Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Electrical treatment of pain

Subclass of:

607 - Surgery: light, thermal, and electrical application

607001000 - LIGHT, THERMAL, AND ELECTRICAL APPLICATION

607002000 - Electrical therapeutic systems

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110178573TORQUE LOCK ANCHOR AND METHODS AND DEVICES USING THE ANCHOR - A lead anchor includes a body defining a lead lumen having a first opening and a second opening through which a lead can pass. The body further defines a transverse lumen that intersects the lead lumen. An exterior member is disposed around at least a portion of the body. The exterior member is formed of a biocompatible material. A fastener anchors the lead to the body through the transverse lumen by deforming a portion of the lead. The transverse lumen is configured and arranged to receive the fastener. At least at least two suture tabs extend from the exterior member and are configured and arranged for receiving a suture to suture the lead anchor to patient tissue.07-21-2011
20120203303SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-09-2012
20090198305TRANSCUTANEOUS ELECTRICAL THERAPEUTIC DEVICE - An apparatus and method for locating therapeutically active points and applying transcutaneous electrical stimulation thereto are disclosed.08-06-2009
20100152808Systems and methods to place one or more leads in tissue to electrically stimulate nerves of passage to treat pain - It has been discovered that pain felt in a given region of the body can be treated, not by motor point stimulation of muscle in the local region where pain is felt, but by stimulating muscle close to a “nerve of passage” in a region that is superior (i.e., cranial or upstream toward the spinal column) to the region where pain is felt. Spinal nerves such as the intercostal nerves or nerves passing through a nerve plexus, which comprise trunks that divide by divisions and/or cords into branches, comprise “nerves of passage.”06-17-2010
20100010566SYSTEM AND METHOD FOR CONVERTING TISSUE STIMULATION PROGRAMS IN A FORMAT USABLE BY AN ELECTRICAL CURRENT STEERING NAVIGATOR - A method, computer medium, and system for programming a controller is provided. The controller controls electrical stimulation energy output to electrodes, and stores a set of programmed stimulation parameters associated with the electrodes. The programmed stimulation parameter set is compared with sets of reference stimulation parameters, each of the reference sets of stimulation parameters being associated with the electrodes. If an identical match is determined between the programmed stimulation parameter set and any one of the reference stimulation parameter sets exists based on the comparison, the identically matched stimulation parameter set is selected as an initial stimulation parameter set. If an identical match does not exist, a best between the programmed stimulation parameter set and the reference stimulation parameter sets is determined and selected as the initial stimulation parameter set. The controller is then programmed with a new set of programmable stimulation parameters based on the initial stimulation parameter set.01-14-2010
20090192570METHODS AND SYSTEMS OF TREATING ISCHEMIA PAIN IN VISCERAL ORGANS - Methods and systems of treating a patient with ischemia pain include providing a stimulator, configuring one or more stimulation parameters to treat ischemia pain in a visceral organ, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to treat ischemia pain with the stimulator in accordance with the one or more stimulation parameters, and applying the stimulus with the stimulator to one or more stimulation sites in accordance with the one or more stimulation parameters.07-30-2009
20130030501METHOD OF NEUROSTIMULATION OF DISTINCT NEURAL STRUCTURES USING SINGLE PADDLE LEAD TO TREAT MULTIPLE PAIN LOCATIONS AND MULTI-COLUMN, MULTI-ROW PADDLE LEAD FOR SUCH NEUROSTIMULATION - In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.01-31-2013
20100057164MULTIPLE TUNABLE CENTRAL CATHODES ON A PADDLE FOR INCREASED MEDIAL-LATERAL AND ROSTRAL-CAUDAL FLEXIBILITY VIA CURRENT STEERING - A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.03-04-2010
20100114238INTEGRATION OF FUNCTIONAL ELECTRICAL STIMULATION IN PROSTHETIC SOCKETS, LINERS, AND GARMENTS FOR IMPROVED AMPUTEE CARE AND PERFORMANCE - The present disclosure provides a functional electrode stimulation (FES) apparatus for use with prosthetic limbs. FES may provide the benefits of pain management, muscle building, prevention of muscle atrophy, and muscle re-education of residual limb and/or peri-residual limb muscles. The FES apparatus comprises a portable electrical stimulator; means to carry a current between the electrical stimulator and a prosthetic limb liner or socket; a plurality of elastic conductors integrated with the prosthetic limb liner or socket and capable of carrying the current from the means; a plurality of thin planar conductive fabric electrodes capable of carrying the current from the elastic conductors; and a plurality of thin electrodes capable of carrying the current between the thin planar conductive fabric electrodes and the skin of a patient.05-06-2010
20130085548METHOD OF TREATING CHRONIC PAIN IN A PATIENT USING NEUROMODULATION - Some representative embodiments are directed to treating chronic pain in a patient. A first stimulation lead is implanted in the patient with electrodes in the epidural space of the patient. A second stimulation lead is implanted with electrodes in subcutaneous tissue in an area of back or torso pain of the patient. The electrodes of the second stimulation lead are disposed in a configuration that is substantially perpendicular to an axis defined by the spine of the patient. Electrical pulses are generated by an implantable pulse generator for application to tissue of the patient. The electrical pulses are applied to the tissue of the patient using electrodes of the first stimulation lead and electrodes of the second stimulation lead. Active electrodes on the first stimulation lead are set to a first polarity and active electrodes on the second stimulation lead are set to a second polarity that is opposite to the first polarity.04-04-2013
20090012577APPARTUS AND METHOD FOR TREATING HEADACHE AND/OR FACIAL PAIN - An apparatus for treating headache and/or facial pain includes an electrical lead and having a distal end portion, a proximal end portion, and a channel extending between the distal and proximal end portions. The distal end portion has at least one electrode disposed thereon and at least one foldable tine for anchoring the distal tip adjacent a SPG, and the proximal end portion is adapted for connection to an energy delivery source.01-08-2009
20130035741TRANSCUTANEOUS ELECTRO-STIMULATION DEVICE WITH A MATRIX OF ELECTRODES - A transcutaneous electro-stimulation device comprising a matrix of stimulation electrodes (02-07-2013
20130041425SYSTEMS AND METHODS FOR PRODUCING ASYNCHRONOUS NEURAL RESPONSES TO TREAT PAIN AND/OR OTHER PATIENT CONDITIONS - Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions are disclosed. A method in accordance with a particular embodiment includes selecting a target stimulation frequency that is above a threshold frequency, with the threshold frequency corresponding to a refractory period for neurons of a target sensory neural population. The method can further include producing a patient sensation of paresthesia by directing an electrical signal to multiple sensory neurons of the target sensory neural population at the stimulation frequency, with individual neurons of the sensory neural population completing corresponding individual refractory periods at different times, resulting in an asynchronous sensory neuron response to the electrical signal.02-14-2013
20100042181CRANIAL-ELECTRO STIMULATOR - A method of reducing muscle pain in a person by removably attaching an electrode to each ear on a person's head and connecting the electrodes to receive a modified pulse signal from a computer or a digital port. The signal from the computer or the digital port are rectangular voltage pulses of “1s” and “0s” at varying frequencies. The rectangular pulse signal from the computer or digital port is modified to have at least the leading square corner of each rectangular voltage pulse rounded before it is sent to the electrodes. A method of randomizing the stimulus at about 100 Hz for improved sleep and an alternate method of randomizing stimuli for the neurological reduction of perceived pain and a similar method for reducing pain output from a muscle and its associated tissues directly.02-18-2010
20090157142Implanted Driver with Charge Balancing - A transponder includes a stimulus driver configured to discharge an electrical stimulus when a trigger signal is received. A first conducting electrode is coupled to the stimulus driver and conducts the electrical stimulus discharged by the stimulus driver. A second conducting electrode is coupled to the stimulus driver and conducts the electrical stimulus conducted by the first conducting electrode. A depolarization switch is gated by the trigger signal and connects the first conducting electrode to the second conducting electrode in response to the trigger signal.06-18-2009
20090157141WIRELESS NEURAL RECORDING AND STIMULATING SYSTEM - Apparatus and methods are provided for the management of neural activity in an individual. Nerve activity is sensed and correlated with sensations such as pain. In response and without requiring input from the individual, although external input is contemplated, a signal is transmitted to another component for electrical stimulation that alters neural activity. Also, the modulation of the signals between the sensor and stimulator may be modified by a third component independently, independent of, or including user inputs.06-18-2009
20090112282OCCIPITAL NERVE STIMULATION - An implantable medical device comprises one or more electrical stimulation generators, and a housing that contains the one or more electrical stimulation generators. The implantable medical device also includes a first medical lead no greater than about 6 inches in length, and a second medical lead no greater than about 6 inches in length. The housing includes a first connector block that electrically connects the first medical lead to at least one of the one or more electrical stimulation generators, and a second connector block that electrically connects the second medical lead to at least one of the one or more electrical stimulation generators. The implantable medical device may be part of an electrical stimulation system implanted beneath the skin and inferior to the inion of a patient to deliver stimulation therapy to at least one of an occipital nerve and a branch of the occipital nerve.04-30-2009
20110009923SYSTEM AND METHOD FOR REDUCING EXCITABILITY OF DORSAL ROOT FIBER BY INTRODUCING STOCHASTIC BACKGROUND NOISE - A method and neurostimulator for providing therapy to a patient is provided. In one technique, electrical background energy is conveyed to a first tissue region of the patient in accordance with stochastic parameter, thereby modulating the excitability of the first tissue region, and electrical stimulation energy is conveyed to the first tissue region when its excitability is modulated. In one example, the stimulation energy may be conveyed to a second tissue region of the patient, thereby therapeutically stimulating the second tissue region. In this case, the excitability of the first tissue region is decreased, thereby reducing any adverse effect that the conveyed stimulation energy has on the first tissue region. As another example, the conveyed stimulation energy stimulates the first tissue region, in which case, the excitability of the first tissue region may be increased, thereby enhancing the stimulation of the first tissue region by the conveyed stimulation energy.01-13-2011
20090306740CONTROLLING THERAPY BASED ON SLEEP QUALITY - A medical device, such as an implantable medical device (IMD), determines values for one or more metrics that indicate the quality of a patient's sleep, and controls delivery of a therapy based on the sleep quality metric values. For example, the medical device may compare a sleep quality metric value with one or more threshold values, and adjust the therapy based on the comparison. In some embodiments, the medical device adjusts the intensity of therapy based on the comparison, e.g., increases the therapy intensity when the comparison indicates that the patient's sleep quality is poor. In some embodiments, the medical device automatically selects one of a plurality of therapy parameter set available for use in delivering therapy based on a comparison sleep quality metric values associated with respective therapy parameter sets within the plurality of available therapy parameter sets.12-10-2009
20130060302AUTOMATED SEARCH TO IDENTIFY A LOCATION FOR ELECTRICAL STIMULATION TO TREAT A PATIENT - A stimulation system, such as a spinal cord stimulation (SCS) system, having an automated search to establish a program to treat a patient with electrical stimulation. The stimulation system includes an electrical stimulation generator, a medical lead coupled to the electrical stimulation generator, and a programmer with a communication interface, a display screen, and a user interface. The display screen displays an image of a spinal column and a position of the medical lead relative to the spinal column. The system includes an automated search that stimulates a series of regions and receives patient feedback via the user interface. The system then stimulates a series of subregions within a subset of the regions based on the feedback, receives additional feedback, and identifies a subset of the subregions location for stimulation based on the additional feedback.03-07-2013
20130060301CONFIGURING ELECTRICAL STIMULATION TO TREAT A PATIENT - A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer with a user interface. The programmer determines a position of an implanted medical lead with respect to a patient's spinal column. The programmer overlays the medical lead, an initial stimulation field, and an initial target stimulation area within the initial stimulation field on an image of the spinal column. A user enters, via the user interface, graphical manipulations of displayed boundaries of the initial stimulation field and the initial target stimulation area. The graphical manipulations of the stimulation field and the target stimulation field are independent of each other and they may move and/or alter the shape of the boundaries. The programmer then determines stimulation parameters to drive the implanted medical lead to generate the displayed stimulation field and target stimulation field as manipulated by the user.03-07-2013
20130060300POSITIONING LEADS ON PATIENT MODEL USING A GRAPHICAL USER INTERFACE - A stimulation system, such as a spinal cord stimulation (SCS) system, for storing position information of an implanted medical lead implanted in a patient. A communication unit is configured to receive, from a first programmer, position data that indicates an actual position of the implanted medical lead with respect to a spinal column of the patient and an anatomically correct image of the spinal column. The communication unit is further configured to forward the position data, and to transmit both to a second programmer. The second programmer is then able to display a representation of the implanted medical lead on the anatomically correct image in an anatomically correct location and in an actual orientation based on the position data.03-07-2013
20130060299IDENTIFYING AN AREA FOR ELECTRICAL STIMULATION TO TREAT A PATIENT - A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer for identifying an area for electrical stimulation to treat a patient. The programmer includes a communication interface, a display screen, and a user interface. The communication interface communicates with the electrical stimulation generator to generate electrical stimulation and the display screen displays a patient model. The user interface receives user input identifying an area of pain on the patient model via a selection of the area of the body part. The programmer then associates the area of pain identified with a spinal column location, and displays on the display screen a suggested medical lead position and/or a suggested stimulation area on an image of a spinal column based on the step of associating.03-07-2013
20090281595PROGRAMMING TECHNIQUES FOR PERIPHERAL NERVE FIELD STIMULATION - Peripheral nerve field stimulation (PNFS) delivered by a medical device to a patient may be programmed by specifying one or more characteristics of a stimulation field generated by the IMD to provide the PNFS. The characteristics of the stimulation field may include, for example, a direction of stimulation within the field, a breadth of the stimulation field, a focus of stimulation within the stimulation field, a depth of the stimulation field relative to a reference point, such as the epidermis of the patient, or a nerve fiber diameter selection.11-12-2009
20130066393TIBIAL NERVE STIMULATION - A method is provided, including identifying a subject as suffering from pain in a first limb of the subject. In response to the identifying, treatment of the pain in the first limb is facilitated by implanting electrodes in a limb of the subject that is contralateral to the first limb. Other embodiments are also described.03-14-2013
20130066394Pain Management - A system including a processor configured to be coupled to an electrical lead that is configured to sense electrical activity in a patient, a memory coupled to the processor, the memory containing computer readable instructions that, when executed by the processor, cause the processor to detect a pain signature in the sensed electrical activity, determine a treatment protocol in response to the detected pain signature, and cause the treatment protocol to be delivered to the patient via the electrical lead.03-14-2013
20120116477METHOD AND APPARATUS FOR STIMULATING THE LOWER BACK AND ABDOMINAL MUSCLES - A method and apparatus for stimulating the lower back and abdominal muscles in a patient comprising applying a first electrode A05-10-2012
20130165991NEUROSTIMULATION METHODS AND SYSTEMS - Some embodiments of the present invention provide stimulation systems and components for selective stimulation and/or neuromodulation of one or more dorsal root ganglia through implantation of an electrode on, in or around a dorsal root ganglia. Some other embodiments of the present invention provide methods for selective neurostimulation of one or more dorsal root ganglia as well as techniques for applying neurostimulation to the spinal cord. Still other embodiments of the present invention provide stimulation systems and components for selective stimulation and/or neuromodulation of one or more dorsal root ganglia through implantation of an electrode on, in or around a dorsal root ganglia in combination with a pharmacological agent.06-27-2013
20090054951Electrode for Stimulating Bone Growth, Tissue Healing and/or Pain Control, and Method of Use - A screw for use in stimulating bone growth, tissue healing and/or pain control. The screw includes an elongate shaft having a length extending between opposite ends, an exterior surface and a screw thread formed on the exterior surface of the shaft and extending along at least a portion of the length. The shaft has an electrically conducting portion and an electrically insulating portion. The screw also includes a head adjacent one end of the shaft for engaging the screw to rotate the screw and thereby drive it into bone. The screw includes an electrical conductor electrically connectable to the shaft for conveying current through the shaft to the bone through the conducting portion of the shaft.02-26-2009
20100030299APPARATUS AND METHOD FOR THE TREATMENT OF HEADACHE - A battery-operated transcutaneous electrical nerve stimulator (TENS) to treat headache pain in an abortive and/or preventive manner. The TENS unit and its electrodes are built into a unitary device which facilitates a self-administered treatment. In some embodiments, the pulses are monophasic. In other embodiments, pairs of biphasic pulses are provided, wherein each pair of biphasic pulses includes a first pulse having a first polarity separated by a gap in time from a second pulsed having an opposite polarity. In some embodiments, each pulse in each biphasic pair is of a duration equal to that of the other pulse of the pair. In some embodiments, the duration of each pulse is between about 50 microseconds and about 400 microseconds, and the gap in time between pulses of a pair is between about 50 and 100 microseconds.02-04-2010
20110125216ADJUSTABLE NERVE ELECTRODE - Example adjustable electrodes are described. One example adjustable electrode includes two or more contacts configured to selectively deliver high frequency alternating current (HFAC) to a nerve in an amount sufficient to produce an HFAC nerve conduction block in the nerve. The example adjustable electrode also includes a logic configured to selectively control which of the two or more contacts deliver HFAC to the nerve to control whether the nerve electrode is in a first (e.g., onset response mitigating) configuration or in a second (e.g., HFAC nerve conduction block maintenance) configuration. The electrode may be used in applications including, but not limited to, nerve block applications, and nerve stimulation applications. The electrode may be adjusted by changing attributes including, but not limited to, the number, length, orientation, distance between, surface area, and distance from a nerve of contacts to be used to deliver the HFAC.05-26-2011
20130018436ELECTRICAL STIMULATION OF THE SYMPATHETIC NERVE CHAIN - The present invention provides a method of affecting physiological disorders by stimulating a specific location along the sympathetic nerve chain. Preferably, the present invention provides a method of affecting a variety of physiological disorders or pathological conditions by placing an electrode adjacent to or in communication with at least one ganglion along the sympathetic nerve chain and stimulating the at least one ganglion until the physiological disorder or pathological condition has been affected.01-17-2013
20110276107ELECTRICAL AND MAGNETIC STIMULATORS USED TO TREAT MIGRAINE/SINUS HEADACHE, RHINITIS, SINUSITIS, RHINOSINUSITIS, AND COMORBID DISORDERS - Transcutaneous electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including nasal or paranasal sinus symptoms that resemble an immune-mediated response (“sinus” headaches). The devices and methods may also be used to treat rhinitis, sinusitis, or rhinosinusitis, irrespective of whether those disorders are co-morbid with a headache. They may also be used to treat other disorders that may be co-morbid with migraine or cluster headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.11-10-2011
20090076568Apparatus and method for quick pain suppression - Apparatus and methods for quick acute and chronic pain suppression, particularly useful and effective towards high-grade pains and/or pains resistant to other analgesic drugs such as opiates. One apparatus and method generate synthetic “non-pain” information strings of great clinical effectiveness, allowing high reproducibility of the clinical result. Synthesis of the strings occurs by combining novel geometries of complex waveforms in a sequence, perceived as “self” and “non-pain” by the CNS.03-19-2009
20090112283MICROCURRENT DEVICE WITH A SENSORY CUE - The present invention is directed to an apparatus that includes a microcurrent delivery device portion and at least one independent sensory cue delivery means. The independent sensory cue delivery means can provide an independent sensory cue selected from the group consisting of vibration, heat, cool, skin irritation, tingling, fragrance or auditory.04-30-2009
20090254147STIMULATION METHOD FOR THE SPHENOPALATINE GANGLIA, SPHENOPALATINE NERVE, OR VIDIAN NERVE FOR TREATMENT OF MEDICAL CONDITIONS - A method is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, urinary bladder disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The method comprises positioning at least one electrode on or proximate to at least one of the patient's sphenopalatine ganglia (“SPG”), sphenopalatine nerves (“SPN”), or vidian nerves (“VN”), and activating the at least one electrode to apply an electrical signal to at least one of the SPG, SPN, or VN. In a further embodiment of the invention used to treat the same conditions, the electrode used is capable of dispensing a medication solution or analgesic which is applied via an electrode to at least one of the SPG, SPN, or VN. A method is also provided for surgically implanting an electrode on or proximate to at least one of the SPG, SPN, or VN of a patient.10-08-2009
20110093033ELICITING ANALGESIA BY TRANSCRANIAL ELECTRICAL STIMULATION - A method of eliciting analgesia in a human subject by Transcranial Electrical Stimulation (TCES, herein “TES”) is provided. Electrodes secured to the skin of the subject's head at particular sites provide an electrical current that includes a direct current combined with rectangular AC current pulses delivered at a particular frequency of between 10 and 100 Hz. In an embodiment the total current transmitted, a sum of the DC component and a Mean Absolute Deviation (MAD) of the current pulses, has a value between 0.2 and 20 mA. The method is used to produce analgesia during perioperative period, surgery and the post-operative procedure. It can also be used for treating acute chronic pain and a wide variety of other conditions.04-21-2011
20090210029DEVICE AND METHOD TO POSITION A CANNULA FOR NERVE BLOCK - A device and method to position a cannula or a catheter for nerve block are provided for use with a unipolar cannula (08-20-2009
20100057165MULTIPLE TUNABLE CENTRAL CATHODES ON A PADDLE FOR INCREASED MEDIAL-LATERAL AND ROSTRAL-CAUDAL FLEXIBILITY VIA CURRENT STEERING - A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.03-04-2010
20120109254IMPEDANCE-BASED STIMULATION ADJUSTMENT - Techniques for adjusting stimulation are disclosed. A medical device measures an impedance associated with one or more electrodes, e.g., the impedance presented to the medical device by a total electrical circuit that includes the one or more electrodes, the conductors associated with the electrodes, and tissue proximate to the electrodes. The medical device stores at least one patient-specific relationship between impedance and a stimulation parameter, and adjusts the value of the stimulation parameter based on the measured impedance according to the relationship. The medical device may store multiple relationships, and select one the relationships based on, for example, an activity level of the patient, posture of the patient, or a current stimulation program or electrode combination used to deliver stimulation. By adjusting a stimulation parameter, such as amplitude, according to such a relationship, the stimulation intensity as perceived by the patient may be kept substantially constant.05-03-2012
20100121408METHODS, DEVICES AND SYSTEMS FOR PROGRAMMING NEUROSTIMULATION - Methods, devices and systems are provided to efficiently identify, from among a plurality of possible neurostimulation parameter sets, one or more preferred neurostimulation parameter sets that treat a targeted pain of a patient. Each neurostimulation parameter set defines electrode parameters and neurostimulation signal parameters. A plurality of different neurostimulation parameter sets are tested on the patient to thereby identify those tested neurostimulation parameter sets that treat the targeted pain. Each of the tested neurostimulation parameter sets defines an electrode configuration that differs from the other tested neurostimulation parameter sets. All of the tested neurostimulation parameter sets comprise a same value for a specific neurostimulation signal parameter (e.g., pulse width) that if reduced reduces power consumption. If more than one of the tested neurostimulation parameter sets are identified as treating the targeted pain, then neurostimulation parameter sets identified as treating the targeted pain are retested, with the value for the specific neurostimulation signal parameter reduced by a same amount for each of the retested neurostimulation parameter sets, to thereby identify those neurostimulation parameter sets that treat the targeted pain at the reduced power consumption level.05-13-2010
20110022114System and method for treating pain with peripheral and spinal neuromodulation - A system for treating pain uses spinal cord stimulation and peripheral subcutaneous field stimulation separately or in combination. The system includes an implantable device that is configured to deliver several electrical signals. Several electrical leads are connected to the implantable device. The electrical leads are implanted in the patient such that an electrical signal induces a current to flow between a subcutaneous lumbar region of the patient and a spinal cord region of the patient. The system can also include electrical leads that are implanted in the patient such that an electrical signal induces a current to flow across a lumbar region of the patient. A method for treating leg and back pain is also disclosed.01-27-2011
20100324624AV SYSTEM WITH SKIN CARE AND HEALTH CARE FUNCTIONS - This specification discloses an AV system with the skin care and health care functions. An AV system and a pulse current generator are integrated. A conductor transmits a pulse current output from the pulse current generator to a human body. The pulse current cures or alleviates the user in pain, melancholy, anxiety, and insomnia, accelerates the recovery of wound or bone, and reduces the side effects of radiotherapy and chemotherapy.12-23-2010
20100125313SYSTEM AND METHOD FOR MODULATING ACTION POTENTIAL PROPAGATION DURING SPINAL CORD STIMULATION - A method and neurostimulator for providing therapy to a patient is provided. In one technique, an electrical pulsed waveform is conveyed between a caudal electrode and spinal cord tissue, thereby evoking action potentials that are orthodromically propagated along dorsal column fibers and evoking action potentials that are antidromically propagated along the DC fibers. Electrical energy is conveyed between a rostral electrode and the spinal cord tissue, thereby modulating times that the action potentials orthodromically propagated along the DC fibers arrive at the brain. In another technique, an electrical pulsed waveform is conveyed through a first electrode, thereby evoking action potentials that are propagated along a neural axon, and electrical energy is conveyed through the second electrode. The electrical energy has a frequency that is greater than a pulse rate of the electrical pulsed waveform, such that the action potentials propagated along the neural axon are blocked by the electrical energy.05-20-2010
20100100154Post-Operative Pain Inhibitor for Joint Replacement and Method Thereof - A post-operative pain inhibitor system (04-22-2010
20120143281PAIN RELIEVING WAVEFORM SYSTEM AND METHOD - A system and method for treating pain are disclosed. A voltage source provides an electric current, and a switching waveform controller receives the electric current and provides a first signal having a first waveform of a first frequency. A switching high frequency generator receives the electric current and provides a second signal having a waveform of a second frequency that is higher than the first frequency. A microprocessor controls the switching waveform controller and the switching high frequency generator. The second signal is superimposed on the first signal, providing a modified first signal. Alternatively, the switching waveform controller and the switching high frequency generator use one or more passive components and the second signal is superimposed on the first signal. At least one electrode receives the modified first signal, and the at least one electrode transmits a third signal associated with the modified first signal to a patient's skin.06-07-2012
20090287274ELECTRICAL STIMULATION SYSTEM AND METHOD FOR STIMULATING TISSUE IN THE BRAIN TO TREAT A NEUROLOGICAL CONDITION - According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a neurological condition. The system includes an electrical stimulation lead adapted for implantation in communication with a predetermined site, wherein the site is brain tissue site. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a neurological disorder or condition.11-19-2009
20090276005Method and Device for the Treatment of Headache - A method is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The method comprises inserting an electrode into a patient. The electrode can be positioned on or proximate to a neural structure, and the electrode can detect an ENG signal. In some embodiments, the neural structure can be the patient's sphenopalatine ganglia (“SPG”), sphenopalatine nerves (“SPN”), or vidian nerves (“VN”). Placement of the electrode can be tested by detecting a characteristic ENG. If the characteristic ENG indicates that the electrode is not positioned on the target neural structure, the electrode can be repositioned.11-05-2009
20090281594Peripheral Nerve Field Stimulation Control - Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.11-12-2009
20110208265MULTI-PROGRAMMABLE TRIAL STIMULATOR - Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs. Embodiments are configured to provide active discharge of stimulation pulses as well as to utilize constant current sources in providing the stimulation pulses.08-25-2011
20090036951SENSITIVITY ANALYSIS FOR SELECTING THERAPY PARAMETER SETS - Techniques for controlling delivery of a therapy to a patient by a medical device, such as an implantable medical device (IMD), involve a sensitivity analysis of a performance metric. The performance metric may relate to efficacy or side effects of the therapy. For example, the performance metric may comprise a sleep quality metric, an activity level metric, a movement disorder metric for patients with Parkinson's disease, or the like. The sensitivity analysis identifies values of therapy parameters that defines a substantially maximum or minimum value of the performance metric. The identified therapy parameters are a baseline therapy parameter set, and a medical device may control delivery of the therapy based on the baseline therapy parameter set.02-05-2009
20100137939PERCUTANEOUS CONTINUAL ELECTRO-ACUPUNCTURE STIMULATION FOR IN VIVO AND IN SITU TISSUE ENGINEERING - The invention includes an electro-acupuncture stimulation system for in vivo and in situ analgesia and tissue repair and regeneration. Electrodes, which can be acupuncture needles, are percutaneously implanted that deliver a pulsed electrical current that creates an electrical field, which envelopes the targeted tissue and restores cell-generating homeostasis to the affected tissue and thereby promotes analgesia and tissue re-growth in otherwise debilitated or deteriorating tissue. Methods and apparatuses are also disclosed that may include a needle locking system and acupuncture-needle assemblies for long-term in situ electrical stimulation.06-03-2010
20120296392Display of region of activation in neurostimulation programming screen - A system for use with a neurostimulator coupled to one or more electrodes implanted adjacent neural tissue of a patient. The system comprises a user input device configured for allowing a user to select different nerve fiber diameters and to select a set of stimulation parameters. The system further comprises processing circuitry configured estimating regions of activation within the neural tissue of the patient based on the selected nerve fiber diameters and the selected stimulation parameter set. The system further comprises a display device configured for displaying the estimated regions of tissue activation. The user input device may further be configured for allowing the user to select different tissue regions of therapy, in which case, the display device may display the different tissue region on a human body map, and different indicia associating the displayed tissue regions for therapy to displayed estimated regions of tissue activation.11-22-2012
20120296391Measuring Load Impedance with Active Stimulation Pulses in an Implanted Pulse Generator - The present disclosure provides a medical stimulation system that includes a plurality of implantable channels each operable to obtain a voltage signal from a designated area of a body tissue. The medical stimulation system includes an impedance measurement device. The impedance measurement device includes a plurality of attenuators each coupled to a respective one of the channels. The attenuators are each operable to attenuate an amplitude of the voltage signal received from its respectively-coupled channel. The impedance measurement device includes a multiplexing component that receives the amplitude-attenuated voltage signals from each of the attenuators. The multiplexing component selectively outputs two of the amplitude-attenuated voltage signals. The impedance measurement device includes a differential amplifier that receives the two amplitude-attenuated voltage signals outputted from the multiplexing component as a differential input signal. The differential amplifier generates an amplifier output signal that includes at least partially an amplified version of the differential input signal.11-22-2012
20090264959Vagus Nerve Stimulation for the Treatment of Fibromyalgia - This invention relates to the use of vagus nerve stimulation for the treatment of fibromyalgia which comprises applying a therapeutic stimulation signal from a stimulus generator, when activated, to at least some of plural electrodes implanted in stimulating relation of the patient's vagus nerve and activating the stimulus generator to generate the therapeutic stimulation signal to alleviate the pain under treatment.10-22-2009
20080288019Electrochemical management of pain - The invention features electrochemical methods and devices for the treatment of pain.11-20-2008
20080208286BAROREFLEX ACTIVATION FOR PAIN CONTROL, SEDATION AND SLEEP - Systems and methods provide baroreflex activation to treat or reduce pain and/or to cause or enhance sedation or sleep. Methods involve activating the baroreflex system to provide pain reduction, sedation, improved sleep or some combination thereof. Systems include at least one baroreflex activation device, at least one sensor for sensing physiological activity of the patient, and a processor coupled with the baroreflex activation device(s) and the sensor(s) for processing sensed data received from the sensor and for activating the baroreflex activation device. In some embodiments, the system is fully implantable within a patient, such as in an intravascular, extravascular or intramural location.08-28-2008
20100137940Method for Directed Intranasal Administration of a Composition - Methods, kits, apparatus, and compositions for inhibiting a cerebral neurovascular disorder, a muscular headache, or cerebral inflammation in a human patient are provided. The methods comprise intranasally administering to the patient a pharmaceutical composition comprising a local anesthetic, and preferably a long-acting local anesthetic ingredient. A composition useful for practicing the methods of the invention is described which comprises at least one local anesthetic in a pharmaceutically acceptable carrier, wherein the composition is formulated for intranasal delivery. Cerebral neurovascular disorders include migraine and cluster headache. Muscular headaches include tension headaches and muscle contraction headaches. A kit comprising the composition and an intranasal applicator and a method of systemically delivering a pharmaceutically active agent to an animal are also included in the invention. Apparatus for directed intranasal administration of the compositions of the invention and for performing the methods of the invention are also described.06-03-2010
20090187232Systems And Methods For Therapeutic Treatments - The present invention relates to systems and methods to diagnose and then provide therapy and/or treating humans to relieve or reduce the symptoms of various disease and/or conditions, and in certain embodiments reduce the factors causing the symptoms and/or diseases. The present invention also relates to systems and methods for determining heretofore unknown internal characteristics of patients and external environmental factors.07-23-2009
20080319506Grooved electrode and wireless microtransponder system - A grooved electrode adapted for interfacing cellular matter is provided. The grooved electrode includes grooves adapted for electrically interfacing the grooved electrode with cellular matter growing along the body of the grooved electrode. Further, the grooved electrode includes a wireless transponder adapted to electrically interface with cellular matter and to relay such interactions via RF signals. The RF signals received by the wireless transponder are modulated in response to electrical signals generated by the cellular matter, which are detected by the transponder. The grooved electrode may be implanted within peripheral nerves for treating various neurological conditions, which may include nerve rehabilitation and prosthetic actuation, severe pain, obstructive sleep apnea and so forth.12-25-2008
20100268299Transcutaneous Electrical Nerve Stimulation and Method Using Same - The present disclosure relates to an apparatus and associated methods to produce analgesia in a mammal by providing an electrical nerve stimulus utilizing a pulsed input of low level electrical current, wherein the level of current is measurable with the measurements utilized to at least adjust the strength of the current according to selected parameters. Additionally, the use of magnets to produce a magnetic field to further control chronic and acute pain. In exemplary implementations, the apparatus maintains continuous monitoring of the electrical characteristics of TENS at the site of input and output, and the electrical input can be modified during treatment to obtain desired electrical input. More particularly the disclosure relates to an electromagnetic apparatus incorporating pulsed direct current, two or more electrodes, and at least two dipole antennae wherein the dipole antenna circuits receive and analyze signal from the dipole antennae, using the information from signal analysis within the methods for producing analgesia in mammals. The strength of the current that the patient is receiving at the targeted site as the actual field is measured by the dipole antennae and adjustment is not dependent on subjective measurements to ascertain whether the proper amplitude, frequency and pulse duration are being applied.10-21-2010
20110224754ELECTRONIC LOW-FREQUENCY PULSE PATCH OF A ONE-PIECE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - An electronic low-frequency pulse patch of a one-piece structure is disclosed, which has a power supply and a circuit capable of outputting positive and negative current pulses concealed therein, and in which, without use of a flexible ribbon cable set and an additional fastener, a host unit and a coupling conductive patch unit assembly are joined together with the appearance to form a one-piece seamless water-proof structure for use as a self-adhesion patch device capable of generating a low-frequency pulse output.09-15-2011
20110144717Implantable neurostimulation system and methods of using the system for appetite control and pain control - An implantable electronic device includes a geodesic shaped dome housing and means for attaching the dome to a target neurologic structure. The dome includes a radio frequency receiver, an amplifier, and a stimulating electrode. A radio frequency based neurostimulatory system further includes a transmitting coil positioned outside a patient's body for transmitting pulses to the receiver and activating the stimulating electrode within the implantable electronic device. A method of stimulating a patient's neurologic structure includes implanting an electronic device proximate the neurologic structure, positioning a transmitting coil outside the patient's body for controlling the implantable device, initiating radio frequency waves from a pulse generator to the transmitting coil which in turn activates the stimulating electrode. The neurostimulatory system can be used for relief of visceral and somatic pain as well as for controlling appetite in patients.06-16-2011
20090204174 Low Power Loss Current Digital-to-Analog Converter Used in an Implantable Pulse Generator - In one embodiment, the present invention provides an implantable stimulation device that includes output current sources and/or sinks configured to provide an output current for a load (i.e., tissue). The output path of the output current source or sink comprises a transistor which operates in a linear mode instead of a saturation mode. Because operation in a linear mode results in smaller drain-to-source voltage drops, power consumption in the output current source or sink (and hence in the implantable stimulator) is reduced, reducing battery or other power source requirements. Operation in the linear mode is facilitated in useful embodiments by a load in an input path (into which a reference current is sent) and a load in the output path (which bears the output current). The loads can be active transistors or passive resistors. A feedback circuit (e.g., an operational amplifier) receives voltages that build up across these loads, and sends a control signal to the gate of the transistor to ensure its linear operation.08-13-2009
20080262566METHODS AND SYSTEMS OF TREATING MEDICATION OVERUSE HEADACHE - Methods and systems of treating a patient with medication overuse headache include providing a stimulator, configuring one or more stimulation parameters to treat medication overuse headache, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to treat the medication overuse headache with the stimulator in accordance with the one or more stimulation parameters, and applying at least one stimulus with the stimulator to a stimulation site within the patient in accordance with the one or more stimulation parameters.10-23-2008
20090012578Neurostimulation Catheter - The conductor is composed of at least one layer (01-08-2009
20090204173Multi-Frequency Neural Treatments and Associated Systems and Methods - Multi-frequency neural treatments and associated systems and methods are disclosed. A method in accordance with a particular embodiment includes at least reducing patient pain by applying a first electrical signal to a first target location of the patient's spinal cord region at a frequency in a first frequency range of up to about 1,500 Hz, and applying a second electrical signal to a second target location of the patient's spinal cord region at a frequency in a second frequency range of from about 2,500 Hz to about 100,000 Hz.08-13-2009
20090210028DEVICE FOR THE ELECTROTHERAPEUTIC TREATMENT OF TENSION HEADACHES - A device is for the electrotherapeutic treatment of headaches such as tension headaches and migraines. An electrode support (08-20-2009
20090210027METHOD AND APPARATUS FOR TREATING PELVIC PAIN - A method and apparatus for treating self treating internal muscle and trigger point related pelvic pain in women and men. The apparatus includes a rod having a handle attached to a straight portion at a first end of the rod and a pressure applicator attached to a second end of the rod, where a first curved portion is disposed between the straight portion of the rod and the second end of the rod. A microcurrent electrical stimulation unit electrically connected to the pressure applicator for supplying an electrical current to the pressure applicator. In the method of the present invention, a trigger point is located in the patient's pelvic floor, the patient inserts the apparatus either vaginally or rectally to allow contact of the pressure applicator of the apparatus with the pelvic floor, pressure is applied to the trigger point using the apparatus, and microcurrent electrical stimulation is applied to the trigger point using a microcurrent electrical stimulation unit that is electrically connected to the pressure applicator.08-20-2009
20090248111IMPLANTABLE MULTI-LEAD ELECTRIC STIMULATION SYSTEM AND METHODS OF MAKING AND USING - A multi-lead system includes a first lead and a second lead. The first lead includes a distal end and a first plurality of electrodes disposed along the distal end of the first lead. The first plurality of electrodes are configured and arranged in a first electrode axis. The second lead includes a distal end and a proximal end. A second plurality of electrodes is disposed along the distal end of the second lead. The second plurality of electrodes are configured and arranged in a second electrode axis. The second lead also includes at least one bend between the distal end and the proximal end to allow for linear alignment of the first electrode axis with the second electrode axis to form a combination electrode axis when the first lead and the second lead are implanted.10-01-2009
20090240303METHOD FOR DELIVERY OF ELECTRICAL STIMULATION - The disclosure describes an implantable neurostimulator device for delivery of neurostimulation to treat head, neck, or facial pain or tension, including pain or tension caused by occipital neuralgia. The device may be a neurostimulation device having a miniaturized housing with a low profile that permits subcutaneous implantation at a stimulation site directly adjacent a neuralgic region at the back of the neck of a patient. For example, the device may be subcutaneously implanted at the back of the neck of a patient to relieve symptoms of occipital neuralgia.09-24-2009
20090240302IMPLANTABLE PULSE GENERATOR HAVING CURRENT STEERING MEANS - An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold.09-24-2009
20100152809Systems and methods to place one or more leads in tissue for providing functional and/or therapeutic stimulation - Systems and methods make possible the placement of one or more electrode leads in a tissue region for providing functional and/or therapeutic stimulation to tissue. The systems and methods are adapted to provide the relief of pain.06-17-2010
20100274317DEVICES FOR CONTROLLING HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, AND ASSOCIATED SYSTEMS AND METHODS, INCLUDING SIMPLIFIED CONTACT SELECTION - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.10-28-2010
20100160998PASSIVE MONITORING OF BIOELECTICAL SIGNALS AND ACTIVE ELECTRICAL ANESTHESIA STIMULATION - Passive monitoring of bioelectric signals is made in the presence of active electrical anesthesia stimulation signal such that the bio-electric signals have interference artifacts from the active signal. The interference artifacts are determined and suppressed to produce a processed bio-electric signal from which can be derived quantitative values for evaluating the neurological state.06-24-2010
20080215113DEVICES AND METHODS FOR TRANSCUTANEOUS ELECTRICAL NEURAL STIMULATION - In an inventive method of performing transcutaneous electrical neural stimulation on a human patient, first and second input electrodes are secured over left and right trapezius muscle regions of the patient. Third and fourth input electrodes are secured over left and right posterior cervical and suboccipital muscle regions of the patient. Fifth and sixth input electrodes are secured over left and right preauricular areas of the patient. A first electrical current is supplied to each of the first and second electrodes. A second electrical current is supplied to each of the third and fourth electrodes. A third electrical current is supplied to each of the fifth and sixth electrodes.09-04-2008
20130218234APPARATUS AND METHOD FOR RAPID SUPPRESSION OF NEUROPATHIC, ONCOLOGICAL, AND PAEDIATRIC PAIN - The present invention relates to an apparatus and to a method for rapid suppression of acute and chronic pain, which can be used also in the paediatric field or with particular forms of pain such as chemotherapy-induced peripheral neuropathy (CIPN) and neuralgias that affect the eye bulb, and is in general particularly useful and effective in regard to pains of high degree and/or resistant to other analgesics, such as opiates or other forms of conventional electro-analgesia such as transcutaneous electrical nerve stimulators (TENS) and implanted stimulators. According to the present invention, strings of synthetic “non-pain” information of considerable effectiveness are generated, such as to enable a high reproducibility of the clinical result. The synthesis is made by combining new geometries of waveforms and new modulations in complex sequences, perceived instantaneously as “self” and as “non-pain” by the CN. S.08-22-2013
20100198298IMPLANT SYSTEM AND METHOD USING IMPLANTED PASSIVE CONDUCTORS FOR ROUTING ELECTRICAL CURRENT - The present invention provides improvements to an implant, system and method using passive electrical conductors which route electrical current to either external or implanted electrical devices, to multiple target body tissues and to selective target body tissues. The passive electrical conductor extends from subcutaneous tissue located below either a surface cathodic electrode or a surface anodic electrode a) to a target tissue to route electrical signals from the target body tissue to devices external to the body; b) to implanted electrical devices to deliver electrical current to such devices, or c) to multiple target body tissues or to selective target body tissues to stimulate the target body tissues. The conductor has specialized ends for achieving such purposes.08-05-2010
20090112284BIOFEEDBACK ELECTRONIC STIMULATION DEVICE - A biofeedback electronic stimulation device includes a processor for generating a first control signal and a plurality of second control signals responsive to at least one input signal. Transformer circuitry generates a stimulation signal including packets of at least one pulse responsive to the first control signal. Pulse circuitry configures the at least one pulse in the packet to a selected one of a plurality of configurations responsive to the plurality of second control signals. Output electrodes apply the at least one pulse in the packet to a user and detector circuitry detects zero crossings of the at least one pulse in the packet. The processor further causes generation of an indicator responsive to the detected zero crossings.04-30-2009
20090112281MEDICAL DEVICE CONFIGURATION BASED ON SENSED BRAIN SIGNALS - The invention is directed to techniques and systems in which external brain monitoring is used to facilitate implantation and configuration of an implantable medical device. The techniques may create an open loop or closed loop system in which brain signals quantify the efficacy of electrical logical stimulation (or drug therapy via an implantable drug pump) at locations outside of the brain. The techniques may be used to improve placement of leads and electrodes during an implantation procedure, and/or to select or adjust stimulation parameters either during the implantation procedure or possibly following implantation of an implantable medical device. The described techniques have applications for the alleviation of pain, but may find other applications where EEG signals can quantify the efficacy of treatment via an implantable medical device.04-30-2009
20110060382STIMULATION OF A STIMULATION SITE WITHIN THE NECK OR HEAD - Methods of applying a stimulus to a stimulation site within the neck or head of a patient include implanting a distal portion of one or more leads adjacent to the stimulation site, forming a loop with a proximal portion of the one or more leads, and securing the distal and proximal portions of the one or more leads to one or more securing sites with one or more securing devices. The distal portion of the one or more leads includes a number of electrodes disposed thereon that are configured to deliver the stimulus to the stimulation site. Systems for applying a stimulus to a stimulation site within the neck or head of a patient include one or more leads having a number of electrodes disposed on a distal portion thereof and one or more securing devices configured to secure the one or more leads to one or more securing sites. The distal portion of the one or more leads is implanted adjacent to the stimulation site and the electrodes are configured to deliver the stimulus to the stimulation site. The proximal portion of the one or more leads is formed in a loop.03-10-2011
20130131756Posterior Tibial-Nerve and/or Other Nerve Stimulation System and Method - An implantable pulse generator includes one or more structural features for accommodating the shape of a portion of a patient's limb, such as the shape of the patient's calf. In one embodiment, an implantable pulse generator includes a first node interconnected to a second node by an elongated housing member, the elongated housing member including a convex surface substantially matching a curvature of the patient's limb, such as a portion of the patient's arm or leg. Alternatively, an articulating housing is associated with the implantable pulse generator for enabling a surgeon to bend the housing to substantially conform to the patient's limb, such as a portion of the patient's arm or leg.05-23-2013
20130138178IMPLANTABLE PULSED-RADIOFREQUENCY MICRO-STIMULATION SYSTEM - The present invention relates to a method for treating a nervous symptom or condition in a subject with a pulsed-radiofrequency stimulation system with a low voltage to overcome the disadvantages of the known related stimulation systems.05-30-2013
20130138179COMBINATION OF TONIC AND BURST STIMULATIONS TO TREAT NEUROLOGICAL DISORDERS - The present application relates to a new stimulation design which can be utilized to treat neurological conditions. The stimulation system produces a combination of burst and tonic stimulation which alters the neuronal activity of the predetermined site, thereby treating the neurological condition or disorder.05-30-2013
20130144359PAIN MANAGEMENT WITH STIMULATION SUBTHRESHOLD TO PARESTHESIA - Devices, systems and methods are provided for treating pain while minimizing or eliminating possible complications and undesired side effects, particularly the sensation of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with stimulation energy in a manner that will affect pain sensations without generating substantial sensations of paresthesia. In some embodiments, such neurostimulation takes advantage of anatomical features and functions particular to the dorsal root ganglion.06-06-2013
20100324625BRACKETING SCAR FOR TREATING PAIN WITH ELECTRICAL STIMULATION - A method includes implanting one or more leads in proximity to a scar of a patient. The one or more leads have a plurality of electrodes and are implanted such that a first electrode of the plurality of electrodes is implanted subcutaneously on a side of a longitudinal axis of the scar and a second electrode of the plurality of electrodes is implanted on an opposing side of the longitudinal axis of the scar. Such an electrode configuration may be achieved by positioning leads transverse or perpendicular to the scar. The method further includes applying electrical signals to tissue in the region of the scar via the first and second electrodes. The electrical signals applied in such a manner may be helpful for treating pain associated with the scar.12-23-2010
20110029040LINKED AREA PARAMETER ADJUSTMENT FOR SPINAL CORD STIMULATION AND ASSOCIATED SYSTEMS AND METHODS - Systems and methods for managing pain in a patient using an electrical waveform that link the modulation of a waveform parameter for different areas of a patient. One embodiment in a system for managing pain in a patient comprises an electric device configured to be implanted into the patient and including a plurality of electrodes having at least a first electrode associated with a first area of the patient and a second electrode associated with a second area of the patient. The system further includes an implantable device configured to be coupled to the electrode device and having a computer-operable medium programmed to change the waveform parameter applied to the first electrode and automatically set the waveform parameter applied to the second electrode based on a relationship between a first therapy range and a second therapy range of the waveform parameter.02-03-2011
20110040348DORSAL COLUMN STIMULATION THERAPY - In some examples, the disclosure relates to system, devices, and techniques for delivering dorsal column stimulation. One or more locations for dorsal column stimulation may be identified based on sensed signals evoked by delivery of stimulation to a dorsal root and/or peripheral nerve of a patient. In some examples, an IMD may deliver dorsal column stimulation in combination with dorsal root stimulation to a patient to treat a patient condition.02-17-2011
20110178572PROGRAMMABLE ELECTRICAL STIMULATION OF THE FOOT MUSCLES - System, device and method for providing neuromuscular electrical stimulation (NMES) to muscles of foot. The device includes an electrical signal generator for producing a wave pattern of variable frequency, duration, intensity, ramp time and on-off cycle. Device further includes surface electrodes for being positioned over the foot muscles or around ankles and attached to signal generator. Signal generator is programmed to stimulate the foot muscles and nerves. Location of the electrodes and the programming are adjusted to reduce pooling of the blood in the soleal veins of the calf and enhance venous blood flow to prevent deep vein thrombosis (DVT), to enhance venous blood flow for the post-thrombotic syndrome patient, to expedite wound healing, to reduce neuropathic pain of the foot and ankle, chronic musculoskeletal pain of the ankle and foot, and acute post-operative foot and ankle pain, and to prevent muscular atrophy of the foot muscles.07-21-2011
20090281596PROGRAMMING TECHNIQUES FOR PERIPHERAL NERVE FIELD STIMULATION - A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.11-12-2009
20090062883RECHARGEABLE SPINAL CORD STIMULATOR SYSTEM - A spinal cord stimulation (SCS) system includes multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) which channels can provide concurrent, but unique stimulation fields, permitting virtual electrodes to be realized. The SCS system includes a replenishable power source (e.g., rechargeable battery), that may be recharged using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery can be used to charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. An included bi-directional telemetry link in the system informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in the IPG allows electrode impedance measurements to be made. Further circuitry in the external battery charger can provide alignment detection for the coil pairs.03-05-2009
20100249876ELECTRICAL STIMULATION OF ILIOHYPOGASTRIC NERVE TO ALLEVIATE CHRONIC PELVIC PAIN - The disclosure describes a method and system for applying electrical stimulation to an iliohypogastric nerve of a patient. The system includes electrical stimulators that apply electrical stimulation for alleviation of pelvic pain. The system may apply electrical stimulation for pelvic pain in men or women. The electrical stimulators may comprise various types of electrodes such as cuff electrodes, electrode leads, and microstimulators implanted at various locations proximate to a single or both iliohypogastric nerves of a patient. In particular, the electrode may be implanted proximate or adjacent to an anterior cutaneous branch of one or both iliohypogastric nerves, a lateral cutaneous branch of one or both iliohypogastric nerves, or one or both of iliohypogastric nerves above the branch point.09-30-2010
20110130805Assembly for Pain Suppressing Electrical Stimulation of a Patient's Spinal Cord - An assembly for pain suppressing electrical stimulation of a patient's spinal cord, the assembly including lateral, medial, and oppositely lateral series of contact plates; a lateral panel, a medial panel and an oppositely lateral panel, the electrical contact plates being fixedly attached to the panels; living hinges pivotally attaching the lateral and oppositely lateral panels to the medial panel; proximally extending wires electrically communicating with the contact plates; a proximally extending insulator attached to the medial panel, the insulator having a hollow bore and the wires being embedded within the insulator; a proximally opening traction socket fixedly attached to the medial panel; and a semi-rigid stay which is extendable through the hollow bore, the semi-rigid stay being engageable with the proximally opening traction socket.06-02-2011
20090048642NEUROSTIMULATION - The invention relates to a device for treating a patient for chronic pain and for cosmetic treatment by neurostimulation comprising a plurality of stimulating electrodes and one or more reference electrodes to be applied externally, ie to the surface of the skin, in the region of the pain and to apply a current of between 0.2 and 12 mA at a frequency of between 1 and 50 Hz, and preferably between 2 and 10 Hz. Optimal results appear to be achieved when the applied current is between 0.2 and 6 OmA depending on the depth of the pain and the tenderness of the skin of the area to be treated. In use the area to be treated is located either by a stimulating device, or by using at least one of the stimulating electrodes on the device itself to locate the pain prior to treatment. The electrodes are applied to the patient's skin as located using firm pressure whilst a stimulating pulse is applied as treatment. This action produces a remarkable and unexpected level of pain relief over a wide area. The invention extends to a method for the treatment of chronic pain using the above-mentioned parameters and procedures.02-19-2009
20100057162MULTIPLE TUNABLE CENTRAL CATHODES ON A PADDLE FOR INCREASED MEDIAL-LATERAL AND ROSTRAL-CAUDAL FLEXIBILITY VIA CURRENT STEERING - A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.03-04-2010
20090216294SELF-CONTAINED ELECTRONIC MUSCULOSKELETAL STIMULATION APPARATUS AND METHOD OF USE - The present invention provides a self-contained electronic musculoskeletal stimulation apparatus that is a battery operated device that applies electronic stimulation to a human with a pre-programmed treatment stimulation protocol to introduce pain relieving electronic stimulation to the body for immediate, symptomatic relief of minor, chronic and acute musculoskeletal aches and pains and mild muscle tension. This invention also provides a method of using a self-contained electronic musculoskeletal stimulation apparatus whereby pain relieving electronic stimulation is applied to the body on predetermined, sequential stimulation points with electronic stimulation being activated at each consecutive stimulation point. Further, this invention provides a method of applying pain relieving electronic stimulation to a body using a self-contained reusable electronic musculoskeletal stimulation bandage with a preprogrammed treatment stimulation protocol. Also provided is a stimulation apparatus that transmits apparatus and patient information by a wireless signal, so the number of times the apparatus was used and intensity level for each use of the apparatus can be determined.08-27-2009
20100069994METHODS OF INDUCING PARESTHESIA USING WIRELESS NEUROSTIMULATION - A grooved electrode adapted for interfacing cellular matter is provided. The grooved electrode includes grooves adapted for electrically interfacing the grooved electrode with cellular matter growing along the body of the grooved electrode. Further, the grooved electrode includes a wireless transponder adapted to electrically interface with cellular matter and to relay such interactions via RF signals. The RF signals received by the wireless transponder are modulated in response to electrical signals generated by the cellular matter, which are detected by the transponder. The grooved electrode may be implanted within peripheral nerves for treating various neurological conditions, which may include nerve rehabilitation and prosthetic actuation, severe pain, obstructive sleep apnea and so forth.03-18-2010
20110098781ELECTRO-OPTICAL TISSUE STIMULATOR AND METHOD OF USE - An electro-optical tissue stimulator for administering therapy to a body is disclosed comprising a housing and an active tip. The electro-optical tissue stimulator includes a microcurrent electrostimulation therapy unit which delivers current through a first and a second electrode in the active tip. The electro-optical tissue stimulator also includes an optical radiation therapy unit which delivers optical radiation through a light output port in the active tip. The active tip is shaped for administering myofascial tissue release therapy. The device can administer microcurrent electrostimulation therapy, optical radiation therapy, and myofascial tissue release therapy to tissues of a body. A method of treating pain is disclosed which includes the steps of identifying a treatment area on a body to receive therapy, and contacting the treatment area with the active tip, wherein the treatment area receives microcurrent electrostimulation therapy, optical radiation therapy, and myofascial tissue release therapy.04-28-2011
20110098782LEAD EXTENSION HAVING CONNECTOR CONFIGURED TO RECEIVE TWO LEADS - A lead extension includes a proximal portion having first and second contacts, and further includes a connector having a body. The body of the connector houses first and second lead receptacles. The first lead receptacle has an internal contact electrically coupled to the first proximal contact. The second lead receptacle has an internal contact electrically coupled to the second proximal contact.04-28-2011
20110082516LEAD HAVING RADIALLY SPACED APART CONTACTS TO ALLOW FOR ADJUSTABILITY - An implantable medical lead includes a lead body having a proximal portion and a distal portion. The lead also includes first and second contacts located at the proximal portion of the lead body, and includes first and second electrodes located at the distal portion of the lead body. The first electrode is electrically coupled to the first contact and the second electrode is electrically coupled to the second contact. The first contact has a proximal end and a distal end and the second contact has proximal end and a distal end. The second contact is radially spaced apart from the first contact. The contacts do not extend around the lead body. This disclosure also relates to an implantable lead extension and to an implatable signal generator having connectors configured to receive the present lead.04-07-2011
20110071593COUPLINGS FOR IMPLANTED LEADS AND EXTERNAL STIMULATORS, AND ASSOCIATED SYSTEMS AND METHODS - Couplings for implanted leads and external stimulators, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a cable assembly that in turn includes an electrical cable having a proximal end and a distal end. A first connector is attached to the cable toward the proximal end and has a plurality of first connector contacts positioned to releasably connect to an external patient device. A second connector is attached by the cable toward the distal end, and includes a first portion and a second portion pivotably connected to the first portion. The first portion has a slot elongated along a slot axis and positioned to receive an implantable patient signal delivery element axially along the slot axis. The second portion has a plurality of second connector contacts positioned to releasably, electrically contact the signal delivery element when the signal delivery element is positioned within the slot and the first and second portions are placed in a secured position. At least one of the first and second portions is pivotable relative to the other between the secured position and an unsecured position.03-24-2011
20110071594POSTERIOR TIBIAL NERVE AND/OR OTHER NERVE STIMULATION SYSTEM AND METHOD - An implantable pulse generator includes one or more structural features for accommodating the shape of a portion of a patient's limb, such as the shape of the patient's calf. In one embodiment, an implantable pulse generator includes a first node interconnected to a second node by an elongated housing member, the elongated housing member including a convex surface substantially matching a curvature of the patient's limb, such as a portion of the patient's arm or leg. Alternatively, an articulating housing is associated with the implantable pulse generator for enabling a surgeon to bend the housing to substantially conform to the patient's limb, such as a portion of the patient's arm or leg.03-24-2011
20120303090Apparatus and Method Using Near Infrared Reflectometry to Reduce the Effect of Positional Changes During Spinal Cord Stimulation - A spinal cord stimulation apparatus and method for automatic adjustments of SCS using near-infrared (NIR) reflectometry are provided. A positionally sensitive system for spinal cord stimulation including an electrode assembly with integrated optical components for sensing spinal cord position relative to a stimulating electrode array is provided. The integrated optical components include an IR emitter and a pair of IR photodetectors. As light from the IR emitter reflects from the spinal cord, it is detected by each of the pair of IR photodetectors. As the spinal cord changes position so do the angles of incidence for detected light from the IR emitter, a ratio of optical intensities in combination with a total optical intensity is measured and used to interpolate a set of electrode stimulation settings from a calibration table. Electrode pulse characteristics are adjusted in real time to minimize changes in stimulation perceived by the patient during motion.11-29-2012
20120065701Grooved Electrode and Wireless Microtransponder System - A grooved electrode adapted for interfacing cellular matter is provided. The grooved electrode includes grooves adapted for electrically interfacing the grooved electrode with cellular matter growing along the body of the grooved electrode. Further, the grooved electrode includes a wireless transponder adapted to electrically interface with cellular matter and to relay such interactions via RF signals. The RF signals received by the wireless transponder are modulated in response to electrical signals generated by the cellular matter, which are detected by the transponder. The grooved electrode may be implanted within peripheral nerves for treating various neurological conditions, which may include nerve rehabilitation and prosthetic actuation, severe pain, obstructive sleep apnea and so forth.03-15-2012
20110178571Method and Apparatus for Nerve and Muscle Stimulation and Pain Treatment - An apparatus for transcutaneous stimulation comprising: a pulse generator operative to generate repetitive pulses exhibiting a pulse width of 25-60 microseconds, a consistent pulse rise time of no more than 5% of the pulse width and an inter-pulse interval of between 0.1 and 3 milliseconds; an intra-group modulator producing modulated pulses exhibiting an amplitude of between 50% and 100% of a maximum modulated pulse amplitude in a generally increasing manner, the modulated pulses defining a group of pulses, the intra-group modulator being further operative to modulate the pulses to exhibit an amplitude of no more than 25% of the maximum modulated pulse amplitude for a predetermined time period between successive groups of pulses thereby creating a pulse train; and an output modulator modulating the pulse train to produce output pulses exhibiting an amplitude of between 50% and 100% of a maximum according to a predetermined repetitive waveform.07-21-2011
20100057163MULTIPLE TUNABLE CENTRAL CATHODES ON A PADDLE FOR INCREASED MEDIAL-LATERAL AND ROSTRAL-CAUDAL FLEXIBILITY VIA CURRENT STEERING - A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.03-04-2010
20100036454Systems and methods to place one or more leads in muscle for providing electrical stimulation to treat pain - Systems and methods are adapted to provide the relief of pain. The systems and methods make possible the percutaneous placement of one or more intramuscular leads, without the need for fluoroscopy, for providing electrical stimulation to activate a motor point innervating the muscle, to provide the therapeutic relief of pain. The one or more intramuscular leads may be placed in muscle(s) to resist migration. The target nerves and their motor points innervate the muscles in which the one or more leads are placed. The systems and methods can include a two-stage solution. The first stage may include temporary systems and methods, including the use of an external pulse generator. The second stage may include more permanent systems and methods, including the use of an implanted pulse generator.02-11-2010
20090118789Electrode System for Transcutaneous Nerve and/or Muscle Stimulation - An electrode system for transcutaneous nerve and/or muscle stimulation that includes a pair of stimulating electrodes and a stimulation current generator for generating a nerve and/or muscle stimulation current between the stimulating electrodes. The system also includes a current-injecting electrode arranged in proximity to one of the stimulating electrodes, and an injection-current generator located in the area of the current-injecting electrode. The current-injecting electrode and the corresponding injection-current generator reduce, or even eliminate, undesirable sensations resulting from an excitation of subcutaneous receptors by the stimulation current.05-07-2009
20110257701PORTABLE ASSEMBLIES, SYSTEMS AND METHODS FOR PROVIDING FUNCTIONAL OR THERAPEUTIC NEUROSTIMULATION - Neurostimulation assemblies, systems, kits, and methods make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin or carried outside the body. Neurostimulation assemblies, systems, and methods may include a carrier and a removable electronics pod, the electronics pod including stimulation generation circuitry, a power input bay to hold a disposable power source, and user interface components. The assemblies, systems, and methods are adapted to provide coordinated neurostimulation to multiple regions of the body.10-20-2011
20120203304SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-09-2012
20110054565DORSAL COLUMN STIMULATION THERAPY - In some examples, the disclosure relates to system, devices, and techniques for delivering dorsal column stimulation. One or more locations for dorsal column stimulation may be identified based on sensed signals evoked by delivery of stimulation to a dorsal root and/or peripheral nerve of a patient. In some examples, an IMD may deliver dorsal column stimulation in combination with dorsal root stimulation to a patient to treat a patient condition.03-03-2011
20110054564Pain management system - A central pain management system (Algotron) comprising the relationships involving the use of a pain treatment system (Remote Algotron), novel pain treatment device (Neuraxial Transcutaneous Electrical Nerve Stimulator NTENS), Central Computer, Clinical Resource comprising a clinical-outcomes knowledgebase (AlgoNeuroMatrix), a Clinical Triage Resource, Protocol Generator and Stimulation Pattern Generator, the Algotron also includes combinations of network architectures to coordinate between a patient, Licensee/Provider, Licensee/Provider Computer, internet and real-time data point streaming are disclosed.03-03-2011
20110022115TOPICAL ANESTHESIA INDUCING APPARATUS FOR INDUCING TOPICAL ANESTHESIA AND TOPICAL ANESTHESIA INDUCING APPLICATORS AND TOPICAL ANESTHESIA INDUCING ELECTRODES THEREFORE - Body worn Topical Anesthesia Inducing (TAI) apparatus for inducing topical anesthesia at a desired treatment site and TAI electrodes therefor. Body worn TAI apparatus includes a body worn TAI device including a power source, a TENS generation unit for generating a TENS output signal, a control unit with a user interface for controlling operation of the TAI apparatus and at least one TAI applicator with a TAI electrode for administering the TENS output signal at the desired treatment site for inducing topical anesthesia. Body worn TAI device configurations include a hand worn TAI device, a wrist worn TAI device, and a belt worn TAI device. TAI applicators can also administer vibration stimulus and/or cold application at the desired treatment site for increased topical anesthesia.01-27-2011
20130158628SEAMLESS INTEGRATION OF DIFFERENT PROGRAMMING MODES FOR A NEUROSTIMULATOR PROGRAMMING SYSTEM - A system and method for programming a neurostimulation device coupled to a plurality of electrodes implanted adjacent tissue of a patient are provided. A first electrode configuration corresponding to a first mode of programming the neurostimulation device is defined. A second programming mode of programming the neurostimulation device different from the first programming mode is selected. A second electrode configuration is defined based on the first electrode configuration in response to the selection of the second programming mode. The neurostimulation device is programmed using the second programming mode.06-20-2013
20130158627APPARATUS AND METHOD FOR RELIEVING PAIN USING TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION - Apparatus for transcutaneous electrical nerve stimulation in humans, comprising a housing; stimulation means mounted within the housing for electrically stimulating nerves; an electrode array releasably mounted to the housing, connectable to the stimulation means, and comprising electrodes for electrical stimulation of nerves; control means mounted to the housing and electrically connected to the stimulation means for controlling the stimulation means; monitoring means mounted to the housing and electrically connected to the stimulation means for monitoring the stimulation means; user interface means mounted to the housing and electrically connected to the control means for controlling the stimulation means; display means mounted to the housing and electrically connected to the control means and the monitoring means for displaying the status of the stimulations means; and a strap attached to the housing and configured to hold the housing, stimulation means and electrode array at a specific anatomical location to treat pain.06-20-2013
20110046696METHOD FOR NEUROLOGICAL STIMULATION OF PERIPHERAL NERVES TO TREAT PAIN - According to one embodiment, a system for neurological stimulation of peripheral nerve fibers is provided. The system includes stimulation electrodes adapted to be implanted in tissue proximate a network of peripheral nerve fibers located in and innervating a painful region of a patient's body and to deliver electrical stimulation pulses to the network of peripheral nerve fibers located in and innervating the painful region.02-24-2011
20110137374DEVICES AND METHODS FOR ELECTRODE IMPLANTATION - Systems and methods provide baroreflex activation to treat or reduce pain and/or to cause or enhance sedation or sleep. Methods involve activating the baroreflex system to provide pain reduction, sedation, improved sleep or some combination thereof. Systems include at least one baroreflex activation device, at least one sensor for sensing physiological activity of the patient, and a processor coupled with the baroreflex activation device(s) and the sensor(s) for processing sensed data received from the sensor and for activating the baroreflex activation device. In some embodiments, the system is fully implantable within a patient, such as in an intravascular, extravascular or intramural location.06-09-2011
20100121409SYSTEM AND METHOD FOR DETERMINING APPROPRIATE STEERING TABLES FOR DISTRIBUTING STIMULATION ENERGY AMONG MULTIPLE NEUROSTIMULATION ELECTRODES - A method, computer medium, and system for programming a control device are provided. The control device is configured for controlling electrical stimulation energy provided to a plurality of electrode leads that are physically implanted within a patient in a side-by-side lead configuration. Electrical energy is conveying from the electrode leads to create a stimulation region within the patient. The stimulation region is automatically shifted along the electrode leads (e.g., by selecting and using at least one navigation table) in accordance with an electrical current shifting pattern that is based on a stagger of the side-by-side lead configuration. At least one stimulation parameter set is selected based on the effectiveness of the shifted stimulation region, and the control device is programmed with the selected stimulation parameter set(s).05-13-2010
20120310302SYSTEMS AND METHODS FOR THE TREATMENT OF PAIN THROUGH NEURAL FIBER STIMULATION - Embodiments of the present invention provide systems and methods for the treatment of pain through activation of select neural fibers. The neural fibers may comprise one or more afferent neural fibers and/or one or more efferent neural fibers. If afferent fibers are stimulated, alone or in combination with efferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate afferent pathways in a manner approximating natural afferent activity. The afferent fibers may be associated with primary receptors of muscle spindles, golgi tendon organs, secondary receptors of muscle spindles, joint receptors, touch receptors, and other types of mechanoreceptors and/or proprioceptors. If efferent fibers are stimulated, alone or in combination with afferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate intrafusal and/or extrafusal muscle fibers, which results in an indirect activation of afferent fibers associated therewith.12-06-2012
20120310301SYSTEMS AND METHODS FOR THE TREATMENT OF PAIN THROUGH NEURAL FIBER STIMULATION - Embodiments of the present invention provide systems and methods for the treatment of pain through activation of select neural fibers. The neural fibers may comprise one or more afferent neural fibers and/or one or more efferent neural fibers. If afferent fibers are stimulated, alone or in combination with efferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate afferent pathways in a manner approximating natural afferent activity. The afferent fibers may be associated with primary receptors of muscle spindles, golgi tendon organs, secondary receptors of muscle spindles, joint receptors, touch receptors, and other types of mechanoreceptors and/or proprioceptors. If efferent fibers are stimulated, alone or in combination with afferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate intrafusal and/or extrafusal muscle fibers, which results in an indirect activation of afferent fibers associated therewith.12-06-2012
20120310300SYSTEM AND METHOD OF ESTABLISHING A PROTOCOL FOR PROVIDING ELECTRICAL STIMULATION WITH A STIMULATION SYSTEM TO TREAT A PATIENT - A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer and a patient feedback device for establishing a protocol to treat a patient. The programmer uses a computer assisted stimulation programming procedure for establishing the protocol. Also described are methods of treating a patient with a spinal cord stimulation system including the programmer and the patient feedback device.12-06-2012
20120310299SYSTEM AND METHOD OF ESTABLISHING A PROTOCOL FOR PROVIDING ELECTRICAL STIMULATION WITH A STIMULATION SYSTEM TO TREAT A PATIENT - A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer and a patient feedback device for establishing a protocol to treat a patient. The programmer uses a computer assisted stimulation programming procedure for establishing the protocol. Also described are methods of treating a patient with a spinal cord stimulation system including the programmer and the patient feedback device.12-06-2012
20120078324Post-Operative Pain Inhibitor For Joint Replacement and Method Thereof - A post-operative pain inhibitor system comprises a controller and leads. Neuro-stimulator circuitry may be included within the patient controller or within one or more prosthetic components for generating a signal. In one example, an electrode is configured to be attached to skin in proximity to an operative field of an implanted joint. Topical leads, percutaneous leads, subcutaneous leads, intraosseous leads, or leads can also be placed in proximity to the operative field corresponding to the prosthetic component installation. The lead or electrodes can be coupled to neuro-stimulation circuitry to stimulate peripheral nerve fibers to affect body generated action potentials. A transmitter or power source can be housed in a prosthetic component. The controller can modify the pulse width, pulse shape, pulse repetition rate, and pulse amplitude of the signal thereby allowing the patient to adapt the signal to minimize their perceived pain.03-29-2012
20120209348Nocipoint Therapy: Threshold-gated Electrical Neuro-Immuno-Stimulation Procedure - A method of reducing pain includes first identifying a muscle; then identify a related pair of Nocipoints on the identified muscle; and applying electrical stimulation to the pair If required, the method may further comprise identifying additional pairs of Nocipoints and applying electrical stimulation to them. The stimulation should be from about 1.5 to 3.5 minutes.08-16-2012
20110190847NEURAL STIMULATION SYSTEM PROVIDING AUTO ADJUSTMENT OF STIMULUS OUTPUT AS A FUNCTION OF SENSED IMPEDANCE - A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.08-04-2011
20110264167MODULATION OF TRIGEMINAL REFLEX STRENGTH - A method includes evoking and recording the response of a trigeminal reflex in the presence and absence of occipital nerve stimulation (ONS) to determine whether, and to what extent, ONS modulates the trigeminal reflex. If the ONS modulates the trigeminal reflex, e.g. to a sufficient degree, the subject may be considered a candidate for ONS for treatment of headache.10-27-2011
20110202108ELECTRICAL MENORRHAGIA TREATMENT - Apparatus and methods are provided for treating menorrhagia of a subject. At least one electrode is coupled to a pelvic site of the subject. A control unit reduces nitric oxide production by pelvic tissue of the subject by driving the electrode to drive an electric current into the pelvic site of the subject. Other embodiments are also described.08-18-2011
20100030300METHOD OF NEUROSTIMULATION OF DISTINCT NEURAL STRUCTURES USING SINGLE PADDLE LEAD TO TREAT MULTIPLE PAIN LOCATIONS AND MULTI-COLUMN, MULTI-ROW PADDLE LEAD FOR SUCH NEUROSTIMULATION - In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.02-04-2010
20120041511METHOD FOR SELECTIVELY PERFORMING LOCAL AND RADIAL PERIPHERAL STIMULATION - A control system for use with a neurostimulator comprises a user interface for receiving an input from a user and a controller. The user interface has a first control and a second control. The controller is configured for, in response to actuating the first control, operating the neurostimulation control system in a PNFS programming mode, and for, in response to actuating the second control, operating the neurostimulation control system in a PNS programming mode. A method of providing therapy to a patient comprises initially conveying pulsed electrical current at a pulse width into a peripheral tissue region of the patient to create a side effect via stimulation of one of a nerve ending and neural axon, and subsequently conveying pulsed electrical current at an adjusted pulse width into the peripheral tissue region to create a therapeutic effect via stimulation of the other one of the nerve ending and neural axon.02-16-2012
20120041512Peripheral Nerve Stimulation - An apparatus for treating pain by electrical stimulation is disclosed. A lead is placed subcutaneously in the region of pain. The subcutaneous tissue is electrically stimulated to cause paresthesia. The method encompasses subcutaneous placement of an electrical lead near the region of pain and subsequent electrical stimulation of the tissue to cause paresthesia. In particular, an apparatus for treating intractable lower back pain using percutaneous electrostimulation techniques is disclosed.02-16-2012
20100137938SELECTIVE STIMULATION SYSTEMS AND SIGNAL PARAMETERS FOR MEDICAL CONDITIONS - Devices, systems and methods are provided for targeted treatment of a variety of conditions, particularly conditions that are associated with or influenced by the nervous system, such as pain. Targeted treatment of such conditions is provided with minimal deleterious side effects, such as undesired motor responses or undesired stimulation of unaffected body regions. This is achieved by directly neuromodulating a target anatomy associated with the condition while minimizing or excluding undesired neuromodulation of other anatomies.06-03-2010
20100292755Methods of preventing ischemic injury using peripheral nociceptive stimulation - Methods of inhibiting ischemia-related and ischemia-reperfusion-related injury are provided. Remote administration of a C-fiber activator or TRPV1 agonist or remote electrical stimulation and activation of TRPV1 reduces ischemia-related tissue damage in subjects at risk for ischemia-related tissue damage. In aspects of the invention, remote application of a TRPV1 agonist inhibits ischemia-related cardiac tissue damage. Methods of inhibiting cardiac tissue damage by topically administering the TRPV1 agonist, capsaicin are provided.11-18-2010
20080294221Action potential conduction prevention - An example method for selectively and reversibly preventing the conduction of action potentials in a targeted nerve region is presented. The method includes generating an electrical waveform having two phases and selectively depolarizing a nerve membrane using the electrical waveform. The nerve membrane is depolarized to a state where the nerve membrane cannot conduct an action potential. The depolarization is achieved by selectively repetitively providing the electrical waveform to a targeted nerve region associated with the nerve region to control m gates and h gates in the region and thus to control the availability of ions.11-27-2008
20100094378PAIN SENSORY NERVE STIMULATION APPARATUS - A pain sensory nerve stimulation apparatus includes: an electrode portion including: a first electrode, a tip end of which is adapted to be inserted into a skin; and at lease one second electrode which is disposed in a circumference of the first electrode without being electrically conductive with the first electrode, and which is adapted to be in contact with a skin; and a pulse signal supplier, supplying a pulse signal in which an electrical polarity of the first electrode is set as a anode and an electrical polarity of the second electrode is set as a cathode.04-15-2010
20100042180ELECTRICAL STIMULATION DEVICE AND METHOD FOR THERAPEUTIC TREATMENT AND PAIN MANAGEMENT - A disposable electrical stimulation device and method for providing therapeutic treatment and pain management in a convenient, compact configuration. Electrode size and shape and relative configuration can be varied according to an intended application and use, or a universal configuration can be provided for use on almost any area of the body. The common structure of communicatively coupled dual electrodes including control circuitry and a power source accommodates a range of different sizes, configurations, stimulation treatment intensities, and other physical and electrical characteristics that can be pre-customized and packaged for specific, limited time use. The device can therefore be used in methods of providing therapy, managing pain, and achieving other treatment goals by electrical stimulation.02-18-2010
20120046712IMPLANTABLE PULSE GENERATOR HAVING CURRENT STEERING MEANS - An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold.02-23-2012
20120209349SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-16-2012
20110166622SPHERICAL VIBRATING PROBE APPARATUS AND METHOD FOR CONDUCTING EFFICACY ANALYSIS OF PAIN TREATMENT USING PROBE APPARATUS - A patient treatment unit and method analyzes and treats pain in tissues by applying an electrical pulse train and a galvanically isolated stimulus voltage to affected tissues using vibrating spherical tip probes. A range of probe diameters is used to provide a range of applied current densities. The impedance of the affected tissue is measured, tracked, and correlated to a level of pain while treatment is in progress. Impedance is used as real-time feedback, and current and voltage applications are adjusted accordingly. A patient treatment unit includes a probe stimulus generator connected to the spherically tipped probes. The unit further includes an impedance analysis circuit that senses voltage and current via the probes when they are contacting the patient. A monitor is electrically coupled to the body impedance analysis circuit and provides an indication of the measured impedance indicative of the patient's level of pain.07-07-2011
20110166621SYSTEMS AND METHODS FOR IMPLANTABLE LEADLESS SPINE STIMULATION - Systems and methods are disclosed to stimulate spine tissue to treat medical conditions such as pain and spinal injury. The invention uses electrical stimulation of the spine, where vibrational energy from a source is received by an implanted device and converted to electrical energy and the converted electrical energy is used by implanted electrodes to stimulate the pre-determined brain site. The vibrational energy is generated by a controller-transmitter, which could be located either externally or implanted. The vibrational energy is received by a receiver-stimulator, which could be located in the various regions on around the spine. The implantable receiver-stimulator stimulates different locations in the spine region to provide therapeutic benefit.07-07-2011
20120016437SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.01-19-2012
20120016436SYSTEM AND METHOD FOR DYNAMICALLY CONFIGURABLE DEEP BRAIN STIMULATION - A DBS system and method for predicting future neurological activity in a subject and administering a corrective electrical stimulation signal to prevent anticipated pathological neuronal activity. The DBS system includes an implantable electrode configured to both record neuronal activity from a target brain area in a subject and administer the corrective electric stimulation signal to the target area. The DBS system also includes a controller configured to determine the characteristics of the corrective electrical stimulation signal based on point process models of healthy and pathological neuronal activity in the target area.01-19-2012
20120016439DEVICES FOR CONTROLLING HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, AND ASSOCIATED SYSTEMS AND METHODS, INCLUDING SIMPLIFIED CONTROLLERS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.01-19-2012
20120016438SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.01-19-2012
20120022612ELECTROTHERAPY APPARATUS - An apparatus for producing analgesia in a patient through electrical signals applied through electrodes to a patient's body, and methods of treating patients using the apparatus. The apparatus comprises a signal generator arranged to generate a biphasic waveform comprising successive cycles each containing a positive and negative pulse.01-26-2012
20110093034BIFURCATED LEAD WITH INTEGRATED ANCHOR AT BRANCH REGION - An implantable medical lead includes a proximal portion having first and second contacts. The lead further includes a first distal arm having a first electrode that is electrically coupled to the first contact, and includes a second distal arm having a second electrode that is electrically coupled to the second contact. The lead also includes a branch region where the proximal portion transitions to the first and second distal arms. A tissue anchoring element is attached to the branch region for securing the branch region to tissue of a patient into which the lead is implanted. Such bifurcated leads may be used to apply electrical signals to occipital nerves of the patient via the electrodes. A lead extension includes a distal connector with two lead receptacles and a tissue anchoring element attached to the connector. An adaptor having three lead receptacles includes an anchoring element attached thereto.04-21-2011
20100249875PAIN MANAGEMENT WITH STIMULATION SUBTHRESHOLD TO PARESTHESIA - Devices, systems and methods are provided for treating pain while minimizing or eliminating possible complications and undesired side effects, particularly the sensation of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with stimulation energy in a manner that will affect pain sensations without generating substantial sensations of paresthesia. In some embodiments, such neurostimulation takes advantage of anatomical features and functions particular to the dorsal root ganglion.09-30-2010
20120130448SYSTEM AND METHOD FOR DISPLAYING STIMULATION FIELD GENERATED BY ELECTRODE ARRAY - An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold.05-24-2012
20120071948SYSTEMS AND METHODS FOR MAKING AND USING ELECTRODE CONFIGURATIONS FOR PADDLE LEADS - A paddle lead assembly for providing electrical stimulation of patient tissue includes a paddle body having a longitudinal axis and a lateral axis transverse to the longitudinal axis. The paddle body includes a plurality of electrodes disposed into at least four columns extending parallel with the longitudinal axis. The at least four columns include two lateral columns and at least two medial columns disposed therebetween. The electrodes of the at least two medial columns are arranged into rows aligned along the transverse axis. The electrodes of the two lateral columns are each longitudinally offset from the rows of electrodes of the at least two medial columns. An array of terminals are disposed on each of at least one lead body coupled to the paddle body. A plurality of conductive wires couple each of the electrodes to at least one terminal of the terminal arrays.03-22-2012
20120158093SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.06-21-2012
20110066209METHOD AND SYSTEM FOR DYNAMIC RECALIBRATION OF TENS STIMULATION POINTS TO COMPENSATE FOR CHANGING ELECTRODE CONDITIONS WITH FAIL-SAFE AND AUTO-RECOVERY FUNCTIONALITY - The invention relates to a device (03-17-2011
20110106208MODULATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY TO TREAT PAIN OR ADDICTION - Methods and devices for the treatment of chronic pain by modulation of the cholinergic anti-inflammatory pathway. In particular, the methods and systems described herein may be used to enhance chronic pain therapies such as spinal cord stimulation (SCS). Thus, the present invention describes devices and methods for modulation of the cytokine pathway by stimulation of the neuronal cholinergic anti-inflammatory pathway (NCAP) to enhance the treatment of chronic pain by SCS. The use of NCAP in conjunction with SCS may potentiate the effects of SCS and/or prevent the desensitization of the patient to SCS.05-05-2011
20110106207PARASTHESIA USING SHORT-PULSE NEURAL STIMULATION SYSTEMS, DEVICES AND METHODS - Methods, devices and systems for neural stimulation using a short-pulse stimulation are described. Using a waveform that generates a sufficiently large capacitive current density in the tissue surrounding a nerve allows neural stimulation at one hundredth the power of a charge injection stimulation. A capacitive discharge may be used to generate the short-pulse stimulation waveform. Short pulse stimulation may be used to generate parasthesia, particularly for treatment of chronic pain.05-05-2011
20100082079ELECTRODES FOR ORTHOTIC DEVICE - According to various embodiments of the invention, an electrode for an orthotic device, comprises a backing layer having an outer surface allowing the electrode to be attached to an orthotic device; conductive layer configured to receive and distribute an electrical current according to an electrophysical modality; an interface layer configured to conform to a wearer's anatomy and to conduct the electrical current from the conductive layer to the wearer's anatomy; and a connection member attached to the conductive layer and configured to electrically couple with an electrical contact disposed on the orthotic device.04-01-2010
20100204751Methods for Treating Central Pain Syndrome and Other Pain Related Pathologies - Central pain syndrome (CPS) is a debilitating condition that affects a large number of patients with a primary lesion or dysfunction in the central nervous system. Despite its discovery over a century ago, the pathophysiology underlying the development and maintenance of CPS is poorly understood. The present invention is drawn to novel methods of treating CPS. In certain aspects, the invention is drawn to the novel discovery of the role of the zona incerta (ZI) in CPS and methods of exploiting this novel discovery for the treatment of CPS.08-12-2010
20100069993OCCIPITAL NEUROMODULATION - A method of treating chronic pain in a subject by positioning a lead containing electrodes subcutaneously in the occipital region of a subject's skull at the height of an imaginary line connecting the tops of the ears; and energizing the lead with an electrical signal effective to suppress pain, and below the level where the subject can feel the lead being energized. Typically the procedure involves a trial phase and a permanent implant phase. The procedure is known as occipital neuromodulation.03-18-2010
20120083858PAIN MODULATION SYSTEMS AND METHODS - Systems and methods of conducing a conditioning modulation of pain perception are disclosed. The system includes a power source, an impulse generator, a controller and at least one electrode for the delivery of a therapeutic stimulation.04-05-2012
20120083857TISSUE STIMULATION SYSTEM AND METHOD WITH ANATOMY AND PHYSIOLOGY DRIVEN PROGRAMMING - An external control device for use with a tissue stimulation device and at least one tissue stimulation lead having a plurality of electrodes implanted within a patient comprises a user interface configured for allowing a user to enter first information defining a therapeutic indication and second information defining the location of the at least one tissue stimulation lead relative to an anatomical reference, at least one processor configured for analyzing the first and second information and generating a set of stimulation parameters based on the analysis, and output circuitry configured for transmitting the at least one stimulation parameter set to the tissue stimulation device.04-05-2012
20120083856SYSTEMS AND METHODS FOR POSITIONING IMPLANTED DEVICES IN A PATIENT - Systems and methods for positioning implanted devices in a patient are disclosed. A method in accordance with a particular embodiment includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord. The method further includes implanting a signal delivery device within a vertebral foramen of each patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location, without the use of fluoroscopy. The method can still further include, for each of the plurality of patients, activating the electrical contact to modulate neural activity at the spinal cord. In further particular embodiments, RF signals, ultrasound, magnetic fields, and/or other techniques are used to locate the signal delivery device.04-05-2012
20110184488SPINAL CORD STIMULATION TO TREAT PAIN - A system and method for treating pain without paresthesia by spinal cord stimulation.07-28-2011
20120172946EXTENDED PAIN RELIEF VIA HIGH FREQUENCY SPINAL CORD MODULATION, AND ASSOCIATED SYSTEMS AND METHODS - Extended pain relief via high frequency spinal cord modulation, and associated systems and methods. A method for treating a patient in accordance with a particular embodiment includes selecting a neural modulation site to include at least one of a dorsal root entry zone and dorsal horn of the patient's spinal cord, and selecting parameters of a neural modulation signal to reduce patient pain for a period of time after ceasing delivery of the signals, the period of time being at least one tenth of one second.07-05-2012
20120316617METHOD AND APPARATUS FOR DETERMINING RELATIVE POSITIONING BETWEEN NEUROSTIMULATION LEADS - A method and neurostimulation control system for operating two leads disposed adjacent tissue of a patient are provided. A plurality of cross-lead electrical parameters are measured to generate a measured electrical profile of the electrode leads. A plurality of cross-lead electrical parameters are estimated to generate a first reference electrical profile for the electrode leads in a first known staggered configuration. The first reference electrical profile is spatially shifted to generate a second reference electrical profile for the electrode leads in a second known staggered configuration. The measured electrical profile is compared to the first and second reference electrical profiles, and a longitudinal stagger between the electrode leads is quantified based on the comparison.12-13-2012
20120179222SYSTEM AND METHOD FOR AVOIDING, REVERSING, AND MANAGING NEUROLOGICAL ACCOMMODATION TO ELECTRICAL STIMULATION - A method of operating a neurostimulation device comprises varying a first stimulation parameter under user control while fixing a second stimulation parameter, generating a plurality of stimulation parameter sets from the varied first stimulation parameter and the fixed second stimulation parameter, outputting a pulsed electrical waveform from the neurostimulation device between electrodes in accordance with the stimulation parameter sets, such that a therapeutic effect is achieved while allowing neural tissue to undergo neurological accommodation, changing the second stimulation parameter, varying the first stimulation parameter under user control while fixing the second changed stimulation parameter, generating another plurality of stimulation parameter sets from the varied first stimulation parameter and the fixed changed second stimulation parameter, and outputting the pulsed electrical waveform from the neurostimulation device between the electrodes in accordance with the other stimulation parameter sets to maintain the therapeutic effect while the neural tissue is neurologically accommodated.07-12-2012
20100274318DEVICES FOR CONTROLLING HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, AND ASSOCIATED SYSTEMS AND METHODS, INCLUDING SIMPLIFIED PROGRAM SELECTION - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.10-28-2010
20100274316DEVICES FOR CONTROLLING HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, AND ASSOCIATED SYSTEMS AND METHODS, INCLUDING SIMPLIFIED CONTROLLERS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.10-28-2010
20100274315SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS, INCLUDING PRACTITIONER PROCESSES - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.10-28-2010
20100274314SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.10-28-2010
20100274313Implantable Neurostimulator with Integral Hermetic Electronic Enclosure, Circuit Substrate, Monolithic Feed-Through, Lead Assembly and Anchoring Mechanism - An implantable medical device is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The implantable medical device can be a neurostimulator configured to be implanted on or near a cranial nerve to treat headache or other neurological disorders. One aspect of the implantable medical device is that it includes an electronics enclosure, a substrate integral to the electronics enclosure, and a monolithic feed-through integral to the electronics enclosure and the substrate. In some embodiments, the implantable medical device can include a fixation apparatus for attaching the device to a patient.10-28-2010
20100274312SPINAL CORD MODULATION FOR INDUCING PARESTHETIC AND ANESTHETIC EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods are disclosed. A representative method in accordance with an embodiment of the disclosure includes creating a therapeutic effect and a sensation in a patient by delivering to the patient first pulses having a first set of first signal delivery parameters and second pulses having a second set of second signal delivery parameters, wherein a first value of at least one first parameter of the first set is different than a second value of a corresponding second parameter of the second set, and wherein the first pulses, the second pulses or both the first and second pulses are delivered to the patient's spinal cord.10-28-2010
20100010567SYSTEMS AND METHODS FOR NEUROMODULATION FOR TREATMENT OF PAIN AND OTHER DISORDERS ASSOCIATED WITH NERVE CONDUCTION - Methods and apparatus are provided for selective destruction or temporary disruption of nerves and/or conduction pathways in a mammalian body for the treatment of pain and other disorders. Apparatus comprises catheters having electrodes for targeting and affecting nerve tissue at a cellular level to reversible and irreversible nerve poration and incapacitation.01-14-2010
20100010565Extended range wireless muscular and neural stimulation - Miniature implanted muscle, nerve and brain stimulators are powered by inductive coupling to a large coil which is preferably placed under the bed. Preferably the operation of the system is controlled by a programmable timer to operate when the user is resting or asleep. Two coils operated at two different positions can be used simultaneously to avoid spots with no signal. When the system is used to reduce angina pains, the pulsation is synchronized to the cardiac rhythm by picking up the electro-cardiac signals.01-14-2010
20120253422SYSTEMS AND METHODS FOR SELECTING NEURAL MODULATION CONTACTS FROM AMONG MULTIPLE CONTACTS - The present technology is directed generally to systems and methods for selecting neural modulation contacts from among multiple contacts. A system in accordance with a particular embodiment includes a patient implantable signal delivery system having (n) contacts positioned to deliver therapy signals to a patient, where (n) is greater than three, and an external signal generator coupled to the signal delivery device and having a computer-readable medium containing instructions that, when executed, perform the operations of (a) identifying a contact pair, (b) delivering neural modulation signals to the contact pair, (c) changing one or more of the contacts of the contact pair, and (d) repeating operations (b)-(c) for each of at most (n−1) unique contact pairs.10-04-2012
20120259383ARBITRARY WAVEFORM GENERATOR & NEURAL STIMULATION APPLICATION - A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy.10-11-2012
20120259384ARBITRARY WAVEFORM GENERATOR & NEURAL STIMULATION APPLICATION WITH SCALABLE WAVEFORM FEATURE - A method, device and/or system for generating arbitrary scalable waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where scaling function(s) can be used to scale arbitrary waveforms for increased flexibility and which can also be used for charge balancing purposes as well.10-11-2012
20120259382CHARGE BALANCING FOR ARBITRARY WAVEFORM GENERATOR & NEURAL STIMULATION APPLICATION - A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.10-11-2012
20120259381CONTACT ASSEMBLY FOR IMPLANTABLE PULSE GENERATOR AND METHOD OF USE - A contact assembly for a medical device and, more specifically, to a header contact assembly for achieving electrical contact with an in-line IPG lead utilizing a contact structure such as a “toroidal spring in groove” device.10-11-2012
20120232614POSTURE-DEPENDENT STIMULATION FOR IMPLANTABLE STIMULATORS - A therapeutic stimulator, e.g., a spinal neurostimulator for pain relief, adapts stimulation delivered to the patient in dependence on measurements of patient orientation (e.g., from a three-axis accelerometer), and also on impedance measurements from leads situated within or upon the patient's body (e.g., from electrodes on neurostimulation leads extending alongside the spine). Since the impedance measurements can provide additional data regarding body positioning, as well as providing data regarding electrode status (such as lead migration, electrode encapsulation, etc.), use of the impedance measurements can provide more refined (and more appropriate) control of delivered stimulation.09-13-2012
20120232615Modular Limb Peripheral Nerve Stimulation System and Method of Use - The present disclosure provides a modular neurostimulator system. The system includes a stage one implant that can be externally powered and controlled. The stage one implant is made of one or more leads as well as a passive receiver and an external controlling and powering device. The receiver and the external device can be utilized either as a long-term trial system, or as a permanent system. Since the receiver and the external device can have limited costs and features, they are suited for a long-term trial without risk of infection and excessive upfront cost. The system may also include a stage two implant that includes an implantable power supply and/or control elements connectable to one or more previously implanted stage one implants. A method of treatment for limb peripheral nerves using such a modular system is also disclosed.09-13-2012
20120265269USER INTERFACE WITH VIEW FINDER FOR LOCALIZING ANATOMICAL REGION - An external control device for use with a medical component implanted within a patient. The device comprises a user interface configured for receiving user input, displaying a first graphical representation of the medical component in the context of a global graphical representation of an anatomical region of the patient, displaying a view finder defining a portion of the global graphical representation, and displaying a second graphical representation of the medical component in the context of a local graphical representation of the portion of the anatomical region portion. The external control device further comprises control circuitry configured for, in response to the input from the user, modifying the displayed view finder to spatially define a different portion of the global graphical representation, such that the second graphical representation of the medical component is displayed in the context of a local graphical representation of the different portion of the anatomical region.10-18-2012
20120265268PROGRAMMING INTERFACE FOR SPINAL CORD NEUROMODULATION - A tool for assisting in the planning or performing of electrical neuromodulation of a patient's spinal cord. The tool may have various functions and capabilities, including calculating a volume of activation, registering an electrode(s) shown in a radiologic image, constructing functional images of the patient's spinal anatomy, targeting of neuromodulation, finding a functional midline between multiple electrodes, determining the three-dimensional position of multiple electrodes, and/or accommodating for electrode migration. In certain embodiments, the tool can be embodied as computer software or a computer system.10-18-2012
20100049277IMPLANTABLE NEUROSTIMULATOR DEVICE - The disclosure describes an implantable neurostimulator device for delivery of neurostimulation to treat head, neck, or facial pain or tension, including pain or tension caused by occipital neuralgia. The device may be a neurostimulation device having a miniaturized housing with a low profile that permits subcutaneous implantation at a stimulation site directly adjacent a neuralgic region at the back of the neck of a patient. For example, the device may be subcutaneously implanted at the back of the neck of a patient to relieve symptoms of occipital neuralgia.02-25-2010
20110046695SYSTEM AND METHOD FOR ELECTRICAL STIMULATION OF THE INTERVERTEBRAL DISC - In one embodiment, a method electrically stimulates an area in a spinal disc. The method comprises: implanting at least one steerable lead at a placement site for stimulating a spinal disc such that the lead is disposed exterior and immediately adjacent to and circumferentially along an annulus of the spinal disc, the at least one lead including a plurality of electrodes distributed along a majority of a circumference of the annulus; connecting the lead to a signal generator; and generating electrical stimulation pulses using the generator to stimulate targeted portions of the spinal disc, wherein the stimulation of the targeted portion of the spinal disc sufficiently stimulates nerve tissue within the spinal disc to prevent communication of pain signals originating in the spinal disc without damaging tissue of the spinal disc.02-24-2011
20110238130CLOSED-LOOP THERAPY ADJUSTMENT - Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.09-29-2011
20100234918SYSTEM AND METHOD FOR UNIFORMLY DISPLACING A REGION OF NEURAL STIMULATION - A tissue stimulation system and computer software and method of operating the system is provided. An array of electrodes is placed contact with tissue of a patient (e.g., neural tissue), and electrical current is conveyed within the electrode array, thereby creating a stimulation region in the tissue. Electrical current is shifted between cathodes of the electrode array in incremental steps over a range, thereby causing displacement of the stimulation region at substantially uniform distances over the incremental steps. The electrical current may be shifted between the cathodes in accordance with a sigmoid-like function of a position of the stimulation region. A navigation table containing a series of states and corresponding gradually and non-uniformly changing electrical current values can be accessed, in which case, the electrical current may be shifted between the cathodes by incrementing through the states of the navigation table.09-16-2010
20120277823DUAL PROPHYLACTIC AND ABORTIVE ELECTRICAL STIMULATION - Prophylactic stimulation and abortive electrical stimulation are delivered to a cranial nerve, including, e.g. an occipital or trigeminal nerve to treat symptoms of various conditions, including, e.g. occipital neuralgia or migraines.11-01-2012
20120277822Current Steering Neurostimulator Device with Unidirectional Current Sources - The present disclosure provides a medical device that includes a neurostimulator. The neurostimulator includes one or more channels. Each channel includes a digitally-controlled switch coupled to a voltage source. The switch is in one of an “on” state and an “off” state in response to a first control signal. Each channel also includes a digitally-controlled current sink coupled to the switch. The current sink is coupled between the switch and the voltage source. The current sink draws a variable amount of electrical current in response to a second control signal. Each channel further includes a conductor coupled to the switch and the current sink. The conductor is configured to be coupled to an electrode that is operable to deliver the electrical current drawn by the current sink to a target tissue area.11-01-2012
20110276106MENSTRUATION PAIN RELIEF DEVICE - The present invention relates to a menstruation pain relieve device, which comprises a female brief, an electrothermal sheet and a power supply. The most important advantage is that this invention jointed on the female brief can particularly ease off the dysmenorrheal occurred to females during menstrual periods. The electrothermal sheet is fitted on the brief where corresponds to the female's abdomen. A lead wire with a joint is connected to the electrothermal sheet at one end thereof and the power supply is connected to the joint of the lead wire by means of a connection end, so that power can be supplied to the electrothermal sheet to generate proper amount of heat and then further transmit the same to the female's abdomen for achievement of easing off dysmenorrhea occurred during menstrual periods.11-10-2011
20120095526Post-Operative Pain Inhibitor For Hip Joint Replacement and Method Thereof - A post-operative pain inhibitor system comprises a controller and leads. Neuro-stimulator circuitry may be included within the patient controller or within one or more prosthetic components for generating a signal. In one example, a hip implant includes a prosthetic component having at least one electrode where the at least one electrode is configured to deliver energy pulses. Topical leads, percutaneous leads, subcutaneous leads, intraosseous leads, or leads can be placed in proximity to the operative field corresponding to the prosthetic component installation. The lead or electrodes can be coupled to neuro-stimulation circuitry to stimulate peripheral nerve fibers to affect body generated action potentials. A transmitter or power source can be housed in a prosthetic hip component. Controller can modify the pulse width, pulse shape, pulse repetition rate, and pulse amplitude of the signal thereby allowing the patient to adapt the signal to minimize their perceived pain.04-19-2012
20120095525Apparatus and method using near infrared reflectometry to reduce the effect of positional changes during spinal cord stimulation - A spinal cord stimulation apparatus and method for automatic adjustments of SCS using near-infrared (NIR) reflectometry are provided. A positionally sensitive system for spinal cord stimulation including an electrode assembly with integrated optical components for sensing spinal cord position relative to a stimulating electrode array and an SCS controller for controlling electrode stimulation parameters is provided. The integrated optical components include an IR emitter and a pair of IR photodetectors. As light from the IR emitter reflects from the spinal cord, it is detected by each of the pair of IR photodetectors. As the spinal cord changes position so do the angles of incidence for detected light from the IR emitter, a ratio of optical intensities in combination with a total optical intensity is measured and used to interpolate a set of electrode stimulation settings from a calibration table. Electrode pulse characteristics are adjusted in real time to minimize changes in stimulation perceived by the patient during motion.04-19-2012
20120101549DEVICE AND METHOD FOR THE TREATMENT OF PAIN WITH ELECTRICAL ENERGY - An electronic pain treatment device delivering electrical energy to the tissue of a patient in pain is provided which includes a variable wave generator, an impedance measurement circuit, and at least one electrode probe. Associated methods for treating pain are also disclosed.04-26-2012
20120101548SYSTEM AND METHOD FOR ELECTRICAL STIMULATION OF THE INTERVERTEBRAL DISC - In one embodiment, a method electrically stimulates an area in a spinal disc. The method comprises: implanting at least one steerable lead at a placement site for stimulating a spinal disc such that the lead is disposed exterior and immediately adjacent to and circumferentially along an annulus of the spinal disc, the at least one lead including a plurality of electrodes distributed along a majority of a circumference of the annulus; connecting the lead to a signal generator; and generating electrical stimulation pulses using the generator to stimulate targeted portions of the spinal disc, wherein the stimulation of the targeted portion of the spinal disc sufficiently stimulates nerve tissue within the spinal disc to prevent communication of pain signals originating in the spinal disc without damaging tissue of the spinal disc.04-26-2012
20120290042METHODS, DEVICES AND SYSTEMS FOR PROGRAMMING NEUROSTIMULATION - Methods, devices and systems are provided to efficiently identify, from among a plurality of possible neurostimulation parameter sets, one or more preferred neurostimulation parameter sets that treat a targeted pain of a patient. A plurality of different neurostimulation parameter sets are tested on the patient to thereby identify those tested neurostimulation parameter sets that treat the targeted pain. Each of the tested neurostimulation parameter sets defines an electrode configuration that differs from the other tested neurostimulation parameter sets. If more than one of the tested neurostimulation parameter sets are identified as treating the targeted pain, then neurostimulation parameter sets identified as treating the targeted pain are retested, with the value for a specific neurostimulation signal parameter reduced by a same amount for each of the retested neurostimulation parameter sets, to thereby identify those neurostimulation parameter sets that treat the targeted pain at the reduced power consumption level.11-15-2012
20120290041NEUROSTIMULATION SYSTEM WITH ON-EFFECTOR PROGRAMMER CONTROL - An external control device for use with a programmable implantable medical device coupled to an operative element. The external control device comprises a user interface comprising a control element and a display screen configured for displaying a graphical representation of the operative element. The external control device further comprises control circuitry configured for prompting the display screen to superimpose a graphical programmer control over the graphical representation of the operative element when the control element is actuated, and modifying an operational parameter for the operative element in response to actuation of the graphical programmer control. The external control device further comprises output circuitry configured for transmitting the modified operational parameter to the programmable implantable medical device.11-15-2012
20100191307SYSTEMS AND METHODS FOR PRODUCING ASYNCHRONOUS NEURAL RESPONSES TO TREAT PAIN AND/OR OTHER PATIENT CONDITIONS - Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions are disclosed. A method in accordance with a particular embodiment includes selecting a target stimulation frequency that is above a threshold frequency, with the threshold frequency corresponding to a refractory period for neurons of a target sensory neural population. The method can further include producing a patient sensation of paresthesia by directing an electrical signal to multiple sensory neurons of the target sensory neural population at the stimulation frequency, with individual neurons of the sensory neural population completing corresponding individual refractory periods at different times, resulting in an asynchronous sensory neuron response to the electrical signal.07-29-2010
20130013025Fractionalized Stimulation Pulses in an Implantable Stimulator Device - A method for configuring stimulation pulses in an implantable stimulator device having a plurality of electrodes is disclosed, which method is particularly useful in adjusting the electrodes by current steering during initialization of the device. In one aspect, a set of ideal pulses for patient therapy is determined, in which at least two of the ideal pulses are of the same polarity and are intended to be simultaneous applied to corresponding electrodes on the implantable stimulator device during an initial duration. These pulses are reconstructed into fractionalized pulses, each comprised of pulse portions. The fractionalized pulses are applied to the corresponding electrodes on the device during a final duration, but the pulse portions of the fractionalized pulses are not simultaneously applied during the final duration.01-10-2013
20110160798SEPARATED-INTERFACE NERVE ELECTRODE - Example ionic coupling electrodes are described. One example ionic conducting electrode includes a first portion that can be coupled to a single phase current source. The first portion carries current flow via electrons. The electrode includes a second portion to apply a current to a nerve tissue. The second portion carries current flow via ions. The second portion is positioned between the nerve tissue and the first portion to prevent the first portion from touching the nerve tissue. The current applied to the nerve tissue is produced in the second portion in response to a current that is present in the first portion. The current present in the first portion is provided from a single phase current source. The electrode may be used in applications including, but not limited to, nerve block applications and nerve stimulation applications.06-30-2011
20130023951OCCIPITAL NEUROMODULATION METHOD - A method of treating pain in a subject includes the step of positioning a tip of one or more leads subcutaneously in the occipital region of a subject's scalp, where the leads are configured to conduct an electrical signal along an occipital nerve into the brain. The leads are energized to conduct the electrical signal along the occipital nerve and the electrical signal is adjusted to a level effective to decrease the subject's pain over time and so that the subject cannot feel the lead being energized.01-24-2013
20130023950METHOD AND SYSTEM TO FACILITATE NEUROSTIMULATOR PROGRAMMING BASED ON PRE-EXISTING THERAPY PROFILES - A method and system are provided to assist in programming of a neurostimulator based on a collection of pre-existing therapy profiles. The method and system access a collection of pre-existing therapy profiles derived from prior actual patients or patient models. The pre-existing therapy profiles include stimulation programs mapped to pre-existing patient profiles. The pre-existing patient profiles have at least one of i) prior lead attribute, ii) prior pain maps, and iii) prior stimulation maps for prior patients or models of patients. The method and system further compare the new patient profile with at least a portion of the collection of pre-existing patient profiles to generate profile matching scores indicating an amount of similarity between the pre-existing patient and the new therapy profile.01-24-2013
20130172955SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.07-04-2013
20080255632Modulation of the Pain Circuitry to Affect Chronic Pain - The present invention relates to methods of affecting chronic pain by applying an electrical and/or chemical signal to the target site of the pain circuitry associated with chronic pain. Such target sites include cerebral and deep brain target sites.10-16-2008
20080249587MICROCURRENT STIMULUS APPARATUS - Disclosed therein are a coupling boss and a method for fabricating a coupling boss, that a collar part is formed through a collar drawing process using a metal plate material, and then, a body part of the coupling boss is firmly combined to a substrate plate through processes of deep drawing, tapping, cleansing, plating and iron coining in order, thereby maximizing competitive power in price, miniaturizing the coupling boss in size, and maximizing tensile strength, compression strength, and surface roughness. In this instance, a more stable material thickness can be kept by performing a collar drawing process or a curling process when a screw part of the coupling boss is formed. The processes of: forming a collar part (10-09-2008
20080221639Pain Relief Device - The Pain relief device used to relieve pain and promote faster healing in the bodies of humans and animals safely. A positive electrode touches the skin at the site of an injury and a negative electrode completely shielded with insulation is place on the skin at a spaced distance form the positive electrode. A low voltage direct current power source supplies a positive voltage to the positive electrode and a negative voltage to the negative electrode. Electrical stimulation occurs harmlessly, because the shielded negatively charged electrode or insulated pad, being an insulated sheet of aluminum foil produces an electric field in the body that is strong enough to cause a current to flow into the body at the site of the positive electrode. However, no current can flow at the site of the negative electrode because it is insulated and therefore no burns to the skin.09-11-2008
20110270350METHOD OF NEUROSTIMULATION OF DISTINCT NEURAL STRUCTURES USING SINGLE PADDLE LEAD TO TREAT MULTIPLE PAIN LOCATIONS AND MULTI-COLUMN, MULTI-ROW PADDLE LEAD FOR SUCH NEUROSTIMULATION - In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.11-03-2011
20130096642MODELING POSITIONS OF IMPLANTED DEVICES IN A PATIENT - Technology is disclosed for modeling positions of implanted devices in a patient. In various embodiments, the technology can construct a forward model that predicts an electrical impedance between electrical contacts; detects an actual electrical impedance between electrical contacts; computes a fitness value based on a comparison between the detected electrical impedance and the predicted electrical impedance; varies at least one parameter of the forward model until the computed fitness value is a maximum fitness value; and displays at a display device a estimated position of the first lead and/or second leads.04-18-2013
20130096641Systems and Methods for Providing Percutaneous Electrical Stimulation - Systems and methods according to the present invention relate to a novel peripheral nerve stimulation system for the treatment of pain, such as pain that exists after amputation.04-18-2013
20130096644MULTI-FREQUENCY NEURAL TREATMENTS AND ASSOCIATED SYSTEMS AND METHODS - Multi-frequency neural treatments and associated systems and methods are disclosed. A method in accordance with a particular embodiment includes at least reducing patient pain by applying a first electrical signal to a first target location of the patient's spinal cord region at a frequency in a first frequency range of up to about 1,500 Hz, and applying a second electrical signal to a second target location of the patient's spinal cord region at a frequency in a second frequency range of from about 2,500 Hz to about 100,000 Hz.04-18-2013
20130096643MULTI-FREQUENCY NEURAL TREATMENTS AND ASSOCIATED SYSTEMS AND METHODS - Multi-frequency neural treatments and associated systems and methods are disclosed. A method in accordance with a particular embodiment includes at least reducing patient pain by applying a first electrical signal to a first target location of the patient's spinal cord region at a frequency in a first frequency range of up to about 1,500 Hz, and applying a second electrical signal to a second target location of the patient's spinal cord region at a frequency in a second frequency range of from about 2,500 Hz to about 100,000 Hz.04-18-2013
20130123879SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.05-16-2013
20130204319ARBITRARY WAVEFORM GENERATOR & NEURAL STIMULATION APPLICATION WITH SCALABLE WAVEFORM FEATURE AND CHARGE BALANCING - A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, including the option of using such arbitrary waveforms for charge balancing purposes.08-08-2013
20130204320SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-08-2013
20130204321SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-08-2013
20130150918SYSTEM AND METHOD FOR AUTOMATICALLY TRAINING A NEUROSTIMULATION SYSTEM - Neurostimulators, neurostimulation systems, and methods for providing therapy to a patient. A neurostimulation system stores reference measurements and reference stimulation parameter sets respectively associated with the reference measurements. A new measurement of least one environmental parameter indicative of a change in a therapeutic environment is taken. Whether the new measurement matches one of the stored reference measurements is determined. If a match is determined, stimulation energy is conveyed from the neurostimulation system to the patient in accordance with the stimulation parameter set corresponding to the matching reference measurement. If a match is not determined, stimulation energy is conveyed from the neurostimulation system to the patient in accordance with a user-defined stimulation parameter set, another reference stimulation parameter set is defined based on the user-defined stimulation parameter set, and the new measurement is stored as an additional reference measurement in association with the additional reference stimulation parameter set.06-13-2013
20130150919METHOD FOR DIRECT MODULATION OF THE SPINOTHALAMIC TRACT - A method for treating a patient suffering from chronic neuropathic pain, comprises epidurally applying electrical stimulation energy to a spinothalamic tract of the patient, thereby treating the chronic neuropathic pain. The method may further comprise increasing the activation threshold of a side-effect exhibiting neural structure relative to the activation threshold of the spinothalamic tract of the patient, wherein the electrical stimulation energy is applied to the spinothalamic tract of the patient while the activation threshold of the neural structure relative to the spinothalamic tract is increased, thereby treating the chronic neuropathic pain without stimulating the neural structure.06-13-2013
20130150922SYSTEM AND METHOD TO DEFINE TARGET VOLUME FOR STIMULATION OF THE SPINAL CORD AND PERIPHERAL NERVES - One embodiment provides a computer-implemented method that includes storing a volume of tissue activation (VTA) data structure that is derived from analysis of a plurality of patients. Patient data is received for a given patient, the patient data representing an assessment of a patient condition. The VTA data structure is evaluated relative to the patient data to determine a target VTA for achieving a desired therapeutic effect for the given patient.06-13-2013
20130150921AUTOMATIC THERAPY ADJUSTMENTS - A medical device detects a previously defined event, and controls delivery of therapy to a patient according to therapy information associated with the previously defined event. In exemplary embodiments, the medical device enters a learning mode in response to a command received from a user, e.g., the patient or a clinician. In such embodiments, the medical device defines the event, collects the therapy information, and associates the therapy information with the defined event while operating in the learning mode. In some embodiments, the medical device defines the event based on the output of a sensor that indicates a physiological parameter of the patient during the learning mode. The sensor may be an accelerometer, which generates an output that reflects motion and/or posture of the patient. The medical device may collect therapy information by recording therapy changes made by the user during the learning mode.06-13-2013
20130150920METHOD FOR DIRECT MODULATION OF THE DORSOLATERAL FUNICULUS - A method for treating a patient suffering from chronic neuropathic pain, comprises epidurally applying electrical stimulation energy to a dorsolateral funiculus of the patient, thereby treating the chronic neuropathic pain. The method may further comprise increasing the activation threshold of a side-effect exhibiting neural structure relative to the activation threshold of the dorsolateral funiculus of the patient, wherein the electrical stimulation energy is applied to the dorsolateral funiculus of the patient while the activation threshold of the neural structure relative to the dorsolateral funiculus is increased, thereby treating the chronic neuropathic pain without stimulating the neural structure.06-13-2013
20100318157ELECTRICAL STIMULATION TO ALLEVIATE CHRONIC PELVIC PAIN - The disclosure describes a method and system for applying electrical stimulation to a genitofemoral nerve or a genital branch of a genitofemoral nerve of a patient. The system includes electrical stimulators that apply electrical stimulation for alleviation of pelvic pain. The system may apply electrical stimulation for pelvic pain in men or women. The electrical stimulators may comprise various types of electrodes such as cuff electrodes, electrode leads, and microstimulators implanted at various locations proximate to a single or both genitofemoral nerves and the genital branch of a single or both genitofemoral nerves of a patient. When implanted proximate to a genital nerve branch, the electrode may be implanted proximate to the genital nerve branch. In a male patient stimulation may be delivered proximate to the spermatic cord, which contains a portion of the genital nerve branch.12-16-2010
20120283797SPINAL CORD STIMULATION TO TREAT PAIN - A system and method for treating pain without paresthesia by spinal cord stimulation.11-08-2012
20130190838STIMULATION METHOD FOR A SPHENOPALATINE GANGLION, SPHENOPALATINE NERVE, VIDIAN NERVE, OR BRANCH THEREOF FOR TREATMENT OF MEDICAL CONDITIONS - One aspect of the present disclosure relates to a method for suppressing or preventing a medical condition in a subject. One step of the method can include positioning at least one electrode on or proximate to at least one of a sphenopalatine ganglion (SPG), a sphenopalatine nerve (SPN), a vidian nerve (VN), or a branch thereof, of the subject. Next, the at least one electrode can be activated to apply an electrical signal to at least one of the SPG, the SPN the VN, or the branch thereof. The medical condition can include pain resulting from one or more of atypical odontalgia, cluster tic syndrome, geniculate neuralgia, occipital neuralgia and temporal arteritis.07-25-2013
20130197603CONTACT BLOCK USING SPHERICAL ELECTRICAL CONTACTS FOR ELECTRICALLY CONTACTING IMPLANTABLE LEADS - A contact block for electrically connecting a medical device to a conductive pin using improved electrical contact components. More specifically, an electrical contact block for achieving electrical contact with a conductive portion of an in-line IPG pin by utilizing a plurality of spherical conductive contact structures arranged in a ring around the conductive portion of the pin and biased toward the pin and held in place using a compliant o-ring.08-01-2013
20130197604APPARATUS AND METHOD FOR QUICK PAIN SUPPRESSION - Apparatus and methods for quick acute and chronic pain suppression, particularly useful and effective towards high-grade pains and/or pains resistant to other analgesic drugs such as opiates. One apparatus and method generate synthetic “non-pain” information strings of great clinical effectiveness, allowing high reproducibility of the clinical result. Synthesis of the strings occurs by combining novel geometries of complex waveforms in a sequence, perceived as “self” and “non-pain” by the CNS.08-01-2013
20130204322SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.08-08-2013
20130204323SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, INCLUDING CEPHALIC AND/OR TOTAL BODY PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region from an epidural, cervical location to address at least one of high back pain, mid-back pain, low back pain, and leg pain without creating paresthesia in the patient.08-08-2013
20130204324SELECTIVE HIGH FREQUENCY SPINAL CORD MODULATION FOR INHIBITING PAIN, INCLUDING CEPHALIC AND/OR TOTAL BODY PAIN WITH REDUCED SIDE EFFECTS, AND ASSOCIATED SYSTEMS AND METHODS - Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region from an epidural, cervical location to address at least one of high back pain, mid-back pain, low back pain, and leg pain without creating paresthesia in the patient.08-08-2013
20120089200NEUROSTIMULATION SYSTEM AND METHOD FOR PROVIDING THERAPY TO PATIENT WITH MINIMAL SIDE EFFECTS - A method comprises conveying a pulsed waveform between an electrode and a stimulation site of a spinal cord, thereby evoking the antidromic propagation of action potentials along a first sensory neural fiber creating a therapeutic effect in the tissue region, evoking the orthodromic propagation of action potentials along the first sensory neural fiber potentially creating paresthesia corresponding to the tissue region, and evoking the antidromic propagation of action potentials along a second sensory neural fiber potentially creating a side-effect in another tissue region. The method further comprises conveying electrical energy between an electrode and a blocking site rostral to the stimulation site, thereby blocking the action potentials propagated along the first sensory neural fiber and reducing the paresthesia, and conveying electrical energy between an electrode and a blocking site caudal to the stimulation site, thereby blocking the action potentials propagated along the second sensory neural fiber and reducing the side-effect.04-12-2012
20130211473METHOD FOR NEUROLOGICAL STIMULATION OF PERIPHERAL NERVES TO TREAT PAIN - According to one embodiment, a system for neurological stimulation of peripheral nerve fibers is provided. The system includes stimulation electrodes adapted to be implanted in tissue proximate a network of peripheral nerve fibers located in and innervating a painful region of a patient's body and to deliver electrical stimulation pulses to the network of peripheral nerve fibers located in and innervating the painful region.08-15-2013

Patent applications in class Electrical treatment of pain

Patent applications in all subclasses Electrical treatment of pain