to a first leg exceeds a first set value under the condition that the first leg is in a swing state and the second leg is in a support state, performing transition of the second leg to the swing state and transition of the first leg to the support state, when ground reaction force applied to the second leg is below a second set value under the condition that the second leg is in the toe-off state, and achieving walking of the walking robot by repeating the transitions among the swing state, the support state and the toe-off state. Thereby, the control method allows the robot to more stably and naturally walk.06-28-2012
20120316680TRACKING AND FOLLOWING OF MOVING OBJECTS BY A MOBILE ROBOT - A robot tracks objects using sensory data, and follows an object selected by a user. The object can be designated by a user from a set of objects recognized by the robot. The relative positions and orientations of the robot and object are determined. The position and orientation of the robot can be used so as to maintain a desired relationship between the object and the robot. Using the navigation system of the robot, during its movement, obstacles can be avoided. If the robot loses contact with the object being tracked, the robot can continue to navigate and search the environment until the object is reacquired.12-13-2012
20120316679PROVIDING REMOTE GESTURAL AND VOICE INPUT TO A MOBILE ROBOT - A system, such as a robot, which responds to voice, gesture and other natural inputs from a user, is controllable when the user is out of range through use of a wireless controller. The wireless controller provides inputs that allow the user to enter commands that are a proxy for the voice and gesture inputs the robot otherwise recognizes. The controller can include, for example, a microphone for voice input, a pad for directional control, and a speaker and display devices to provide responses from the robot.12-13-2012
20120215355Multimodal Dynamic Robotic Systems - Robotic systems according to the invention include a frame or body with two or more wheels rotatably mounted on the frame or body and a motor for independently driving each wheel. A system controller generates a signal for actuating each motor based on information provided by one or more sensors in communication with the system controller for generating feedback signals for providing reactive actuation of the motors for generating one or more functions selected from the group consisting of forward motion, backward motion, climbing, hopping, balancing, throwing and catching. A power source is included for providing power to operate the drive motors, system controller and the one or more sensors.08-23-2012
20120215357HORIZONTAL ARTICULATED ROBOT, AND METHOD OF CONTROLLING THE SAME - A robot includes a first horizontal arm coupled to a base, a second horizontal arm coupled to the base via the first horizontal arm, first and second motors adapted to rotate the respective arms, and first and second encoders adapted to calculate rotational angles and rotational velocities of the respective motors. A first motor control section subtracts first and second angular velocities based on the first and second encoders from a sensor angular velocity detected by an angular sensor, and controls the first motor so that a velocity measurement value obtained by adding a vibration velocity based on a vibration angular velocity as the subtraction result and a first rotational velocity becomes equal to a velocity command value.08-23-2012
20120215356HORIZONTAL ARTICULATED ROBOT - A robot includes an angular velocity sensor installed to a second horizontal arm and for obtaining the angular velocity of the first horizontal arm with respect to a base, and suppresses the vibration of the first horizontal arm by driving a first electric motor based on the angular velocity of the first horizontal arm. In the robot, an electric wire to be connected to a second electric motor incorporated in the second horizontal arm and electric wire to be connected to the angular velocity sensor are laid around through a wiring duct having end portions coupled respectively to the base and the second horizontal arm, disposed outside the first horizontal arm and outside the second horizontal arm, and having a passage leading to the inside of the base and the inside of the second horizontal arm.08-23-2012
20110184557PRESSURE DETECTION DEVICE AND PRESSURE DETECTION METHOD - A pressure detection device includes a buffer member and a sensor assembly. The buffer member is deformable by a pressure change, and includes a plurality of magnets in an evenly dispersed arrangement. The sensor assembly includes at least one magnetic sensor to detect a variation of a magnetic field accompanied by deformation of the buffer member.07-28-2011
20120316681INPUT APPARATUS FOR MEDICAL MINIMALLY INVASIVE ROBOTS OR MEDICAL SIMULATORS AND MEDICAL DEVICE HAVING AN INPUT APPARATUS - The input apparatus (12-13-2012
20120179295STEERING ROBOT - A steering robot for attachment to a vehicle's steering wheel has its own steering wheel attached to a rotor of an annular motor. The latter has a stator. Fitted to the forward (in use) side of rotor is an annular mounting plate, having three tabs extending slightly inwards for receiving mounting bolts. A clamp formed of a ring having equally spaced around it three slotted radial lugs. The lugs provide attachments for three clamping fixtures, by means of which the clamp can be attached temporarily to the vehicle's steering wheel. The stator has a pair of torque reaction lugs via which steering torque exerted by the motor to effect a steering manoeuvre under test or investigation can be reacted. The steering robot is open-centred, whereby steering wheel mounted controls can be operated normally.07-12-2012
20100274389Device Comprising A Robot, Medical Work Station, And Method For Registering An Object - The invention relates to a medical device, a medical work station, and a method for registering an object (P). The medical device comprises a navigation system (10-28-2010
20080300722AMPHIBIOUS ROBOTIC DEVICE - A robotic device for navigating in at least a liquid medium, includes a legged propulsion system having a series of legs external of a body of the robotic device, each of the legs being independently driven and mounted to the body for pivotal movement about a respective transverse axis. The legs oscillating relative to the body about the respective transverse axis such that interaction between the legs and the liquid medium produces propulsive forces that displace the robotic device within the liquid medium. A control system is operatively connected to the legged propulsion system for autonomous control and operation of the robotic device based on information received from at least one sensor providing data about an environment of the device.12-04-2008
20090312870MANIPULATOR, MANIPULATOR COLLISION DETECTING METHOD AND MANIPULATOR CONTROL METHOD - A manipulator is provided with a first link, a second link, first and second differential input shafts rotatably supported on the first link, a differential output shaft rotatably supported on the second link, a differential gear mechanism for rotating the differential output shaft about two axes orthogonal to each other in accordance with the sum or difference of rotating speeds of the first and second differential input shafts, a first transmitting portion for transmitting a driving force to the first differential input shaft, a second transmitting portion for transmitting a driving force to the second differential input shaft, a first shaft rotational angle sensor for detecting rotational angle information of the first differential input shaft, a second shaft rotational angle sensor for detecting rotational angle information of the second differential input shaft, and a controller for detecting the reception of an external force by the first or second link based on an output signal of the first or second shaft rotational angle sensor. Each of the first and second transmitting portions includes a rotatable worm elastically held at a specified position in such a manner as to be movable in a translation direction of a rotation axis and a worm wheel engaged with the worm. The worm makes a translational movement in accordance with the external force received by the first or second link.12-17-2009
20110130876HUMAN-ROBOT INTERACTIVE SYSTEM HAVING A HUMAN STIFFNESS ESTIMATION CONTROL ALGORITHM - A robotic system includes a robot adapted for moving a payload in proportional response to an input force from an operator, sensors adapted for measuring a predetermined set of operator input values, including the input force, and a controller. The controller determines a changing stiffness value of the operator using set of operator input values, and automatically adjusts a level of control sensitivity over the robot using the stiffness value. The input values include the input force, a muscle activation level of the operator, and a position of the operator. A method of controlling the robot includes measuring the operator input values using the plurality of sensors, processing the input values using the controller to thereby calculate the stiffness value, and automatically adjusting the level of control sensitivity over the robot using the stiffness value. A specific operator may be identified, with control sensitivity being adjusted based on the identity.06-02-2011
20110224827ROBOT CONTROLLER, ROBOT CONTROL METHOD, AND LEGGED ROBOT - A robot controller in accordance with the present invention is a robot controller that makes a robot including a plurality of legs walk by driving joints of the robot, the robot controller being configured to determine a permissible range for a trunk vertical position of the robot based on measured environmental parameters, the measured environmental parameters being information of an environment around the robot, and to make the robot walk based on measured posture parameters representing a posture of the robot so that the trunk vertical position remains within the permissible range. In this way, a legged robot with high robustness as well as its controller and control method can be provided.09-15-2011
20100234997TACTILE SENSOR ARRANGEMENT AND CORRESPONDING SENSORY SYSTEM - A sensory system for a robot comprises a plurality of tactile sensor arrangements (09-16-2010
20100234996Manipulator, Particularly Industrial Robot, Having A Redundant Sensor Arrangement, And Method For The Control Thereof - The invention relates to an industrial robot (09-16-2010
20100234995SYSTEM AND METHOD FOR SECURELY TRANSPORTING AN ITEM - A system. The system includes an apparatus and a server. The apparatus is configured for securely transporting an item from a first location to a second location, and includes a mobile robot and a cart. The cart is coupled to the mobile robot and includes at least one secure storage area. The server is communicably connected to the apparatus and includes a module. The module is configured to maintain a chain of custody record for the item.09-16-2010
20100234994METHOD FOR DYNAMICALLY CONTROLLING A ROBOTIC ARM - A method for maneuvering an articulable robotic arm includes monitoring a position of a dynamically moveable workpiece. Individual motion segments are iteratively executed to control the articulable robotic arm to position the end-of-arm tool contiguous to the workpiece and corresponding to an initial position of the end-of-arm tool, an initial position of the workpiece and an iteratively determined updated position of the workpiece.09-16-2010
20120277912ROBOT CONTROLLER, SIMPLE INSTALLATION-TYPE ROBOT, AND METHOD OF CONTROLLING SIMPLE INSTALLATION-TYPE ROBOT - A robot includes an angular velocity sensor that detects the vibration of a robot. A control device allows the robot to perform a trial operation and acquires the measurement result measured by the angular velocity sensor during the trial operation as vibration information and analyzes the acquired vibration information based on maker evaluating information that is stored in a database. In the maker evaluating information, vibration information and the operating speed appropriate to the installation situation of the robot at which the vibration information is measured are associated with each other. Then, the robot is operated at an operating speed selected based on the analysis result of the vibration information.11-01-2012
20120277911Variable Strength Magnetic End Effector For Lift Systems - A device and method for adjusting the magnetic strength of a magnetic end effector for lift systems is described. The magnetic end effector is capable of lifting discriminate payloads by selectively varying the strength of the magnetic forces output by the magnetic end effector. An actuator can be operatively coupled to the variable strength magnet end effector, wherein the actuator is selectively actuatable to control the adjustment of the variable strength magnet. The actuator may also be configured to maintain the variable strength magnet at a desired magnetic force output strength once achieved for any given amount of time.11-01-2012
20110270445INSTRUMENT TURNTABLE AND METHOD FOR USE - An instrument turntable is presented which allows an instrument to be installed into an automated system, yet that will still allow an operator to use the instrument manually, even while the automated system is running, without ever removing the instrument from the automated system.11-03-2011
20120089254Electric Manipulator Joint - A manipulator joint includes an encoder having a body and shaft. The encoder body may be fixed to a first housing and the encoder shaft may be fixed to a second housing. The second housing is separate from, distal to, and rotatable with respect to the first housing. Rotation of the second housing may be about a common axis shared with the first housing. A hollow driveshaft, rotatably coupled to the second housing, extends across the joint from the second to the first housing. A torque limiter may be fixedly coupled to the second housing and releasably coupled to the driveshaft. The encoder may be configured to output an absolute angular position of the first housing with respect to the second housing. A method of detecting an over-torque condition of the manipulator joint includes transmitting commands from a processor to the drive motor and receiving data from the encoder.04-12-2012
20120290133ROBOT HAND AND ROBOT - A robot hand has a plurality of fingers including a contact sensing finger that senses contact with an object. A base provided with the fingers detects a resultant reaction force that is the combination of reaction forces from the fingers. When no resultant reaction force is detected, the plurality of fingers are moved toward the object, and when the contact sensing finger comes into contact with the object, a force that drives the fingers is switched to a force corresponding to a grasp force. When the contact sensing finger has not come into contact with the object but a resultant reaction force is detected, the driving of the fingers is terminated and the position of the base is corrected by moving the base in a direction in which the resultant reaction force having acted thereon is not detected any more.11-15-2012
20130013111APPARATUS AND METHOD FOR LEGGED LOCOMOTION INTEGRATING PASSIVE DYNAMICS WITH ACTIVE FORCE CONTROL - A robot for legged locomotion incorporating passive dynamics with active force control and method are provided.01-10-2013
20120150348METHOD FOR ESTIMATING CONNECTION ORDERS OF MODULES OF MODULAR ROBOT - A method for estimating a connection order of modules in a robot including the modules each having a joint as a basic unit. Since a device and a program are connected by software and thus a joint and program are connected by software, it is possible for a user to control robot joints without being aware of the connection relationship between the devices and the joints in the modular robot in which the plurality of modules each including a movable joint as a basic unit is connected.06-14-2012
20110160905WORKPIECE MOUNTING SYSTEM, WORKPIECE MOUNTING METHOD, SUNROOF UNIT HOLDING DEVICE, AND SUNROOF UNIT HOLDING METHOD - A workpiece mounting system which is highly versatile and can reduce a cycle time. A workpiece mounting system (06-30-2011
20130173056Short-Range Sonar - A short-range sonar assembly. The assembly includes a local controller operably connected to a processing device and configured to receive instructions from the processing device, a first transducer operably connected to the local controller, a second transducer operably connected to the local controller; and a flared bell configured to house the local controller, first transducer, and second transducer. The flared bell includes a first enclosure configured to receive and house the first transducer and a second enclosure configured to receive and house the second transducer. The first transducer is configured to transmit one or more pulses and the second transducer is configured to receive echoed pulses.07-04-2013
20080234865Patient Positioning Device - The invention relates to a patient-positioning device for positioning a patient in an irradiation position in a radiation therapy arrangement, in particular in a particle radiation therapy arrangement comprising a patient supporting module, which is provided with a patient supporting device for holding the patient in a body holder where the irradiation is to be carried out, wherein, said patient supporting device is mounted on a base unit in such a way that it is rotatable about an axis by means of a bearing, said base unit is provided with a coupling element, the inventive device is also provided with a positioning arm, which comprises several joints and a coupling point for coupling the coupling element and for freely positioning the patient in any predefined irradiation position by adjusting the angle of rotation of the patient supporting module.09-25-2008
20080221733SYSTEM AND METHOD OF LOCATING RELATIVE POSITIONS OF OBJECTS - An apparatus and method for performing manufacturing operations using position sensing for robotic arms that efficiently and accurately finds the location of a workpiece or features on a workpiece.09-11-2008
20130178982INTERACTIVE PERSONAL ROBOTIC APPARATUS - An interactive robotic apparatus that interacts with a user, especially an elderly individual to provide companionship and comfort. The interactive apparatus receives inputs from the user and reacts and interacts. The interactive robotic apparatus includes microphones and a phototransistor to detect sounds and movement. The interactive robotic apparatus also includes a speaker to generate sounds responsive to the interaction with the user and exhibits a breathing animation and heartbeat.07-11-2013
20130178983LEG MOTION TRAJECTORY GENERATION DEVICE FOR LEGGED MOBILE ROBOT07-11-2013
20130173057Long-Range Sonar - A long-range sonar assembly for detecting objects approximately 2.5-9.5 meters from a robotic device. The assembly includes a printed circuit board including a local controller operably connected to a processing device and configured to receive instructions from the processing device, a transmit potentiometer operably connected to the local controller and configured to produce a first transmit frequency, and a receive potentiometer operably connected to the local controller and configured to produce a first receive sensitivity; a transducer operably connected to the receive potentiometer; and a flared bell configured to house the transducer and the printed circuit board, the flared bell comprising at least a first enclosure for receiving a sub-assembly comprising the printed circuit board and the transducer.07-04-2013
20120253516ROBOT CONTROL METHOD AND ROBOT - A robot control method includes gripping a work with a hand unit; transferring the work to the vicinity of a plane; dropping the work to the plane by reducing the grip force of the hand unit, and aligning the work with the plane; and re-gripping the work, which is aligned with the plane, again with the hand unit.10-04-2012
20130090763SYSTEMS AND METHODS FOR FORCE SENSING IN A ROBOT - A system for force sensing in a robot is provided. The robot includes an end disk and a plurality of backbones coupled to the end disk. A plurality of spacer disks are dispersed along the plurality of backbones, and keep the plurality of backbones separated from one another. A base disk provides an interconnection point to a lumen, and the lumen provides a channel to an actuation device. The actuation device provides actuation of the backbones. At least one sensor measures the force being applied on one of the plurality of backbones, and a processor receives force measurements from the at least one sensor and determines the displacement of at least one of the plurality of backbones.04-11-2013
20130123984MOBILE DEVICE FOR IRRADIATION AND DETECTION OF RADIATION - Radiation lenses including channels consisting of capillaries or fibres, polycapillaries or multilayer planar properly coupled, a central channel filled with refracting material for neutrons and an extraction channel. The channels can be bent with a graded curvature and filled with material with an increasing refracting index, such an increasing refracting index depending on the position of the channel respect the central channel. The lenses can be subdivided into sectors in which the channels have a different curvature and are filled with materials with a different refracting index to increase the combined effect of the total reflection and the refraction. The sectors can be configured in a cubic, cone or prism shape.05-16-2013
20110313571ROBOT SYSTEM - The present invention provides a robot system including a robot having a plurality of move axes and a safeguard apparatus provided independently of a control system of the robot and adapted for limiting a movable range of the robot. The safeguard apparatus includes at least two individual-axis-detection external sensors configured to be respectively turned ON/OFF in response to a rotational position or a transfer position of respective at least two move axes among the plurality of move axes of the robot, and an apparatus body configured to limit a move of the robot based on a combination of ON/OFF conditions of at least two output signals obtained from the at least two individual-axis-detection external sensors.12-22-2011
20110238214Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner - A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.09-29-2011
20130184868ROBOT CONTROLLER, ROBOT SYSTEM, ROBOT CONTROL METHOD - A robot controller includes a force control unit that outputs a correction value of a target track of a robot based on a detected sensor value acquired from a force sensor, a target value output unit that obtains a target value by performing correction processing on the target track based on the correction value and outputs the obtained target value, and a robot control unit that performs feedback control of the robot based on the target value. The force control unit includes an impedance processor that obtains a solution of a differential equation in force control as the correction value before the conversion processing, and a nonlinear convertor that obtains the correction value after the conversion processing by performing nonlinear conversion processing on the correction value before the conversion processing acquired from the impedance processor and outputs the obtained correction value after the conversion processing.07-18-2013
20120283875METHOD AND DEVICE FOR CONTROLLING A MANIPULATOR - A method according to the invention for controlling a manipulator, in particular of a robot, comprises the step of detecting a contact force between the manipulator and a workpiece (11-08-2012
20120016521AUTOMATION EQUIPMENT CONTROL SYSTEM - A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.01-19-2012
20120016520RECONFIGURABLE BALANCING ROBOT AND METHOD FOR DYNAMICALLY TRANSITIONING BETWEEN STATICALLY STABLE MODE AND DYNAMICALLY BALANCED MODE - An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.01-19-2012
20130204435WEARABLE ROBOT AND TEACHING METHOD OF MOTION USING THE SAME - A wearable robot may be worn by a user to record or teach a motion, including a motion such as sign language. The wearable robot includes a mode to record sign language data in a system by a sign language expert wearing the wearable robot and a mode to teach the sign language data recorded in the system to a sign language learner wearing the wearable robot. A user who wishes to learn sign language may easily learn sign language. In particular, a disabled person, who has poor eyesight and is unable to watch a video that teaches sign language, may learn sign language very intuitively using the wearable robot. Further, a user who has normal eyesight may also learn sign language more easily than from using a video which teaches sign language or from a sign language expert.08-08-2013
20120083924ROBOT HAVING ADDITIONAL COMPUTING DEVICE - A modular robot development kit includes an extensible mobile robot platform and a programmable development module that connects to the mobile robot platform. The mobile robot platform includes a controller that executes robot behaviors concurrently and performs robot actions in accordance with robot control signals received from the development module, as modified by the concurrently running robot behaviors, as a safeguard against performing potentially damaging robot actions. Also, the user can develop software that is executed on the development module and which transmits the robot control signals to the mobile robot platform over the data communication link using a robot interface protocol. The robot interface protocol encapsulates potentially harmful user-developed software routines from the controller instructions executed by the controller of the mobile robot platform, while nonetheless enabling the user to effectively control the mobile robot platform using the robot control signals of the robot interface protocol.04-05-2012
20130211593WORKPIECE PICK-UP APPARATUS - A workpiece pick-up apparatus including: a hand for gripping a workpiece; a robot for bringing the hand into a desired gripping position or posture; a sensor for performing three-dimensional measurement of the workpiece to obtain workpiece measurement data; a storage medium for accumulating at least hand profile data; an information processing unit for calculating the gripping position or posture based on data from the sensor and data from the storage medium; and a control unit for controlling the robot based on the gripping position or posture calculated by the information processing unit. The information processing unit includes an optimum gripping candidate creating section for directly deriving the gripping position or posture based on the workpiece measurement data and the hand profile data.08-15-2013
20130211591AUTONOMOUS ROBOT AND METHOD OF CONTROLLING THE SAME - Disclosed are a robot and a method of controlling the robot, and more particularly are an autonomous robot and a method of controlling the autonomous robot. The autonomous robot includes a sensor for detecting a change of a situation; an actuator; and a controller for controlling the actuator based on information input through the sensor, wherein the controller controls the actuator in accordance with mode information including an act abstraction layer which defines a unit act by combining functions of the sensor and the actuator.08-15-2013
20130211592TELE-OPERATION SYSTEM AND CONTROL METHOD THEREOF - A tele-operation system enabling a robot arm to move by following a motion of a motion of a hand of a user without an additional mechanical apparatus, the tele-operation system including a slave robot having a robot arm, a master console configured to detect a gesture of a user, and to control the slave robot from a remote place so that the slave robot moves by following the gesture of the user.08-15-2013

Patent applications in class Having particular sensor

Patent applications in all subclasses Having particular sensor