Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Treating mental or emotional disorder

Subclass of:

607 - Surgery: light, thermal, and electrical application

607001000 - LIGHT, THERMAL, AND ELECTRICAL APPLICATION

607002000 - Electrical therapeutic systems

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20120203301METHODS USING TRIGEMINAL NERVE STIMULATION TO TREAT NEUROLOGICAL DISEASES - The present description relates to cranial nerve stimulation to treat a neurological disorder. More particularly, and not by way of limitation, the present invention is directed to a system and method for stimulating a cranial nerve to treat a neurological disorder, such as tinnitus or an anxiety disorder.08-09-2012
20100160997TUNED ENERGY BALANCED SYSTEM FOR MINIMIZING HEATING AND/OR TO PROVIDE EMI PROTECTION OF IMPLANTED LEADS IN A HIGH POWER ELECTROMAGNETIC FIELD ENVIRONMENT - An energy management system facilitates the transfer of high frequency energy coupled into an implanted lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted lead to the energy dissipating surface through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted lead's impedance characteristics.06-24-2010
20100049276Clinician programmer system and method for calculating volumes of activation for monopolar and bipolar electrode configurations - A system and method for providing a volume of activation (VOA) of a stimulation electrode leadwire may include a processor that calculates a VOA for each of a plurality of sets of parameter settings of the leadwire, stores in a database each of the calculated VOAs in association with the respective set of parameter settings for which it was calculated, performs a curve fitting on threshold values determined for a plurality of waveforms to obtain an equation, obtains a set of parameter settings of the leadwire for a stimulation, and determines a VOA for the obtained set of parameter settings based on the stored VOAs, for example, using the equation.02-25-2010
20100057159METHODS FOR TARGETING DEEP BRAIN SITES TO TREAT MOOD AND/OR ANXIETY DISORDERS - The present invention relates to a method of identifying a target such as within the subgenual area by measuring neuronal activity in response to a stimulus. Once the target is identified, it can be stimulated to treat a neurological disorder, such as a mood disorder or an anxiety disorder.03-04-2010
20100152807Non-regular electrical stimulation patterns for treating neurological disorders - Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.06-17-2010
20100010564METHODS AND APPARATUS FOR DEEP BRAIN STIMULATION - The present invention provides systems, apparatus and methods for treating nerve disorders in the brain. An electrode is introduced into a patient's sinus cavity and an electrical impulse is applied to the electrode to modulate one or more target nerves in the brain to treat the disorder. In preferred embodiments, the electrode is positioned within a sinus cavity adjacent to or near the frontal cortex of the brain and the electrical signal is sufficient to modulate, stimulate and/or inhibit nerves within the frontal cortex. The electrode may be movable between a collapsed or compact configuration for introduction into the sinus cavity and an expanded configuration for contacting tissue within the sinus cavity to deliver the electrical impulse through the tissue to the target nerves in the brain.01-14-2010
20090192569CORTICAL ELECTRODE ARRAY AND METHOD FOR STIMULATING AND RECORDING BRAIN ACTIVITY - An electrode device and a method of installing the electrode device in the vicinity of the brain. The electrode device includes a plurality of electrode assemblies, each with at least one electrode lead, extending from a common base. The base is configured to be positioned on an outside of the patient's cranium with each electrode assembly projecting individually through a hole in the patient's cranium such that the electrode lead is in the vicinity of the brain. The method of installation includes carving a recess out of the patient's cranium and inserting the base therein. Each of the electrode assemblies are placed in their respective holes in order to stimulate, monitor or record neurological activity. The electrode device may be used over long periods of time for chronic treatment or recording.07-30-2009
20090192568METHODS AND SYSTEMS FOR TREATING SEIZURES CAUSED BY BRAIN STIMULATION - Methods for treating seizures caused by brain stimulation include providing a stimulator, programming the stimulator with one or more stimulation parameters configured to treat a medical condition, applying at least one stimulus with the stimulator to a stimulation site within the brain of a patient in accordance with the one or more stimulation parameters, and monitoring the patient for a seizure caused by the at least one stimulus.07-30-2009
20110196446ELECTRICAL BRAIN STIMULATION IN GAMMA BAND - This disclosure describes techniques for delivering electrical stimulation to the brain of a patient at a frequency greater than a selected frequency. The techniques may reestablish gamma frequency band activity within the brain of a patient, and thus improve the patient's movements and cognitive states. In one example, the disclosure is directed to a method that includes selecting a frequency within a gamma frequency band and delivering electrical stimulation at a frequency greater than the selected frequency.08-11-2011
20130030500Method and System for Determining Settings for Deep Brain Stimulation - A method and a control system (01-31-2013
20130030499METHOD FOR DEEP BRAIN STIMULATION TARGETING BASED ON BRAIN CONNECTIVITY - Due to the lack of internal anatomic detail with traditional magnetic resonance imaging, preoperative stereotactic planning for the treatment of tremor usually relies on indirect targeting based on atlas-derived coordinates. To overcome such disadvantages, a method is provided that allows for deep brain stimulation targeting based on brain connectivity. For example, probabilistic tractography-based thalamic segmentation for deep brain stimulator (DBS) targeting is suitable for the treatment of tremor.01-31-2013
20100106217DYNAMIC CRANIAL NERVE STIMULATION BASED ON BRAIN STATE DETERMINATION FROM CARDIAC DATA - A method of treating a medical condition in a patient using an implantable medical device, comprising providing an electrical signal generator; providing at least a first electrode operatively coupled to the electrical signal generator and to a vagus nerve of the patient; sensing cardiac data of the patient; determining at least a first cardiac parameter based upon said cardiac data; setting at least a first value; declaring an unstable brain state of a patient from said at least a first cardiac parameter and said at least a first value; and adjusting the at least a first value. Also, a computer readable program storage device encoded with instructions that, when executed by a computer, performs the method. In addition, the implantable medical device used in the method.04-29-2010
20130046357TISSUE OR NERVE TREATMENT DEVICE AND METHOD - A device and a method for the treatment, modification, imaging, and guiding targeted brain tissue and brain activity are described herein.02-21-2013
20130046358Systems and Methods of Reducing Artifact in Neurological Stimulation Systems - Systems and methods for neuromonitoring a subject are described. The system may include a stimulation assembly including a pulse generator that generates one or more stimulus waveforms; an electrode array coupled to the stimulation assembly and configured to deliver a stimulation signal to nervous system of the subject; a sensing assembly adapted to acquire a signal from a subject indicative of the subject's brain activity; a power supply configured to supply power to the stimulation assembly and the sensing assembly; and a timing controller programmed to control the use of the power supply by the stimulation assembly and the sensing assembly, said timing controller being programmed to control the time the sensing assembly is powered to acquire the signal to be substantially different than the time the stimulation assembly is powered to stimulate the subject.02-21-2013
20090326604Systems and methods for altering vestibular biology - The present invention relates to systems and methods for management of brain and body functions and sensory perception. For example, the present invention provides systems and methods of sensory substitution and sensory enhancement (augmentation) as well as motor control enhancement. The present invention also provides systems and methods of treating diseases and conditions, as well as providing enhanced physical and mental health and performance through sensory substitution, sensory enhancement, and related effects. In particular, the present invention provides systems and methods for altering vestibular biology to, among other things, treat diseases and conditions or enhance performance related to vestibular functions.12-31-2009
20090319002METHODS AND APPARATUS FOR TRANSCRANIAL STIMULATION - The present invention provides systems, apparatus and methods for applying electric current to neurons in the brain to treat disorders and to improve motor and/or memory functions in a patient. In a method according to the invention, an electrode is positioned adjacent to and spaced from the skin surface of the patient's head and an electric current is applied through the electrode to a target region in the brain to modulate one or more neurons in the target region. The electrode is housed within an enclosure and spaced from the skin surface so that the electrode does not directly contact the patient's tissue, which reduces the potential for collateral tissue damage or necrosis and shields the electrode from the patient's tissue which substantially inhibits Faradic products (e.g., H12-24-2009
20080269836Apparatus for Treating Neurological Disorders by Means of Chronic Adaptive Brain Stimulation as a Function of Local Biopotentials - An apparatus and a related method for the deep brain stimulation have been invented wherein the parameters of the stimulation supplied at the human nervous system level are adjusted and optimized continuously by the analysis of the bioelectric signals coming from the tissue adjacent the stimulation electrode itself, adapting the therapy continuously and in line to the patient's clinical state. The apparatus is constituted at least by an electro-catheter (10-30-2008
20090292336NEURAL INTERFACE SYSTEMS AND METHODS - In one embodiment, a neural interface system includes an implantable neural probe having a flexible substrate, electrodes that extend from the substrate that are adapted to contact neural tissue of the brain, a signal processing circuit configured to process neural signals collected with the electrodes, and a wireless transmission circuit configured to wirelessly transmit the processed neural signals, and a backend computing device configured to wirelessly receive the processed neural signals, to process the received signals to reconstruct the collected neural signals, and to analyze the collected neural signals.11-26-2009
20090093862Systems and Methods for Automatically Optimizing Stimulus Parameters and Electrode configurations for neuro-stimulators - Methods and devices for automatically optimizing the stimulus parameters and/or the configuration of electrodes to provide neural stimulation to a patient. In one embodiment, a system includes an electrode array having an implantable support member configured to be implanted into a patient and a plurality of therapy electrodes carried by the support member. The system can also have a pulse system operatively coupled to the therapy electrodes to deliver a stimulus to the therapy electrodes, and a sensing device configured to be attached to a sensing location of the patient. The sensing device generates response signals in response to the stimulus. The system can also include a controller operatively, coupled to the pulse system and to the sensing device. The controller includes a computer operable medium that generates command signals that define the stimulus delivered by the pulse system, evaluates the response signals from the sensing device, and determines a desired configuration for the therapy electrodes and/or a desired stimulus to be delivered to the therapy electrodes.04-09-2009
20090270943Blocking Exogenous Action Potentials by an Implantable Medical Device - I disclose an implantable medical device (IMD) to treat a medical condition in a patient, comprising an electrical signal generator; a cathode and an anode operatively coupled to the electrical signal generator and a cranial nerve of the patient; and a third electrode operatively coupled to the electrical signal generator and implanted within the patient's body; wherein the electrical signal generator is capable of generating and delivering at least one electrical signal effective at the anode to block at least a sufficient portion of action potentials induced by the at least one electrical signal in the cranial nerve proximate the cathode to reduce a side effect of said induced action potentials.10-29-2009
20090270944METHODS AND SYSTEMS FOR TREATING A PSYCHOTIC DISORDER - Methods of treating a psychotic disorder include applying at least one stimulus to a stimulation site within a patient with an implanted stimulator in accordance with one or more stimulation parameters configured to treat the psychotic disorder. Systems for treating a psychotic disorder include a stimulator configured to apply at least one stimulus to a stimulation site within a patient in accordance with one or more stimulation parameters configured to treat the psychotic disorder.10-29-2009
20130066392NON-INVASIVE MAGNETIC OR ELECTRICAL NERVE STIMULATION TO TREAT OR PREVENT DEMENTIA - Devices, systems and methods are disclosed for treating or preventing dementia, such as Alzheimer's disease. The methods comprise transmitting impulses of energy non-invasively to selected nerve fibers, particularly those in a vagus nerve, that modulate the activity of a patient's locus ceruleus. The transmitted energy impulses, comprising magnetic and/or electrical energy, stimulate the selected nerve fibers to cause the locus ceruleus to release norepinephrine into regions of the brain that contain beta-amyloids. The norepinephrine counteracts neuroinflammation that would damage neurons in those regions and the locus ceruleus, thereby arresting or slowing the progression of the disease in the patient.03-14-2013
20130066391TECHNIQUES FOR SELECTING SIGNAL DELIVERY SITES AND OTHER PARAMETERS FOR TREATING DEPRESSION AND OTHER NEUROLOGICAL DISORDERS, AND ASSOCIATED SYSTEMS AND METHODS - The present disclosure is directed generally to techniques for selecting signal delivery sites and other signal delivery parameters for treating depression and other neurological disorders. A method in accordance with a particular embodiment includes obtaining first imaging information corresponding to a first region of a patient's brain, the first imaging information being based at least in part on functional characteristics of the first region. The method includes obtaining second imaging information corresponding to a second region of the patient's brain, the second region being a subset of the first region, the second imaging information being based at least in part on functional or structural characteristics of the second region. A target neural population is selected based in part on the second imaging information. The method still further includes applying an electromagnetic signal to the target neural population to improve a patient function.03-14-2013
20090264952Pacemaker for treating physiological system dysfunction - Disclosed is a device and method for preventing seizures due to physiological system dysfunction. The method is based on a conjectural model of the brain wherein each brain site is modeled as a chaotic oscillator; a normal brain generates an internal feedback signal to prevent long-term entrainment among the oscillators; and a pathological brain fails to provide this feedback signal. The device of the present invention measures and characterizes the brain sites to determine if entrainment is occurring among the oscillators, derives an appropriate feedback signal to counteract the entrainment, and applies the feedback signal to the critical brain sites. The feedback signal generated by the device supplements or takes the place of the feedback signal that would otherwise be generated by the normal brain.10-22-2009
20120116476SYSTEM AND METHOD FOR STORING APPLICATION SPECIFIC AND LEAD CONFIGURATION INFORMATION IN NEUROSTIMULATION DEVICE - External control devices, neurostimulation systems, and programming methods. A neurostimulator includes a feature having a numerical range. Information identifying a type of the neurostimulator is transmitted to an external control device. The external control device receives the information from the neurostimulator, identifies the type of the neurostimulator based on the received information, and programs the neurostimulator in accordance with the numerical range of the feature corresponding to the identified type of the neurostimulator.05-10-2012
20110046694BRAIN STIMULATION - A therapeutic brain stimulation system comprises at least two stimulation signal emitters generating stimulation signals from different positions towards a common target region in a patient's brain. While the signal intensity of each stimulation signal is much too low to cause stimulation, the accumulated stimulation signals cause a stimulation and, thus, a therapeutic effect in the neuronal brain cells of the target region. The stimulation signals accumulating in the target region are adjustable so as not to negatively affect the anatomic structure of neuronal brain cells in the target region.02-24-2011
20100063563MICROBURST ELECTRICAL STIMULATION OF CRANIAL NERVES FOR THE TREATMENT OF MEDICAL CONDITIONS - Disclosed herein are methods, systems, and apparatus for treating a medical condition in a patient using an implantable medical device by applying an electrical signal characterized by having a number of pulses per microburst, an interpulse interval, a microburst duration, and an interburst period to a portion of a cranial nerve of said patient, wherein at least one of the number of pulses per microburst, the interpulse interval, the microburst duration, or the interburst period is selected to enhance cranial nerve evoked potentials.03-11-2010
20080319505Integrated Transcranial Current Stimulation and Electroencephalography Device - In an integrated transcranial current stimulation and electroencephalography device, data obtained by EEG electrodes is received, amplified, converted, and then processed by a microcontroller that extracts frequency information from the sampled data and produces signals in response to the extracted EEG data. These signals are converted to create a software-definable alternating voltage used to control a current-source that connects to stimulation electrodes. The device may further download recorded EEG data from the microcontroller to a computer for further analysis. Using the device, EEG signals are detected, then received, processed, and analyzed by a microcontroller to identify the patient state. Based on the patient state and the desired protocol, a type and amount of current stimulation to apply to the patient is determined and a control signal is sent from the microcontroller to the current source in order to trigger the transcranial current stimulation of the patient.12-25-2008
20110264166MULTIPLE ELECTRODE LEAD AND A SYSTEM FOR DEEP ELECTRICAL NEUROSTIMULATION INCLUDING SUCH A LEAD - A lead for deep electrical neurostimulation, the lead comprising: 10-27-2011
20100268298DEEP BRAIN STIMULATION CURRENT STEERING WITH SPLIT ELECTRODES - A device for brain stimulation includes a lead having a longitudinal surface, a proximal end, a distal end and a lead body. The device also includes a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes a first set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a first longitudinal position along the lead; and a second set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a second longitudinal position along the lead. The device further includes one or more conductors that electrically couple together all of the segmented electrodes of the first set of segmented electrodes.10-21-2010
20110301665MICROFABRICATED NEUROSTIMULATION DEVICE - Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged along an elongated probe shaft. The microelectrode elements are dimensioned and shaped so as to target individual neurons, groups of neurons, and neural tissue as may be located in an animal nervous system, such as deep within a human brain. Beneficially, the neurological probe can be used to facilitate location of the neurological target and remain implanted for long-term monitoring and/or stimulation.12-08-2011
20110288610MOBILE DEVICE FOR TRANSCRANIAL AUTO-STIMULATION AND METHOD FOR CONTROLLING AND REGULATING THE DEVICE - Mobile device for transcranial auto-stimulation and method for controlling and regulating the device. The invention relates to a mobile device for transcranial auto-stimulation, controlled according to need, of circumscribed brain structures and brain systems, and to a method for controlling and regulating the device The device relates in particular to a device for transcranial electric current stimulation, comprising the following components:—electrodes with fastening means for exactly positioning on the skin of the head and electrical connecting lines and—a transportable, miniaturized stimulation generator comprising a current generator, a controller, a user interface, an electrical energy storage device and a monitoring and safety module with a separate electrical energy storage device.11-24-2011
20090125079ALTERNATIVE OPERATION MODE FOR AN IMPLANTABLE MEDICAL DEVICE BASED UPON LEAD CONDITION - The present invention provides for a method, apparatus, and system for determining an adverse operational condition associated with a lead assembly in an implantable medical device used for providing a therapeutic electrical signal to a cranial nerve. A first impedance associated with the lead assembly configured to provide the therapeutic electrical signal to a cranial nerve is detected. A determination is made as to whether the first impedance is outside a first predetermined range of values. A second impedance is detected. The detection of the second impedance is performed within a predetermined period of time from the time of the detection of the first impedance. A determination is made as to whether the second impedance is outside a second predetermined range of values. A determination that a lead condition problem exists is made in response to a determination that the first is outside the first predetermined range of values and second impedance is outside the second predetermined range of values. The implantable medical device is prevented from providing the therapeutic electrical signal to the cranial nerve in response to determining that the lead condition problem exists.05-14-2009
20100036452Modulation of neural traveling waves - The present invention provides devices and methods for modulating the properties and propagation of traveling waves of electrical activity in neural systems. Such modulation is useful for a variety of purposes, including the control and containment of epileptic seizure activity, for treating mental disorders, movement disorders, sleep disorders, pain, and other disturbances and illnesses associated with neural systems. In addition, the devices can be used to modulate sensory and other stimuli experienced by a neural system, as well as any other normal neural activity. Neural prosthetic devices incorporating the methods of the present application have a wide range of applications and use in medicine, psychiatry, behavioral psychology, research, and other disciplines that address and treat disturbances in neural systems.02-11-2010
20120191158VAGUS NERVE STIMULATION METHOD - An implanted electrical signal generator delivers a novel exogenous electrical signal to a vagus nerve of a patient. The vagus nerve conducts action potentials originating in the heart and lungs to various structures of the brain, thereby eliciting a vagal evoked potential in those structures. The exogenous electrical signal simulates and/or augments the endogenous afferent activity originating from the heart and/or lungs of the patient, thereby enhancing the vagal evoked potential in the various structures of the brain. The exogenous electrical signal includes a series of electrical pulses organized or patterned into a series of microbursts including 2 to 20 pulses each. No pulses are sent between the microbursts. Each of the microbursts may be synchronized with the QRS wave portion of an ECG. The enhanced vagal evoked potential in the various structures of the brain may be used to treat various medical conditions including epilepsy and depression.07-26-2012
20090125080INTRAVENTRICULAR ELECTRODES FOR ELECTRICAL STIMULATION OF THE BRAIN - An electrode—preferably an anode (current sink)—is implanted within a ventricle of the brain so that the cerebrospinal fluid therein, which is highly conductive, effectively makes the ventricle a conductive extension of the anode. An opposing electrode (i.e., a cathode) can then be situated within or outside the brain (e.g., extradurally) so that a portion of the brain to be electrically stimulated is situated between the electrodes. The electrodes can then be energized at appropriate frequencies and current/voltage levels to apply the desired stimulation, in a manner similar to preexisting Deep Brain Stimulation (DBS), Extradural Motor Cortex Stimulation (EMCS), and other electrical brain stimulation procedures.05-14-2009
20100036453TECHNIQUES FOR SELECTING SIGNAL DELIVERY SITES AND OTHER PARAMETERS FOR TREATING DEPRESSION AND OTHER NEUROLOGICAL DISORDERS, AND ASSOCIATED SYSTEMS AND METHODS - The present disclosure is directed generally to techniques for selecting signal delivery sites and other signal delivery parameters for treating depression and other neurological disorders, and associated systems and methods. A method in accordance with a particular embodiment includes obtaining first imaging information corresponding to a first region of a patient's brain, the first imaging information being based at least in part on functional characteristics of the first region. The method further includes obtaining second imaging information corresponding to a second region of the patient's brain, the second region being a subset of the first region, the second imaging information being based at least in part on functional or structural characteristics of the second region. A target neural population is then selected based at least in part on the second imaging information. The method still further includes applying an electromagnetic signal to the target neural population to improve a patient function.02-11-2010
20100114237MOOD CIRCUIT MONITORING TO CONTROL THERAPY DELIVERY - Brain signals may be monitored at different locations of a mood circuit in order to determine a mood state of the patient. A relationship (e.g., a ratio) between frequency band characteristics of the monitored brain signals may be indicative of a particular mood state. In some examples, therapy parameter values that define the therapy delivered to the patient may be selected to maintain a target relationship (e.g., a target ratio) between the frequency band characteristics of the brain signals monitored within the mood circuit. In addition, in some examples, therapy delivery to the patient may be controlled based on the frequency band characteristics of brain signals sensed at different portions of the mood circuit.05-06-2010
20090149912Method for electrical modulation of neural conduction - Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with electrical stimuli are disclosed. Methods and systems for reversing effects of blocking stimuli and/or for producing substantially permanent conduction block are also disclosed.06-11-2009
20080275526Methods and Apparatus for Effectuating a Lasting Change in a Neural Function of a Patient, Including Via Mechanical Force on Neural Tissue - Methods and apparatus for effectuating a lasting change in a neural function of a patient, including via mechanical force on neural tissue, are disclosed. An apparatus in accordance with one embodiment includes an implantable force delivery device that is changeable between a first state in which the force delivery device applies a first mechanical force to neural tissue, and the second state in which the force delivery device applies no mechanical force or a second mechanical force less than the first mechanical force to the neural tissue, while the force delivery device is implanted. An actuator can be coupled to the force delivery device with a communication link to change the state of the force delivery device, and a controller can be operably coupled to the actuator to automatically direct the force delivery device to change repeatedly between the first and second states while the force delivery device is implanted.11-06-2008
20120109253Refillable Reservoir Lead Systems - Medical electrical lead systems and related methods are described. The medical electrical lead systems may be configured to be at least partially implanted in a body of a subject. Some variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and a lumen extending at least partially therebetween, at least one electrode in the proximity of the distal end of the lead body, and a reservoir in fluid communication with the lumen, where the reservoir is located at a position removed from the distal end of the lead body. Certain variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and first and second lumens extending at least partially therebetween, and at least one electrode in the proximity of the distal end of the lead body.05-03-2012
20120109252Method and Apparatus For Electrical Cortex Stimulation - A method for cortex stimulation is disclosed which may include the steps of collecting electric signals by a control system from the cortex through an electrode array; determining signals by a virtual neural field having a virtual array corresponding the electrode array, the virtual array receiving the collected signals as an input and the virtual neural field being adapted to control the frequency spectrum of neural activity in the cortical target, each stimulation signal being determined by a value of the virtual potential at each point of the virtual array; and emitting the stimulation signals in the cortex through the electrode array.05-03-2012
20100121407NEUROMODULATION HAVING NON-LINEAR DYNAMICS - Methods of neuromodulation in a live mammalian subject, such as a human patient. The method comprises applying electromagnetic energy to a target site in the nervous system of the subject using a signal comprising a series of pulses, wherein the inter-pulse intervals are varied using the output of a deterministic, non-linear, dynamical system comprising one or more system control parameters. In certain embodiments, the target site may be a site in the brain involved in generalized CNS (central nervous system) arousal. The dynamical system may be capable of exhibiting chaotic behavior. Also provided are apparatuses for neuromodulation and software for operating such apparatuses.05-13-2010
20120109251TRANSCRANIAL ELECTROSTIMULATION DEVICE - The invention relates to a transcranial electrostimulation device for treating different illnesses. In an exemplary embodiment, the transcranial electrostimulation device includes a bipolar pulse source for generating an electrical current and a patient physiological status processor that provides a biofeedback mechanism for adjusting the applied electrical stimulation. The device further includes electrodes positioned on a patient's skin at a retro-mastoidal location for delivering bipolar electrical pulses to induce transcranial electrostimulation.05-03-2012
20110270348BRAIN STIMULATION PROGRAMMING - A programming system allows a user to program therapy parameter values for therapy delivered by a medical device by specifying a desired therapeutic outcome. In an example, the programming system presents a model of a brain network associated with a patient condition to the user. The model may be a graphical representation of a network of anatomical structures of the brain associated with the patient condition and may indicate the functional relationship between the anatomical structures. Using the model, the user may define a desired therapeutic outcome associated with the condition, and adjust excitatory and/or inhibitory effects of the stimulation on the anatomical structures. The system may determine therapy parameter values for therapy delivered to the patient based on the user input.11-03-2011
20100100151NEUROSTIMULATION WITH SIGNAL DURATION DETERMINED BY A CARDIAC CYCLE - We disclose a method of providing an electrical signal to a cranial nerve of a patient for treating a medical condition, comprising providing an electrical signal generator, coupling at least a first electrode to a cranial nerve of the patient and to the electrical signal generator, generating an electrical signal with the electrical signal generator, and applying the electrical signal to the cranial nerve, using the at least a first electrode, for a duration less than a cardiac period of the patient and during the cardiac period of the patient. We also disclose an implantable medical device capable of implementing the method.04-22-2010
20090082829Patient directed therapy control - A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.03-26-2009
20080269835METHOD AND APPARATUS FOR DETECTION OF NERVOUS SYSTEM DISORDERS - Systems and methods for detecting and/or treating nervous system disorders, such as seizures, are disclosed. Certain embodiments of the invention relate generally to implantable medical devices (IMDs) adapted to detect and treat nervous system disorders in patients with an IMD. Certain embodiments of the invention include detection of seizures based upon comparisons of long-term and short-term representations of physiological signals. Other embodiments include prediction of seizure activity based upon analysis of physiological signal levels. An embodiment of the invention monitors the quality of physiological signals, and may be able to compensate for signals of low signal quality. A further embodiment of the invention includes detection of seizure activity following the delivery of therapy.10-30-2008
20100100153STIMULATION ELECTRODE SELECTION - Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.04-22-2010
20100100152ELECTRODE SYSTEM FOR DEEP BRAIN STIMULATION - The invention relates to an electrode system (04-22-2010
20100125312SATELLITE THERAPY DELIVERY SYSTEM FOR BRAIN NEUROMODULATION - Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.05-20-2010
20080208283Neural Interface System - The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.08-28-2008
20080208284SYSTEMS AND METHODS FOR NEUROMODULATION USING PRE-RECORDED WAVEFORMS - Methods for neuromodulation using waveform signals. In certain embodiments, an input waveform is obtained from a signal source site in a source subject and an output waveform is applied to a target site in a target subject. The source subject is a human or animal and the signal source site is in the nervous system, including the brain. The source subject and target subject are the same subjects or different subjects. The output waveform is identical to the input waveform or derived from the input waveform. In some embodiments, the output waveform is modified in response to physiologic feedback. Also provided are systems for neuromodulation using waveform signals.08-28-2008
20090299435Systems and Methods for Enhancing or Affecting Neural Stimulation Efficiency and/or Efficacy - Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters. Stimulation signals providing reduced power consumption with at least adequate symptomatic relief may be applied prior to moderate or significant power source depletion.12-03-2009
20090287272Clinician programmer system and method for steering volumesof activation - A system and method for selection of stimulation parameters for Deep Brain Stimulation (DBS) may include a processor that displays in a display device and in relation to a displayed model of a leadwire including model electrodes, a current field corresponding to a first stimulation parameter set, provides a user interface for receipt of user input representing a shift of the current field, in response to the user input, moves, in the display device, the current field with respect to the displayed model, determines a second stimulation parameter set that results in the moved current field, and outputs the second stimulation parameter set and/or sets a stimulation device with the second stimulation parameter set, where the stimulation device is configured for performing a stimulation using the leadwire in accordance with the second stimulation parameter set.11-19-2009
20090118788METHODS AND APPARATUS FOR EFFECTUATING A LASTING CHANGE IN A NEURAL-FUNCTION OF A PATIENT - The present disclosure suggests methods of selecting a stimulation site for stimulating a patient's brain or methods of effectuating a neural-function of a patient associated with an impaired body function. In one exemplary implementation, such a neural function may be effectuated by selecting a stimulation site, positioning at least a first electrode at the stimulation site, and applying an electrical potential to pass a current through the first electrode. If one aspect, this stimulation site may be selected by a) identifying a second body function that is a corollary to the impaired body function, and b) determining a corollary location of the patient's brain that is associated with the second body function and is ipsilateral to the impaired body function.05-07-2009
20090118786AUTOMATED FITTING SYSTEM FOR DEEP BRAIN STIMULATION - Methods, systems, and external programmers provide therapy to a patient having a dysfunction. In one aspect, stimulation energy is conveyed from a neurostimulator to electrodes located within a tissue region of the patient, thereby changing the status of the dysfunction. A physiological end-function of the patient indicative of the changed status of the dysfunction is measured, and stimulation parameters are programmed into the neurostimulator based on the measured physiological end-function. In another aspect, electrodes are placed adjacent to a tissue region of the patient, and stimulation energy is conveyed from the electrodes to the tissue region in accordance with the stimulation parameters, thereby changing the status of the dysfunction. A physiological end-function of the patient indicative of the changed status of the dysfunction is measured, and the stimulation parameters are adjusted based on the measured physiological end-function.05-07-2009
20110208264SYSTEMS AND METHODS FOR AUTOMATICALLY OPTIMIZING STIMULUS PARAMETERS AND ELECTRODE CONFIGURATIONS FOR NEURO-STIMULATORS - Methods and devices for automatically optimizing the stimulus parameters and/or the configuration of electrodes to provide neural stimulation to a patient. In one embodiment, a system includes an electrode array having an implantable support member configured to be implanted into the patient and a plurality of therapy electrodes carried by the support member. The system can also have a pulse system operatively coupled to the therapy electrodes to deliver a stimulus to the therapy electrodes, and a sensing device configured to be attached to a sensing location of the patient. The sensing device generates response signals in response to the stimulus. The system can also include a controller operatively coupled to the pulse system and to the sensing device. The controller includes a computer operable medium that generates command signals that define the stimulus delivered by the pulse system, evaluates the response signals from the sensing device, and determines a desired configuration for the therapy electrodes and/or a desired stimulus to be delivered to the therapy electrodes.08-25-2011
20100292752SYSTEM AND METHOD FOR COGNITIVE RHYTHM GENERATION - A method of modeling time-dependent electrical activity of a biological system, the method comprises transforming an input through at least one dynamic mode to yield at least one modal output; processing the at least one modal output to yield at least one amplitude variable and at least one phase variable; and mapping the at least one amplitude variable and the at least one phase variable to an observable output.11-18-2010
20120296390ELECTROENCEPHALOGRAM ACTIVATION APPARATUS - Provided is an electroencephalogram activation apparatus, including: an electroencephalogram acquisition unit configured to acquire brain waves of a user; an electrical stimulation unit configured to apply transcranial electrical stimulation to the scalp of the user; and a control unit configured to control the electrical stimulation unit based on the brain waves acquired by the electroencephalogram acquisition unit.11-22-2012
20110270349RECHARGING AND COMMUNICATION LEAD FOR AN IMPLANTABLE DEVICE - A lead for an implantable device includes a flexible, implantable tether, electrically connectable to an implantable device, and a plurality of control elements, disposed along the tether. The control elements are electrically interconnectable to the implantable device and configured to transmit one of power and communication signals thereto11-03-2011
20110270347VALIDITY TEST ADAPTIVE CONSTRAINT MODIFICATION FOR CARDIAC DATA USED FOR DETECTION OF STATE CHANGES - Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test. In one class of beat validity test, a constraint defining a pass is modified at one or more times after the most recent prior valid heart beat that is greater than a constraint modification time threshold11-03-2011
20110270346METHOD, APPARATUS AND SYSTEM FOR VALIDATING AND QUANTIFYING CARDIAC BEAT DATA QUALITY - Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test. In one class of beat validity test, a constraint defining a pass is modified at one or more times after the most recent prior valid heart beat that is greater than a constraint modification time threshold11-03-2011
20110270345FOCAL NONINVASIVE STIMULATION OF THE SENSORY CORTEX OF A SUBJECT WITH CEREBRAL PALSY - Disclosed are methods and related devices for use with subjects with cerebral palsy or periventricular leukomalacia. In preferred embodiments, diffusion tensor imaging (DTI) is used to identify neural areas and transcranial magnetic stimulation (TMS) is used to stimulate neural pathways.11-03-2011
20110144716Apparatus and Method for Neurocranial Electrostimulation - There is provided method and apparatus for enhancing focality of neurocranial electrostimulation, including: providing a first plurality of electrodes having at least one electrode; providing a second plurality of electrodes having at least two electrodes; locating the first and the second plurality of electrodes on cranium of a subject and supplying electric current of opposite polarities to the first and the second plurality of electrodes. At least one electrode of the first plurality of electrodes is surrounded by at least two electrodes of the second plurality of electrodes. The enhanced focal stimulation may be used to treat ailments or augment cognitive performance. There are also provided methods for treating brain related ailments and performance augmentation.06-16-2011
20100298907CORTICAL STIMULATOR METHOD AND APPARATUS - A cortical stimulator system is provided. The system may include; a stimulation device having a switch configured to selectively control various electrodes; and a user interface device operatively connected to the stimulation device for controlling the electronic switch and stimulation device, the cortical stimulator system configured to provide a report of provided stimulation. A method of operating a cortical stimulator may be provided. The method may include: connecting a set of probes to the cortical stimulator, selecting parameters regarding a signal to be sent to the set of probes, sending a signal to the set of probes; observing the response of a subject having the set of probes contacting the subjects brain when the signal is sent to the probes, entering the observed response into the cortical stimulator, associating the response to a specific set of probes, and generating a report describing the response and associated probes.11-25-2010
20080312716Methods and Systems for Using Intracranial Electrodes - The present invention relates to electrode assemblies, neurostimulation systems and methods for implanting and using same. In exemplary embodiments, the electrode includes a body having a conductive contact surface dimensioned and configured to contact a patient's skull; and an electrode head associated with the body. The electrode head is sized for subcutaneous positioning adjacent the subject's skull, and the electrode body is of a length and configured such that the electrode body extends at least partially through the patient's skull but does not contact the patient's dura mater. As these electrodes need not directly contact the brain nor penetrate the dura mater to be effective in neurostimulatory applications, they avoid many of the disadvantages, e.g. increased risk of infection and invasive implantation procedures, associated with conventional electrode design.12-18-2008
20090264958Method For Suppressing And Reversing Epileptogenesis - A method for identifying, suppressing, and reversing epileptogenesis, which is considered to be a learned response due to brain plasticity. The method includes identifying three epileptogenic conditions, neuronal hyperexcitability, spatial overconnectivity, and temporal overconnectivity. A treatment that accounts for each of these conditions is then be administered to the subject to reverse, or “unlearn,” epilepsy.10-22-2009
20090264956PSYCHIATRIC DISORDER THERAPY CONTROL - A therapy system for managing a psychiatric disorder of the patient may be controlled based on a patient mood state. Therapy may be delivered to a patient according to a therapy program, and a physiological parameter of the patient may be monitored during or after therapy delivery. The patient mood state may be determined based on the monitored physiological parameter, and the therapy delivery may be controlled based on the determined mood state. In some embodiments, the therapy delivery is stopped prior to determining the patient mood state and the therapy delivery is restarted upon detecting a negative mood state. In other embodiments, therapy delivery is delivered until a positive mood state is detected, at which point the therapy delivery may be stopped.10-22-2009
20090264955ANALYZING A STIMULATION PERIOD CHARACTERISTIC FOR PSYCHIATRIC DISORDER THERAPY DELIVERY - A characteristic of a stimulation period, which occurs during the delivery of stimulation therapy to a patient according to a therapy program, may be determined based on a physiological parameter of the patient. The stimulation period characteristic may include, for example, an amplitude or a trend in a physiological signal during the stimulation period or a power level or a ratio of power levels in frequency bands of the physiological signal. In some embodiments, stimulation period characteristics associated with a plurality of therapy programs may be used to compare the programs. In other embodiments, a stimulation period characteristic may be used to determine a mood state of the patient and, in some cases, modify a therapy program.10-22-2009
20090264954THERAPY TARGET SELECTION FOR PSYCHIATRIC DISORDER THERAPY - Target tissue sites for therapy delivery to a patient may be selected based on the patient symptoms or a patient mood state. The therapy delivery may be used to manage a psychiatric disorder of the patient. Selected therapy sites may be weighted based on factors, such as the severity of the patient symptom or mood state or the type of patient symptom or mood state. In some cases, therapy delivery to the patient may be controlled based on the weighting factors. For example, the weighting factors may control the intensity of the therapy delivery or the frequency of the therapy delivery. In some examples, the weighting factors may dynamically change based on the patient's changing symptoms or mood disorders.10-22-2009
20090264953NEUROSTIMULATOR - Neurostimulator (10-22-2009
20090149914Method for reversible chemical modulation of neural activity - Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with chemical blocking agents are disclosed. Methods and systems for reversing effects of chemical blocking agents and/or for producing substantially permanent conduction block are also disclosed.06-11-2009
20090030479Percutaneous Access for Neuromodulation Procedures - A neuromodulation system, comprises an implantable electrode which is implanted within a body adjacent to a target nerve structure to which electric energy is to be applied via the electrode and a connection port which is implanted in the body with a proximal surface thereof substantially flush with an outer surface of a skin of the body, the connection port including a device interface for electrically connecting to an external device which remains external to the body in combination with an electric line extending from the device interface to the electrode for carrying electric energy from the external device to the electrode and a cover selectively closing an opening of the external surface of the implanted connection port.01-29-2009
20090030480Controlling seizure activity with electrical stimulation - Apparatus and methods associated with controlling seizure activity with electrical stimulation that either suppress axonal conduction between brain structures and/or that generate a desired response in a targeted neuronal pool are described. One example apparatus includes an implantable stimulating electrode that provides an electrical stimulus to fiber tracts of the hippocampal commissure of the brain of a subject. The stimulus may be a high frequency structure that prevents communication of signals associated with an epileptic episode and/or prevents seizure activity in a target nucleus. The example apparatus may also include a detection logic that detects specific electrical activity in the central nervous system that identifies that an epileptic episode is imminent. The example apparatus includes a pacing system to selectively configure and apply the electrical stimulus to fiber tracts of the hippocampal commissure of the brain.01-29-2009
20110208263SYSTEM AND METHOD FOR TREATING PARKINSON'S DISEASE AND OTHER MOVEMENT DISORDERS - Systems and methods for treating movement disorders using cortical stimulation. In one embodiment, a method for treating movement disorders comprises determining a site at the cortex of the brain of a patient related to a movement disorder of an afflicted body part. The site can be determined by obtaining a representation of neural activity occurring in the cortex of the patient and correlating an area of neural activity with the afflicted body part. The method can also include applying neural stimulation, such as electrical or magnetic waveforms, directly to the site.08-25-2011
20090005833METHOD FOR SELECTING ELECTRODES FOR DEEP BRAIN OR CORTICAL STIMULATION AND PULSE GENERATOR FOR DEEP BRAIN OR CORTICAL STIMULATION - In one embodiment, a system for electrically stimulating neural tissue of a patient and for determining neurotransmitter release in response to stimulation, the system comprises: pulse generating circuitry for generating electrical pulses; at least one electrical lead for conducting electrical pulses generated by the pulse generating circuitry to neural tissue, the at least one electrical lead comprising a plurality of electrodes; at least one electrochemical sensor for sensing an extracellular level of one or several neurotransmitters; circuitry for sampling a signal from the at least one electrochemical sensor; a controller for automatically applying stimulation to neural tissue using a plurality of electrode combinations, the controller generating data related to neurotransmitter release for each of the plurality of electrode combinations; and a display for displaying neurotransmitter release for electrode combinations to a clinician.01-01-2009
20090326605Treatment of language, behavior and social disorders - Methods of treating language, behavioral and social disorders are described, including methods of treating language disorders associated with electrographic abnormalities in the primary or associative language cortex of persons with autism spectrum disorders, pervasive developmental delay or acquired epileptic aphasia. A language, behavioral and social disorder may be treated by detecting epileptiform activity or an electrographic seizure for a subject's brain and applying neurostimulation to a language cortical region of the subject's brain (e.g., a primary or associative language cortical region). Detection of epileptiform activity or an electrographic seizure and stimulation of language cortex may be performed by a sensing and/or stimulation electrode that is inserted into a subject's brain and connected to one or more neurostimulation devices for monitoring and/or stimulating the language cortex.12-31-2009
20110224752MICROELECTRODE STIMULATION FOR TREATMENT OF EPILEPSY OR OTHER NEUROLOGIC DISORDER - Methods for treating a neurologic disorder by neurostimulation. The stimulation may be applied using electromagnetic energy. In certain embodiments, distributed electrical stimulation is applied to a target site of the brain in an ongoing fashion. A microelectrode array may be used to provide the distributed electrical stimulation. The method may also comprise the detection of electrophysiologic signals from the brain. These detected signals may be analyzed and used for closed-loop feedback of the neurostimulation. Also provided are systems for neurostimulation and software for operating such systems.09-15-2011
20090024181TREATMENT SIMULATOR FOR BRAIN DISEASES AND METHOD OF USE THEREOF - A treatment simulator for providing information on physiological states and effects of treatment of neurological disease, comprising a computer, and an application configured to operate with the computer. The application is capable of: obtaining radiological imaging from the brain; obtaining anatomical information from the radiological imaging within a region of interest within the brain; constructing a physiological states model which assesses physiological states of the region of interest; locating sources of interstitial flow of particulate matter and obtaining fluid conductivities of paths of the interstitial flow utilizing the anatomical information and the physiological states model; and creating a flow model of the particulate matter which assesses velocities of flow and interstitial pressure variations utilizing the sources of interstitial flow and the fluid conductivities.01-22-2009
20090198304DIVISION APPROXIMATION FOR IMPLANTABLE MEDICAL DEVICES - Methods and devices for performing division approximation in implantable and wearable self-powered medical devices. The present invention provides rapid methods for performing an approximation of division on fixed point numbers, where the methods are easily implemented in small, low power consumption devices as may be found in implantable medical devices. One example of use is in rapidly determining the approximate ratio between foreground and background activity in seizure detection algorithms. Some methods approximate the ratio of Numerator (N) to Denominator (D) by raising 2 to the power of the difference in the number of zeros to the left of the Most Significant Set Bit (MSSB) of D vs. N. Some methods may also pad bits to the right of the approximate ratio MSSB using bits from the right of the N MSSB, and/or pre-process the smaller of D or N by rounding the value upward. Methods may be implemented in firmware and/or in discrete logic.08-06-2009
20090099623Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions - Systems and methods for diagnosing and treating various brain-related conditions, and/or for modifying at least one of cognitive, behavioral, or affective functions or skills in individuals. The method of diagnosing and treating a brain-related condition includes the steps of: (i) identifying at least a brain region associated with the brain-related condition; (ii) stimulating the brain region by employing at least one electrical, magnetic, electromagnetic, and photoelectric stimulus; (iii) optionally, stimulating at least one cognitive feature associated with the brain region; and (iv) optionally, subjecting the brain region to a treatment including at least one of cell replacement therapy, cell regenerative therapy and cell growth.04-16-2009
20090076566Epidural Cortical Stimulation System Using Shape Memory Alloy - An epidural cortical stimulation system includes a stimulation body and a connecting lead. The stimulation body has a core formed of a shape-memory material, insulation provided around the core, defining an outer surface of the stimulation body, and at least one electrode arranged on the outer surface of the stimulation body, adapted and configured to contact the dura of a patient. The connecting lead extends from a proximal end of the body, and is adapted and configured for electrical communication with a control unit for providing power to the body electrical cortical stimulation.03-19-2009
20120078323SYSTEM AND APPARATUS FOR INCREASING REGULARITY AND/OR PHASE-LOCKING OF NEURONAL ACTIVITY RELATING TO AN EPILEPTIC EVENT - A method, comprising detecting, in at least a first brain region of a patient, an electrical activity relating to an epileptic activity; determining a first regularity index of said electrical activity; and applying at least one first electrical stimulation to at least one neural target of said patient for treating said epileptic event, in response to said first regularity index being within a first range. A non-transitive, computer-readable storage device for storing instructions that, when executed by a processor, perform the method. A medical device system suitable for use in the method.03-29-2012
20080262565Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES) - An integrated system and method for treatment of various diseases, including psychiatric, mental and brain disorders, which preferably combines personalized non-invasive neuronal brain stimulation together with appropriate personalized cognitive training, and which iteratively fine-tunes this treatment by monitoring specific cognitive and brain functions in response to the treatment. A novel brain stimulator device and method, Computerized Magnetic Photo-Electric Stimulator (CCMPES), is described, which integrates electromagnetic stimulation with laser stimulation to generate a magnetic photo-electric stimulation.10-23-2008
20110144715STIMULATION ELECTRODE SELECTION - Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition can be selected based on a frequency domain characteristic of the sensed bioelectrical signals. In some examples, a stimulation electrode combination is selected based on a determination of which of the sense electrodes are located closest to a target tissue site, as indicated by the one or more sense electrodes that sensed a bioelectrical brain signal with a relatively highest value of the frequency domain characteristic. In some examples, determining which of the sense electrodes are located closest to the target tissue site may include executing an algorithm using relative values of the frequency domain characteristic.06-16-2011
20090222059Shaped implantation device - A custom medical device for implanting an implantable device may be fabricated based on a patient image with a rapid prototyping machine.09-03-2009
20090248110METHOD AND APPARATUS FOR CONTROLLING ELECTRICAL STIMULATION - An apparatus and method for controlling an electrical stimulation system to increase the resolution of the stimulation region with multiple independent power source electrodes is proposed. In the apparatus, the electrode set contains at least three electrodes of which two adjacent electrodes are of the same power polarity to control the location of the composite stimulation signal and the others are of an inverse power polarity to balance the total power polarity and narrow the stimulation region. The method for the apparatus comprises steps of: receiving a target stimulation location and level, generating at least one parameter to adjust power settings of the electrodes, thereby obtaining a composite stimulation signal corresponding to a virtual channel of which a location and level match the target stimulation location and level.10-01-2009
20090192567Method, Apparatus and System for Bipolar Charge Utilization During Stimulation by an Implantable Medical Device - We disclose a method, apparatus, and system of treating a medical condition in a patient using an implantable medical device. A first electrode is coupled to a first portion of a cranial nerve of the patient. A second electrode is coupled to a second portion of the cranial nerve of the patient. A first electrical signal is provided to the first and second electrodes. The first electrical signal is provided in a first polarity configuration in which the first electrode functions as an anode and the second electrode functions as a cathode. Upon termination of the first electrical signal, the anode and cathode each comprise a first accumulated energy. A second electrical signal is provided to the first and second electrodes, in which the second electrical signal includes at least a portion of the first accumulated energy.07-30-2009
20120197342SYSTEMS, AND METHODS FOR NEUROSTIMULATION AND NEUROTELEMETRY USING SEMICONDUCTOR DIODE SYSTEMS - Methods and systems for neurostimulation and/or neurotelemetry of electrically-excitable biological tissue. Embodiments include implanting single or multiple semiconductor diodes and applying a high frequency electrical volume current. Neurostimulation embodiments include local rectification of the volume current by the diode, which can provide a pulsating electrical waveform capable of locally stimulating neural tissue, hi neurotelemetry embodiments, semiconductor diodes can be placed in contact with excitable tissue and a low level electrical carrier wave can be passed through the tissue and implanted diode whereby low level tissue bioelectric events intermodulate with the carrier wave and encode bioelectrical effects. Remote detection and amplitude demodulation of the volume-conducted carrier wave can allow recovery of the bioelectrical waveform and provide a neurotelemetry function, hi other embodiments, implanted diodes are placed in series with a pressure switch or piezoelectric material which enables their function only with the focal application of an acoustic pressure wave. This enables a selectivity amongst multiple diode channels by acoustic wave focusing or alternately by a process of range-gating of a surface applied electrical current to the arrival time of an acoustic wave at a particular device.08-02-2012
20100274311Method And Apparatus For Detecting The Coronal Suture For Stereotactic Procedures - A method for identifying a coronal suture on a cranium can include acquiring image data of craniums for a plurality of patients. A database can be created that includes spatial relationships of various craniometric landmarks of the plurality of patients sorted by a desired population characteristic. A region of interest can be established that is based on a variance of locations of the craniometric landmarks between the plurality of patients for the desired characteristic. A criteria search can be performed of acquired image data from a specific patient that is limited to only the region of interest to identify a coronal suture for that specific patient.10-28-2010
20090259275METHODS OF TREATING BRAIN DAMAGES - Provided herein are methods of repairing, treating, managing or preventing brain damages. In some embodiments, the methods comprise applying a direct current electric field to direct or modulate the migration of NSPCs towards the region of the brain damage. In certain embodiments, the methods comprise administering an electric field between a cerebral ventricle and the meninx, inclusive, of the brain where the brain damage occurs. In other embodiments, the methods comprise activating a membrane protein of NSPCs by a direct current electric field. In further embodiments, the methods comprise interactions of a membrane protein in NSPC with Rac1, Tiam1, Pak1, and actin cytoskeleton in a protein complex in the presence of an electric field. In still further embodiments, the methods comprise applying an electric field to promote neurogenesis in the subventricular zone or subgranular zone of the brain.10-15-2009
20100185258Surgical Guide and Method for Guiding a Therapy Delivery Device into the Pterygopalatine Fossa - A surgical guide to facilitate delivery of a therapy delivery device into the pterygopalatine fossa of a subject includes a curvilinear body having a distal end portion, a proximal end portion, and an intermediate portion extending between the distal and proximal end portions. The proximal end portion is defined by oppositely disposed first and second surfaces. The proximal end portion and the intermediate portion define a longitudinal plane that extends between the proximal and distal end portions. The distal end portion has an arcuate configuration relative to the longitudinal plane and is defined by oppositely disposed third and fourth surfaces.07-22-2010
20120197341SYSTEM AND METHOD FOR ESTIMATING BATTERY CAPACITY - A method for estimating capacity of a battery in an implantable medical device includes obtaining a characteristic curve of voltage versus resistance for the battery, periodically determining voltage and resistance of the battery, and comparing the resistance with a third derivative function of the characteristic curve, the third derivative function having roots representing near depletion of the battery and end of service of the battery, respectively. Remaining time of service of the battery can also be determined by comparing the resistance value with a curve of battery capacity versus resistance for the battery.08-02-2012
20100191305METHOD AND APPARATUS FOR THE DETECTION OF ABERRANT NEURAL-ELECTRIC ACTIVITY - Embodiments provide an apparatus and method for detection of aberrant neural-electric activity (ANEA) in the brain causing an epileptic seizure or other neurologic condition. One embodiment provides an apparatus for detection of ANEA comprising an introducer having at least one lumen. The introducer is introduced into brain tissue through an opening in the skull. A reference electrode is positioned at an introducer distal portion. A plurality of electrode members are advanceable within the at least one lumen with each member having an insulated portion and an exposed distal portion. The members have a non-deployed state in the introducer and a deployed state when outwardly advanced out of the introducer. In the deployed state, the members are substantially orthogonal to each other with the exposed distal portions defining a detection volume capable of determining an electric field vector produced by the ANEA and the direction of a foci of the ANEA.07-29-2010
20100185257METHOD FOR FILTERING OUT ARTEFACTS OF DEEP BRAIN STIMULATION - The present invention relates to a method for filtering the signal of neuronal activity during a high frequency deep brain stimulation (DBS) to remove the stimulus artefact in the observed signal, comprising the step of approximating the observed signal trajectories in phase space the observed signal being considered as a sum of the stimulation artefacts induced by the signal of stimulation, wherein the signal of stimulation is assumed to be a solution of an ordinary differential equation including a self-oscillating system with stable limit cycle; slicing the observed signal and its derivative into segments, each segment corresponding to a period of stimulation; collecting N selected periods of stimulation to a training set; estimating the limit cycle of the self-oscillating system; synchronizing each artefact of the observed signal with the estimated limit cycle; subtracting the estimated limit cycle from each artefact in phase space according to the synchronization; collecting all segments in order to obtain whole filtered signal and finally presenting the results in time domain.07-22-2010
20100217348Systems for Monitoring a Patient's Neurological Disease State - The present invention provides methods and systems for modulating a patient's neurological disease state. In one embodiment, the system comprises one or more sensors that sense at least one signal that comprise a characteristic that is indicative of a neurological disease state. A signal processing assembly is in communication with the one or more sensors and processes the at least one signal to estimate the neurological disease state and to generate a therapy to the patient that is based at least in part on the estimated neurological disease state. A treatment assembly is in communication with the signal processing assembly and delivers the therapy to a nervous system component of the patient.08-26-2010
20090076567Electrode Configurations for Reducing Invasiveness and/or Enhancing Neural Stimulation Efficacy, and Associated Methods - Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods, are disclosed. A method in accordance with one embodiment of the invention for treating a brain disorder includes identifying a target neural structure within a patient's skull and implanting an electrode device within the patient's skull so that an axis that is generally normal to the skull proximate to the electrode device and that passes through at least one electrical contact of the electrode device is offset from the target neural structure. The method further includes stimulating the target neural structure by applying an electrical signal to the at least one electrical contact. In particular embodiments, the electrode device can be positioned between, along, across, or adjacent to a fissure, recess, groove, and/or vascular structure of the patient's brain.03-19-2009
20130218232BRAIN STIMULATION RESPONSE PROFILING - Various embodiments concern delivering electrical stimulation to the brain at a plurality of different levels of a stimulation parameter and sensing a bioelectrical response of the brain to delivery of the electrical stimulation for each of the plurality of different levels of the stimulation parameter. A suppression window of the stimulation parameter can be identified as having a suppression threshold as a lower boundary and an after-discharge threshold as an upper boundary based on the sensed bioelectrical responses. A therapy level of the stimulation parameter can be set for therapy delivery based on the suppression window. The therapy level of the stimulation parameter may be set closer to the suppression threshold than the after-discharge threshold within the suppression window. Data for hippocampal stimulation demonstrating a suppression window is presented.08-22-2013
20130218233APPARATUS AND A METHOD FOR PERFORMING A SAFE STIMULATION OF A PERSON - The present invention relates to an apparatus and a method for stimulating a person, wherein said apparatus comprises: at least one stimulation signal generator which generates a stimulation signal which is applied to said person; at least one detector for detecting a physiological signal derived from said person in response to said stimulation signal; and a monitoring unit which controls a safety switch to terminate automatically the application of said stimulation signal to said person, if a critical state of said person is recognized in response to the detected physiological signal.08-22-2013
20080312715Detecting and Treating Nervous System Disorders - Some embodiments of a mapping device may be capable of passing through cerebral veins and other cerebrovascular spaces to provide electrophysiological mapping of the brain. These embodiments of the device may also be capable of providing, simultaneously or separately, ablation energy or other treatments to targeted brain tissue. In such circumstances, a user may be enabled to analyze an electrophysiological map of a patient's brain and, at the same time or within a short time period before or after the mapping process, may be enabled to apply ablation energy for treatment of a central nervous system disorder. Such treatment may be accomplished without the use of invasive surgery in which the brain is accessed through an opening in the patient's cranium.12-18-2008
20120143279METHODS AND KITS FOR TREATING APPETITE SUPPRESSING DISORDERS AND DISORDERS WITH AN INCREASED METABOLIC RATE - Disclosed herein are kits and methods for treating appetite suppressing disorders and disorders with an increased metabolic rate by neuromodulation. A method of treating an appetite suppressing disorder or a disorder with an increased metabolic rate in a patient may include identifying the brain structure that is subject to modulation in the patient; and modulating the activity of one or more brain structures by applying electrical stimulation to one or more brain structures of a patient. A kit may include: a neuromodulation device; and instructions for using the neuromodulation device to modulate activity of a brain structure by applying electrical stimulation to one or more brain structures of a patient for treatment of an appetite suppressing disorder or a disorder with an increased metabolic rate.06-07-2012
20090287271Clinician programmer system and method for calculating volumes of activation - A system and method for providing a volume of activation (VOA) of a stimulation electrode leadwire may include a processor that calculates a VOA for each of a plurality of sets of parameter settings of the leadwire, stores in a database each of the calculated VOAs in association with the respective set of parameter settings for which it was calculated, obtains a set of parameter settings of the leadwire for a stimulation, and determines a VOA for the obtained set of parameter settings based on the stored VOAs.11-19-2009
20120245653NEUROCRANIAL ELECTROSTIMULATION MODELS, SYSTEMS, DEVICES AND METHODS - Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for developing transcranial electrical stimulation protocols are disclosed. In one aspect, a method includes the actions of accepting an image model of target tissue, obtaining a forward model having a first electrode configuration and first electrical stimulation parameters based on electrical stimulation of the target tissue, accepting electrode configuration changes or electrical stimulation parameter changes resulting in a second electrode configuration or second electrical stimulation parameters, determining an optimized tissue model using a least square methodology and based on the second electrode configuration or second electrical stimulation parameter changes, comparing the optimized tissue model with a desired outcome, and providing a confirmation of the optimized model with the desired outcome.09-27-2012
20090319000METHODS AND APPARATUS FOR EFFECTUATING A CHANGE IN A NEURAL-FUNCTION OF A PATIENT - The present disclosure is directed generally to methods and apparatus for effectuating a change in a neural function of a patient. A method in accordance with a particular embodiment includes implanting an electrode at a cortical stimulation site selected to promote recovery of the affected neural-function, with the cortical stimulation site being at least proximate to the cortex. The method can further include estimating a threshold for the specific patient at which an electrical signal delivered via the implanted electrode directly triggers a neural reaction associated with the stimulation site in response to the delivered electrical signal, and electrically stimulating the cortical stimulation site by Passing an electrical current through the electrode.12-24-2009
20110130804IMPLANTABLE PULSED-RADIOFREQUENCY MICRO-STIMULATION SYSTEM - The present invention relates to a method for treating a nervous symptom or condition in a subject with a pulsed-radiofrequency stimulation system with a low voltage to overcome the disadvantages of the known related stimulation systems.06-02-2011
20090319001FEEDBACK METHOD FOR DEEP BRAIN STIMULATION WITH DETECTION OF GENERALIZED EFFERENCE COPY SIGNALS - Disclosed is a method for improving cognitive function or for improving coordination of function across a patient's cortical regions. The method includes applying electrical stimulation to at least a portion of the patient's subcortical structures involved in the generation and control of generalized efference copy signals. Internally generated movement of the patient is then detected and, in response to such internally generated movement, application of electrical stimulation is controlled. The method of the present invention has a number of benefits, including increasing flexibility in identifying targets for stimulation, improving the probability of successfully treating brain injury, and permitting patient biofeedback and self-regulation.12-24-2009
20090149911System for electrical modulation of neural conduction - Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with electrical stimuli are disclosed. Methods and systems for reversing effects of blocking stimuli and/or for producing substantially permanent conduction block are also disclosed.06-11-2009
20090112279SYSTEMS, METHODS AND DEVICES FOR A SKULL/BRAIN INTERFACE - Systems, methods and devices are disclosed for directing and focusing signals to the brain for neuromodulation and for directing and focusing signals or other energy from the brain for measurement, heat transfer and imaging. An aperture in the skull and/or a channel device implantable in the skull can be used to facilitate direction and focusing. Treatment and diagnosis of multiple neurological conditions may be facilitated with the disclosed systems, methods and devices.04-30-2009
20090112278Systems, Methods and Devices for a Skull/Brain Interface - Disclosed are methods, devices, and systems for inducing neuromodulation by focusing a source of stimulation through a skull/brain interface in the form of an aperture formed in the skull, a naturally occurring fenestration in the skull, or a transcranial channel. Further disclosed are methods, devices, and systems for identifying where to locate skull/brain interfaces, accessories that can be used with the interfaces, and features for controlling stimulation delivered through the interfaces. Multiple indications for the skull/brain interfaces are also disclosed, including diagnosis and treatment of neurological disorders and conditions such as epilepsy, movement disorders, depression, Alzheimer's disease, autism, coma, and pain.04-30-2009
20090112277SYSTEMS, METHODS AND DEVICES FOR A SKULL/BRAIN INTERFACE - A method is disclosed for conveying a form of neuromodulation (e.g., electrical, chemical, optical, or thermal) from an external neuromodulation source interiorly of the skull to modulate neural activity. The method involves forming one or more apertures through or partially through the skull to provide an interface for delivering the neuromodulation. A method is disclosed for sensing one or more parameters characteristic of one or more states of the brain through an interface formed with one or more apertures extending all the way or part of the way through the skull. A device is disclosed that is implantable in the skull of a human patient to provide an interface between the exterior of the skull and the brain that includes a channel of a length sufficient to traverse the entire thickness of the skull or at least a part of the thickness of the skull. The channels may be provided in a wide variety of shapes and sizes with or without inner lumens. The channels may be configured for ion conduction of electrical signals, enabling DC or near DC stimulation of target neurons. Methods and devices for transferring energy (e.g., thermal energy) generated inside the skull to the outside of the skull and vice versa are also disclosed.04-30-2009
20110112603Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders - The present disclosure relates to methods, devices, and systems used for the treatment of mood, anxiety, cognitive, and behavioral disorders (collectively, neuropsychiatric disorders) via stimulation of the superficial elements of the trigeminal nerve (“TNS”). More specifically, minimally invasive systems, devices and methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, nasal and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein.05-12-2011
20120143280SYSTEMS, DEVICES, AND METHODS FOR MONITORING AND ANALYZING RESEARCH ANIMAL BEHAVIOR BEFORE, DURING AND AFTER BRAIN ELECTRICAL STIMULATION - Described are systems, devices and methods for facilitating the delivery of stimulation to, and the monitoring and recording of physiological signals (e.g., electroencephalographic signals) from a research subject. Devices include a headmount that includes a cranial frame and a headstage, and a connection between the headmount and external equipment used for stimulation, monitoring, and/or recording that is robust physically and electrically to optimize stimulation, monitoring and recording even while the subject remains ambulatory. In some embodiments, a hinged headmount allows the configuration to be easily manipulated during attachment and any subsequent adjustment or reattachment procedures and permits easy access to any wires or other components implanted in the subject. In some embodiments, a flexible cable extends out from the headmount at an acute angle relative to a horizontal plane of the headmount, to optimize strain relief as the subject moves about while attached to any stimulation, monitoring and/or recording equipment.06-07-2012
20090105784MINIATURE WIRELESS SYSTEM FOR DEEP BRAIN STIMULATION - An implantable system and method for deep brain stimulation (DBS) treatments. The implantable system is sufficiently small and self-contained to enable implantation of the entire system within the brain, or optionally within the brain and the surrounding tissue. The system comprises an implantable inductor on which a voltage is induced when subjected to an electromagnetic field, and an implantable device comprising a housing, stimulating elements at an exterior surface of the housing, and electronics within the housing and electrically connected to the implantable inductor. The electronics produces a brain-stimulating current from the voltage induced on the implantable inductor and then delivers the brain-stimulating current to the stimulating elements. Deep brain stimulation is performed by subjecting the inductor to an electromagnetic field to induce a voltage on the inductor that powers the electronics to produce and deliver the brain-stimulating current to the stimulating elements.04-23-2009
20090105783LONG-TERM SPG STIMULATION THERAPY FOR PREVENTION OF VASCULAR DEMENTIA - A method is provided that includes identifying that a subject is at risk of suffering from vascular dementia (VaD). Responsively to the identifying, a risk of development of the VaD is reduced by applying electrical stimulation to a site of the subject selected from the group consisting of: a sphenopalatine ganglion (SPG), a greater palatine nerve, a lesser palatine nerve, a sphenopalatine nerve, a communicating branch between a maxillary nerve and an SPG, an otic ganglion, an afferent fiber going into the otic ganglion, an efferent fiber going out of the otic ganglion, an infraorbital nerve, a vidian nerve, a greater superficial petrosal nerve, and a lesser deep petrosal nerve; and configuring the stimulation to induce at least one neuroprotective occurrence selected from the group consisting of: an increase in cerebral blood flow of the subject, and a release of one or more neuroprotective substances. Other embodiments are also described.04-23-2009
20100305658APPARATUS AND METHOD FOR MODULATING NEUROCHEMICAL LEVELS IN THE BRAIN - The present invention provides a method for modulating or regulating levels of a neurochemical in an individual using deep brain stimulation. More particularly, the invention relates to a method of treating neurological and psychiatric diseases by providing a feedback loop capable of maintaining central and/or peripheral nervous system neurochemical levels in an individual.12-02-2010
20090069863MODULATION AND ANALYSIS OF CEREBRAL PERFUSION IN EPILEPSY AND OTHER NEUROLOGICAL DISORDERS - A system including an implantable neurostimulator device capable of modulating cerebral blood flow to treat epilepsy and other neurological disorders. In one embodiment, the system is capable of modulating cerebral blood flow (also referred to as cerebral perfusion) in response to measurements and other observed conditions. Perfusion may be increased or decreased by systems and methods according to the invention as clinically required.03-12-2009
20090036950TRAINED AND ADAPTIVE RESPONSE IN A NEUROSTIMULATOR - A method sensing at least two physiological parameters and, for each of the at least two physiological parameters, generating a first series of signals representative of the physiological parameter sensed over a first time period, storing each of said first series of signals as a time sequence data stream, and determining when a physiological event has occurred in a patient. The method further comprises analyzing each of said time sequence data streams for a predetermined time interval preceding the occurrence of a physiological event to determine at least one marker as a predictor of the event, and again sensing the physiological parameters. Furthermore, the method comprises generating a second series of signals representative of the physiological parameter sensed, analyzing each of the second series of signals to determine whether the marker is present, and stimulating a cranial nerve when the marker is present in the second series of signals.02-05-2009
20090036949STIMULATION EXTENSION WITH INPUT CAPABILITIES - A stimulation extension useful in deep brain stimulation treatment includes a body portion having a distal end and a proximal end, wherein the proximal end receives a stimulation signal from a generator. A lead interface is disposed at the distal end to send the stimulation signal to a brain stimulation lead. The stimulation extension also includes a sensor interface disposed at the distal end to receive an input signal from a sensor that is detached from the stimulation lead and send the input signal to the generator.02-05-2009
20130144358Dopamine Stimulation Device - A set of eyeglasses that has a first electrical contact on the frame of the eyeglasses, and a second electrical contact on an arm of the eyeglasses. The contacts touch the skin of the wearer near the frontal cortex and behind the frontal lobe. An integral solar cell provides a small voltage output, typically 1.5 volts or less, to the contacts and stimulates the production of dopamine with a small electrical charge. Optionally, either internal or external batteries can be used to supply power in place of the solar cell.06-06-2013
20100324623TRANSCRANIAL ELECTRICAL STIMULATION DEVICE - A transcranial electrical stimulation device 12-23-2010
20110009920SKULL-MOUNTED ELECTRICAL STIMULATION SYSTEM AND METHOD FOR TREATING PATIENTS - A system and method for applying electrical stimulation or drug infusion to nervous tissue of a patient to treat epilepsy, movement disorders, and other indications uses at least one implantable system control unit (SCU) (01-13-2011
20110009922SYSTEMS AND METHODS FOR IMPROVING A COGNITIVE FUNCTION - In many aspects, the invention relates to systems and methods for providing cognitive therapy through stimulation of activating and inhibiting neurons in the brain, thereby modulating neural firing rhythms. The stimulation of neurons is controlled through a feedback process whereby neuron firing rhythms are altered based on naturally occurring electrical and chemical activity in the brain. Neurons in specific regions of the brain may be targeted in order to establish neural signaling pathways and establish communication between these regions.01-13-2011
20110009919METHOD TO ENHANCE AFFERENT AND EFFERENT TRANSMISSION USING NOISE RESONANCE - Methods of providing therapy to a patient are provided. In one method, the patient has a neuron to which a sub-threshold biological electrical stimulus is applied. The method comprises applying electrical noise energy to the neuron, wherein resonance between the biological electrical stimulus and the electrical noise energy is created, such that an action potential is propagated along the axon of the neuron. In another method, the patient has a neuron to which a supra-threshold biological electrical stimulus is applied. This method comprises applying supra-threshold electrical noise energy to the neuron, thereby preventing an action potential from being propagated along the axon of the neuron. Still another method comprises applying an electrical stimulus to a neuron, and applying supra-threshold electrical noise energy to the neuron, thereby preventing or reversing any neurological accommodation of the neuron that may occur in response to the electrical stimulus.01-13-2011
20110029039Intracranial Electrical Seizure Therapy (ICEST) - A method and system for administering intracranial electroconvulsive therapy are described. The method includes implanting an electrode at a target site in the brain, the electrode being connected to a controller; configuring the controller to deliver an electrical stimulus sufficient to induce a seizure that starts at the target site and spreads throughout a localized or generalized volume of the brain; and delivering the electrical stimulus through the electrode.02-03-2011
20110213441NEUROSTIMULATOR INVOLVING STIMULATION STRATEGIES AND PROCESS FOR USING IT - This is a neurostimulator that is configured to treat epilepsy and other neurological disorders using certain stimulation strategies, particularly changing various pulse parameters, during the imposition of a burst of those pulses. The invention includes the processes embodying those stimulation strategies.09-01-2011
20110029038Determining a neuromodulation treatment regimen in response to contactlessly acquired information - Described embodiments include a system, an apparatus, and a method. A described system includes a sensor device configured to sense a property of a mammal without physically contacting the mammal. The system also includes a signal generator configured to generate a signal indicative of the sensed property of the mammal. The system further includes a treatment decision device configured to determine in response to the signal indicative of the sensed property of the mammal a neuromodulation treatment regimen for administration to a nervous system component of the mammal. The system also includes a computer-readable medium configured to maintain and to provide access to information corresponding to the determined neuromodulation treatment regimen.02-03-2011
20110130803ELECTRODE ARRAY HAVING CONCENTRIC WINDOWED CYLINDER ELECTRODES AND METHODS OF MAKING THE SAME - A device for brain stimulation includes a lead body having a distal end section and at least one inner conductive cylinder with at least one inner window cut out from the inner cylinder. The inner cylinder is disposed at the distal end section of the lead body. The device also includes an outer conductive cylinder with at least one outer window cut out from the outer cylinder. The outer cylinder is secured to and disposed concentric to the inner cylinder with a portion of each of the at least one inner cylinder aligned with the at least one outer window of the outer cylinder. The device further includes an insulator configured and arranged to electrically insulate each of the at least one inner cylinder and the outer cylinder.06-02-2011
20100198297Wireless Recording and Stimulation of Brain Activity - Subdural arrays transmit electrocorticogram recordings wirelessly, across the patient's skull, allowing the craniotomy used for surgical placement of the arrays to be completely closed. In various embodiments, the arrays also respond to commands, applying signal patterns to the patient's brain for diagnostic and treatment purposes.08-05-2010
20100168816METHOD FOR TREATING DEMENTIA - A description is given of a method to treat dementia, in particular Alzheimer's disease, Lewy body dementia and vascular dementia, by means of electrical brain stimulation.07-01-2010
20100137937Modulation and Analysis of Cerebral Perfusion In Epilepsy and Other Neurological Disorders - A system including an implantable neurostimulator device capable of modulating cerebral blood flow to treat epilepsy and other neurological disorders. In one embodiment, the system is capable of modulating cerebral blood flow (also referred to as cerebral perfusion) in response to measurements and other observed conditions. Perfusion may be increased or decreased by systems and methods according to the invention as clinically required.06-03-2010
20110213439Neuromodulation Having Non-Linear Dynamics - Methods of neuromodulation in a live mammalian subject, such as a human patient. The method comprises applying electromagnetic energy to a target site in the nervous system of the subject using a signal comprising a series of pulses, wherein the inter-pulse intervals are varied using the output of a deterministic, non-linear, dynamical system comprising one or more system control parameters. In certain embodiments, the target site may be a site in the brain involved in generalized CNS (central nervous system) arousal. The dynamical system may be capable of exhibiting chaotic behavior. Also provided are apparatuses for neuromodulation and software for operating such apparatuses.09-01-2011
20110213442NEUROSTIMULATOR INVOLVING STIMULATION STRATEGIES AND PROCESS FOR USING IT - This is a neurostimulator that is configured to treat epilepsy and other neurological disorders using certain stimulation strategies, particularly changing various pulse parameters, during the imposition of a burst of those pulses. The invention includes the processes embodying those stimulation strategies.09-01-2011
20100057160Stimulation of the amygdalohippocampal complex to treat neurological conditions - A system and/or method treating for a neurological disorder by brain region stimulation. The system and/or method comprises a probe and a device to provide stimulation. The probe has a stimulation portion implanted in communication with a predetermined brain region site. The stimulation portion of the probe may be implanted in contact with a predetermined brain region.03-04-2010
20100057161Methods of Treating Medical Conditions by Neuromodulation of the Cerebellar Pathways - Methods of treating various medical conditions by neuromodulation of target sites of a cerebello-thalamo-cortical pathway and/or a cortical-ponto-cerebellar pathway. Such medical conditions include unilateral motor deficits, movement disorders, psychiatric disorders, epilepsy, speech or cognitive deficits associated with hemispheric lesions, visual deficits associated with hemispheric lesions, learning disorders associated with hemispheric lesions, vertigo and/or dizziness, gait disturbances, hereditary/genetic disorders, congenital malformations, infectious disease, degenerative disorders, autoimmune disorders, and metabolic disorders. A method of enhancing memory, learning and/or cognitive capacity in a normal individual by stimulating a target site of a cerebello-thalamo-cortical pathway and/or a cortical-ponto-cerebellar pathway is also provided.03-04-2010
20110098777METHOD AND APPARATUS FOR TREATMENT OF NEURODEGENERATIVE DISEASES INCLUDING DEPRESSION, MILD COGNITIVE IMPAIRMENT, AND DEMENTIA - A method and apparatus for treatment of neurodegenerative diseases including depression, mild cognitive impairment and dementia. An electrical signal comprising a stimulation frequency is generated and applied transcutaneously to a patient over at least one treatment cycle comprising a plurality of intervals, wherein each interval comprises increasing the stimulation frequency to a high frequency and decreasing the stimulation frequency to a low frequency.04-28-2011
20110098779SUB-MOTOR-THRESHOLD STIMULATION OF DEEP BRAIN TARGETS USING TRANSCRANIAL MAGNETIC STIMULATION - Systems and methods for modulating deep brain target regions using an array of TMS electromagnets, wherein each TMS electromagnet stimulates the target at a level that is below motor threshold (MT). Neurological disorders (or disorders having neurological effects) may be treated by sub-MT stimulation of deep-brain targets from an array of TMS electromagnets.04-28-2011
20110160797METHODS TO CONCURRENTLY STIMULATE DIFFERENT BRAIN TARGETS - A method for treating a patient having a dysfunction using a stimulation lead within the brain of a patient is provided. The stimulation lead carries a plurality of electrodes adjacent to a plurality of brain regions. Pulsed electrical waveforms having different sets of stimulation parameters are generated and then concurrently delivered to the plurality of electrodes, thereby concurrently stimulating the plurality of brain regions to treat the dysfunction.06-30-2011
20100145410Microcurrent and cranial electrotherapy stimulator for control of anxiety, insomnia, depression and pain - A device for controlling anxiety, insomnia, depression and pain utilizing a microcurrent and cranial electrotherapy stimulation. The device could also be utilized to treat other types of stress-related disorders. A relatively low level current having a particular frequency is produced by the device in two channels wherein the current for both of the channels can be different. Electrodes are placed at various points of the patient's body to relieve pain. When utilized to control anxiety, insomnia and depression, a single channel is produced which is applied to the patient's ear lobes by two ear clips.06-10-2010
20110098780APPARATUS FOR MANAGING A NEUROLOGICAL DISORDER - A system that incorporates teachings of the present disclosure may include, for example, a Neuro Sensing and Stimulation Device having a conductive lead for implanting in a brain of a living entity, a sensor coupled to the conductive lead for collecting data associated with one or more electrical signals detected in the conductive lead, a stimulator coupled to the conductive lead to apply one or more electrical signals thereto, and a controller. The controller can be operable to collect data associated with one or more electrical signals detected in the conductive lead, determine a stimulation sequence from the collected data, and direct the stimulator to apply on the conductive lead one or more electrical signals determined from the stimulation sequence. Additional embodiments are disclosed.04-28-2011
20110098778STIMULATION SYSTEM AND METHOD TREATING A NEUROLOGICAL DISORDER - According to one aspect, a method of treating a patient by electrically stimulating a predetermined site to treat a neurological condition. The method includes implanting a lead into subcutaneous tissue of the C04-28-2011
20120123500IMPLANTABLE PULSE GENERATOR COMPRISING MRI CURRENT LIMITING WINDINGS IN HEADER STRUCTURE - In one embodiment, a pulse generator for generating electrical stimulation for delivery to a patient, comprises: a hermetically sealed housing containing pulse generating circuitry; a header coupled to the housing for receiving one or more stimulation leads, wherein feedthrough wires are provided to conduct electrical pulses from the pulse generating circuitry to the header; the header comprising a plurality of connectors for electrically connecting to each terminal of the one or more stimulation leads, wherein an inductive winding is disposed around or adjacent to each of the connector structures and is electrically connected between the respective connector structure and a corresponding feedthrough wire to limit MRI induced heating of a respective electrode of the one or more stimulation leads.05-17-2012
20120123499Therapy Control Using Relative Motion Between Sensors - The invention is directed to controlling therapy delivery based on a relative motion between a first and second activity sensor. The relative motion between the activity sensors is representative of the relative motion between the locations of the body of the patient at which the respective activity sensors are located. The use of relative motion, however, may substantially remove motion experienced by both the activity sensors, e.g., motion caused by the environment in which patient is located, thus providing a new reference frame from which to analyze the motion measurements. The relative motion may be used to detect a condition of a movement disorder and/or control delivery of the therapy delivered to patient to treat or reduce the condition.05-17-2012
20120303089Method and System for Determining Settings for Deep Brain Stimulation - A method and control system for determining and applying stimulation settings for a brain stimulation probe (11-29-2012
20120303088System and A Method for Determination of an Orientation of a Biomedical Stimulation Device - The application relates to a system (11-29-2012
20120303087COLLECTION OF CLINICAL DATA FOR GRAPHICAL REPRESENTATION AND ANALYSIS - A method of treating a patient and an external programmer for use with a neurostimulator. Electrical stimulation energy is conveyed into tissue of the patient via a specified combination of a plurality of electrodes, thereby creating one or more clinical effects. An influence of the specified electrode combination on the clinical effect(s) is determined. An anatomical region of interest is displayed in registration with a graphical representation of the plurality of electrodes. The displayed anatomical region of interest is modified based on the determined influence of the specified electrode combination on the clinical effect(s).11-29-2012
20100305657NERVOUS DEVICE USING AT LEAST ONE NANO-WIRE - The present invention relates to a neural device comprising wires transmitting and receiving electric signals. More specifically, the present invention relates to a structure of the neural device comprising wires which effectively obtain electric signals developed in nerve fibers and transmit electric stimuli to the nerve fibers. The neural device according to the present invention is connected to a processing module processing electric signals detected from nerve fibers, and the neural device is inserted in nerve fibers via nanowires to obtain electric signals from the nerve fibers, or inserted in the nerve fibers to transmit electric stimuli. The neural device may further provide with at least one through-hole and support. The neural device according to the present invention has an advantage that may obtain electric signals without killing nerve fibers or provide them with electric stimuli.12-02-2010
20100280571NEURAL STIMULATION AND OPTICAL MONITORING SYSTEMS AND METHODS - Neural stimulation and optical monitoring systems and methods are disclosed. In one embodiment, an apparatus for treating a neural condition includes a signal delivery device configured to be implanted into a patient proximate to a skull of the patient and positioned to apply electromagnetic signals to one or more target sites within the patient. The apparatus also includes an implantable optical monitoring assembly configured to monitor optical properties at one or more optical monitoring sites within the patient. The apparatus further includes a controller configured to be implanted into the patient. The controller is operatively coupled to the signal delivery device and the optical monitoring assembly and programmed to control both the signal delivery device and the optical monitoring assembly. The controller also includes a power source to power both the signal delivery device and the optical monitoring assembly.11-04-2010
20080243204VARIATIONAL PARAMETER NEUROSTIMULATION PARADIGM FOR TREATMENT OF NEUROLOGIC DISEASE - The present invention concerns a neural stimulation device, and methods for its use, in which one or more stimulation parameters can be automatically and randomly adjusted such that any particular combination of stimulation parameters is not repeated for a given duration of time, thereby limiting habituation to the neural stimulus.10-02-2008
20090118787Closed-loop feedback for steering stimulation energy within tissue - Methods, systems, and external programmers provide therapy to a patient having a dysfunction. In one aspect, electrical energy is conveyed between electrodes to create a stimulation region in tissue adjacent the electrodes. Physiological information from the patient is acquired and analyzed, and a locus of the stimulation region is electronically displaced relative to the tissue based on the analysis of the acquired physiological information. In another aspect, electrical energy is delivered to tissue of the patient in accordance with one or more stimulation parameters. A cognitive brain signals is sensed and analyzed, and the stimulation parameter(s) are modified based on the analysis of the cognitive brain signal.05-07-2009
20080215112METHODS AND APPARATUS FOR EFFECTUATING A LASTING CHANGE IN A NEURAL-FUNCTION OF A PATIENT - The following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. Several embodiments of methods in accordance with the invention are directed toward enhancing or otherwise inducing a lasting change in neural activity to effectuate a particular neural-function. Such lasting change in neural activity is defined as “neuroplasticity.” The methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.). The methods in accordance with the invention can also be used to enhance neural-function of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain). Certain embodiments of methods in accordance with the invention electrically stimulate the brain at a stimulation site where neuroplasticity is occurring. The stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular neural function according to the functional organization of the brain. In one embodiment in which neuroplasticity related to the neural-function occurs in the brain, the method can include identifying the location where such neuroplasticity is present. In an alternative embodiment in which neuroplasticity is not occurring in the brain, an alternative aspect is to induce neuroplasticity at a stimulation site where it is expected to occur. Several embodiments of these methods that are expected to produce a lasting effect on the intended neural activity at the stimulation site use electrical pulses that increase the resting membrane potential of neurons at the stimulation site to a subthreshold level.09-04-2008
20120203302SYSTEMS AND METHODS FOR MAKING AND USING IMPROVED LEAD EXTENSION CONNECTORS FOR ELECTRICAL STIMULATION SYSTEMS - A lead extension for an electrical stimulation system includes a connector disposed on a first end of a body. The connector includes a housing defining at least one port. Each of the at least one ports is configured to receive a proximal end of a lead. A plurality of connector contacts are disposed in each of the at least one ports. The connector contacts are configured to electrically couple to terminals of a lead when the lead is received by the housing. A first connector flange extends outwardly from a first side of the housing. A plurality of conductors extend along a length of the lead extension and electrically couple at least one of the connector contacts to at least one terminal disposed on a second end of the body.08-09-2012
20110054563COUPLING MODULE OF A MODULAR IMPLANTABLE MEDICAL DEVICE - In an implantable medical device having individual modules, a coupling module couples the modules to one another. The coupling module supports electrical and/or mechanical coupling of the modules. The coupling module may assume a variety of shapes or configurations. The various embodiments of the coupling module may offer the modules varying degrees of freedom of movement relative to one another.03-03-2011
20110054562Neural stimulation system and method responsive to collateral neural activity - A neural stimulation system responsive to collateral neural activity that may arise in association with a neural stimulation procedure includes a stimulation interface configured to deliver stimulation signals to a target neural population, a monitoring interface positioned to receive signals corresponding to a neural activity within the target neural population, a stimulus unit coupled to deliver stimulation singals to the stimulation interface, and a sensing unit coupled to the monitoring device and the stimulus unit. The neural stimulation procedure may be directed toward rehabilitating, restoring, and/or enhancing one or more neural functions by facilitating and/or effectuating a neuroplastic change or reorganization; and/or affecting a neurological condition that exists on a continuous or essentially continuous basis absent the stimulation procedure. The sensing unit determines whether evidence of an collateral neural activity exists, whereupon the stimulus unit attempts to abate the collateral neural activity.03-03-2011
20130158626DEVICES, SYSTEMS AND METHODS FOR TREATMENT OF NEUROPSYCHIATRIC DISORDERS - The present disclosure relates to methods, devices and systems used for the treatment of mood, anxiety, post traumatic stress disorder, and cognitive and behavioral disorders (collectively, neuropsychiatric disorders) via stimulation of the superficial elements of the trigeminal nerve (“TNS”). More specifically, cutaneous methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infraorbital, nasal and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein.06-20-2013
20100292753Method and Apparatus for Detection of Nervous System Disorders - Systems and methods for detecting and/or treating nervous system disorders, such as seizures. Certain embodiments of the invention relate generally to implantable medical devices (IMDs) adapted to detect and treat nervous system disorders in patients with an IMD. Certain embodiments of the invention include detection of seizures based upon comparisons of long-term and short-term representations of physiological signals. Other embodiments include prediction of seizure activity based upon analysis of physiological signal levels. An embodiment of the invention monitors the quality of physiological signals, and may be able to compensate for signals of low signal quality. A further embodiment of the invention includes detection of seizure activity following the delivery of therapy.11-18-2010
20100292751PARAMETER ADJUSTMENT DEVICE AND METHOD THEREOF - A parameter adjustment device and method thereof for a stimulator is disclosed. The parameter adjustment device comprises a generation unit, a user interface and a process unit. The generation unit generates a test MAP based on a current MAP. The user interface displays the current MAP and the test MAP for choosing one of them as the preferred MAP, and displays a major and a minor for choosing again, the major and the minor is defined as a significant difference and a little difference between the test MAP and the current MAP respectively. The process unit computes the acceptance probability of the preferred MAP based on a major or minor probability correspondence relationship and determines a next MAP by comparing the acceptance probability with the test probability. When one of the termination conditions is satisfied in an iterative operation, the next MAP is outputted as the best MAP.11-18-2010
20110125214MEDICAL ELECTRICAL STIMULATION WITH EXTERNAL SIMULATED CASE ELECTRODE - This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.05-26-2011
20110125215MEDICAL ELECTRICAL STIMULATION WITH IMPLANTABLE SIMULATED CASE ELECTRODE - This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.05-26-2011
20110137372METHODS AND APPARATUS FOR USING SENSORS WITH A DEEP BRAIN STIMULATION SYSTEM - A system and method for applying stimulation to a target stimulation site within a patient, while avoiding undesirable eye movement side effects of the stimulation, are provided. The method includes determining whether eye movement, sensed by internal or external electrodes, is a side effect of a conveyed electrical stimulus. If the eye movement is a side effect, the electrical current distribution of the stimulus is modified in order to steer a locus of the electrical stimulus from one tissue region of the patient to another different tissue region of the patient, thereby mitigating the eye movement side effects. For example, the locus of the electrical stimulus may be steered away from the oculomotor nerve. Eye movement side effects of DBS treatment may include apraxia of lid opening, downward movement and adduction of only one eyeball, and/or continuous deviation of both eyeballs.06-09-2011
20110137373DEVICE FOR THE DESYNCHRONIZATION OF NEURONAL BRAIN ACTIVITY - A device for desynchronizing neuronal brain activity involving a neuron population firing in a synchronized manner at a pathological frequency. The device includes an electrode configured to generate stimuli that stimulate the neuron population; and a control unit configured to control the electrode to generate the stimuli in sequence, wherein the stimuli succeed each other with a predetermined frequency f. The predetermined frequency f is substantially equal to g×n/m, where g is the pathological frequency, and n and m are integers.06-09-2011
20110137371SELECTING THERAPY CYCLE PARAMETERS BASED ON MONITORED BRAIN SIGNAL - Bioelectrical brain signals may be monitored at one more regions of the brain of a patient by a medical device. The monitored bioelectrical signals may be used to select one or more therapy cycle parameters, e.g., on cycle duration and/or off cycle duration, for therapy delivered to treat a patient disorder. In one example, the off cycle duration of a therapy may be selected based on the washout period determined from sensed brain signals of the patient following delivery of therapy during an on cycle. In another example, the on cycle duration and/or off cycle duration of a therapy may be selected to maintain the value of one or more characteristics of a brain signal (e.g., cortical activity) of patient within a threshold range of a target value defined for the characteristic that is associated with effective treatment of the patient disorder.06-09-2011
20100228319ELECTRICAL STIMULATION SYSTEM AND METHOD USING MULTI-GROUP ELECTRODE ARRAY - An electrical stimulation system and method using multi-group electrode array are disclosed. The electrical stimulation system comprises an implant body having an electrode carrying surface, an electrode array provided on the electrode carrying surface, and an electrode controller. The electrode array comprises a plurality of electrode groups, each of which includes a plurality of electrodes, and each of the electrodes has an independent power supply control. The electrode controller receives a control signal to drive a set of at least two corresponding electrodes, which is selected from the electrodes of the same electrode group and two adjacent electrode groups. Powers supplies to the set of corresponding electrodes may be regulated by the independent power supply controls thereof, so as to generate a virtual channel between the set of corresponding electrodes through interaction of powers supplied to the set of corresponding electrodes.09-09-2010
20090171416METHODS AND APPARATUS FOR EFFECTUATING A LASTING CHANGE IN A NEURAL-FUNCTION OF A PATIENT - Methods and apparatus for treating an impaired neural function in a brain of a patient. In one embodiment, a method for treating a neural function in a brain of a patient includes determining a therapy period during which a plurality of therapy sessions are to be performed to recover functional ability corresponding to the neural function. The method continues by identifying a stimulation site in or on the brain of the patient associated with the neural function, and positioning an electrode at least proximate to the identified stimulation site. The patient is then treated by providing electrical stimulation treatments to the stimulation site. The treatment can comprise delivering electrical stimulation signals to the electrode during the therapy sessions. After expiration of the therapy period, the method includes preventing electrical stimulation signals from being delivered to the stimulation site.07-02-2009
20120310298MEDICAL DEVICES FOR THE DETECTION, PREVENTION AND/OR TREATMENT OF NEUROLOGICAL DISORDERS, AND METHODS RELATED THERETO - Disclosed are devices and methods for detecting, preventing, and/or treating neurological disorders. These devices and methods utilize electrical stimulation, and comprise a unique concentric ring electrode component. The disclosed methods involve the positioning of multiple electrodes on the scalp of a mammal; monitoring the mammal's brain electrical patterns to identify the onset of a neurological event; identifying the location of the brain electrical patterns indicative of neurological event; and applying transcutaneous or transcranial electrical stimulation to the location of the neurological event to beneficially modify brain electrical patterns. The disclosed methods may be useful in the detection, prevention, and/or treatment of a variety of indications, such as epilepsy, Parkinson's Disease, Huntington's disease, Alzheimer's disease, depression, bipolar disorder, phobia, schizophrenia, multiple personality disorder, migraine or headache, concussion, attention deficit hyperactivity disorder, eating disorder, substance abuse, and anxiety. The disclosed methods may also be used in combination with other peripheral stimulation techniques.12-06-2012
20110184487REVERSING COGNITIVE-MOTOR IMPAIRMENTS IN PATIENTS HAVING A NEURO-DEGENERATIVE DISEASE USING A COMPUTATIONAL MODELING APPROACH TO DEEP BRAIN STIMULATION PROGRAMMING - A system and method may provide for conducting a stimulation of anatomic regions to treat a neuromotor, neurocognitive or neuromotor and neurocognitive disorder, according to which stimulation, motor regions are stimulated, while creep of current to non-motor regions is minimized. Stimulation parameters may be selected based on tests of motor function, tests of cognitive function, and tests of a combination of motor and cognitive functions.07-28-2011
20110190846MULTI-SITE CRANIAL STIMULATION METHOD AND SYSTEM - The method includes applying individual stimuli to different regions of a brain the application of specific stimulus signals to corresponding stimulation elements arranged adjacent to the regions of the brain. The method includes constructing one or more simplified models of the brain, or of one or more sectors of the brain, considering the brain or the sector thereof, as appropriate, as a non-linear coupled oscillating system, and includes determining the stimulus signals so that the latter are suitable for exciting one or more natural vibration modes of the non-linear coupled oscillating system. The system includes stimulation elements (E08-04-2011
20110152967NON-INVASIVE TREATMENT OF NEURODEGENERATIVE DISEASES - Methods and devices are disclosed for the non-invasive treatment of neurodegenerative diseases through delivery of energy to target nervous tissue, particularly the vagus nerve. The devices include a magnetic stimulator having coils with toroidal windings, which are in contact with an electrically conducting medium that is adapted to conform to the contour of a target body surface of a patient. The coils induce an electric current and/or an electric field within the patient, thereby stimulating nerve fibers within the patient. The stimulation brings about reduction of neuroinflammation in patients suffering from conditions comprising Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, postoperative cognitive dysfunction and postoperative delirium. Reduction in inflammation is effected by enhancing the anti-inflammatory competence of cytokines such as TGF-beta, wherein a retinoid or components of the retinoic acid signaling system provide an anti-inflammatory bias, by enhancing anti-inflammatory activity of a neurotrophic factor such as NGF, GDNF, BDNF, or MANF, and/or by inhibiting the activity of pro-inflammatory cytokines such as TNF-alpha.06-23-2011
20100030298TISSUE STIMULATION METHOD AND APPARATUS - A stimulation apparatus includes a stimulation lead (02-04-2010
20100023089Controlling a Subject's Susceptibility to a Seizure - A neurological control system for modulating activity of any component or structure comprising the entirety or portion of the nervous system, or any structure interfaced thereto, generally referred to herein as a “nervous system component.” The neurological control system generates neural modulation signals delivered to a nervous system component through one or more neuromodulators to control neurological state and prevent neurological signs and symptoms. Such treatment parameters may be derived from a neural response to previously delivered neural modulation signals sensed by one or more sensors, each configured to sense a particular characteristic indicative of a neurological or psychiatric condition.01-28-2010
20110218591Differential Neurostimulation Therapy Driven By Physiological Therapy - An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.09-08-2011
20110218590DEVICES, SYSTEMS AND METHODS FOR TREATMENT OF NEUROPSYCHIATRIC DISORDERS - The present disclosure relates to methods, devices and systems used for the treatment of mood, anxiety, post traumatic stress disorder, and cognitive and behavioral disorders (collectively, neuropsychiatric disorders) via stimulation of the superficial elements of the trigeminal nerve (“TNS”). More specifically, cutaneous methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infraorbital, nasal and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein.09-08-2011
20110218589SYSTEMS, DEVICES AND METHODS FOR THE TREATMENT OF NEUROLOGICAL DISORDERS AND CONDITIONS - The present disclosure relates to methods, devices, and systems used for the treatment of and/or promoting recovery from various neurological disorders and conditions, including epilepsy and other seizure disorders and movement and other related disorders; for promoting recovery from acute or chronic brain injury (e.g. stroke, hypoxia/ischemia, head trauma, subarachnoid hemorrhage, and other forms of brain injury, for awakening and/or promoting the recovery of patients in various levels of coma, altered mental status or vegetative state); or for promoting recovery from chronic daily headache and migraine and related disorders via external (cutaneous) stimulation of the sensory branches of the trigeminal nerve in the face and forehead. More specifically, devices and electrode assemblies configured for stimulation of the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, nasal and infratrochlear nerves are disclosed.09-08-2011
20110218588IMPLANTABLE CORTICAL ELECTRICAL STIMULATION APPRATUS HAVING WIRELESS POWER SUPPLY CONTROL FUNCTION - An implantable cortical electrical stimulation device having wireless power control function comprises: an electrical stimulation device (09-08-2011
20110009921DEVICE AND METHOD FOR AUDITORY STIMULATION - A device and method for desynchronizing a patient's neuronal brain activity involving a neuron population firing in a pathologically synchronized manner. The device includes a stimulation unit configured to generate an acoustic stimulation signal to stimulate the neuron population when the acoustic stimulation signal is aurally received by the patient. Furthermore, the acoustic stimulation signal has a first frequency and a second frequency, with the first frequency provided to reset the phase of the neuronal brain activity in a first sub-population of the stimulated neuron population, and the second frequency provided to reset the phase of the neuronal brain activity in a second sub-population of the stimulated neuron population.01-13-2011
20100191306TRANSIENT VOLTAGE SUPPRESSION CIRCUIT FOR AN IMPLANTED RFID CHIP - A transient voltage suppressing (TVS) circuit includes an implantable RFID chip, an antenna associated with the RFID chip, and a transient voltage suppressor electrically connected in parallel to both the RFID chip and the antenna. The transient voltage suppressor may be formed of an array of diodes, such as back-to-back diodes, at least one Zener diode, or back-to-back or series opposing Zener diodes. In preferred embodiments, the antenna is formed of a biocompatible material suitable for long-term exposure to body tissue and body fluids, and the RFID chip and the transient voltage suppressor are disposed within a hermetically sealed biocompatible container.07-29-2010
20100191304 Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation - Disclosed herein are methods, systems, and apparatus for treating a medical condition in a patient using an implantable medical device (IMD). The IMD is capable of generating a first electrical signal for treating a medical condition, for example epilepsy. The first electrical signal relates to a long term therapy during a first time period in which there is no indication that the patient's brain is in an stable state, the first electrical signal being a microburst stimulation signal. The implantable device is also capable of generating a second electrical signal for treating the medical condition. The second electrical signal relates to a short term therapy during a second time period, in response to an indication that the patient's brain is in an unstable state. The second electrical signal in one example, may be a conventional stimulation signal.07-29-2010
20080288018METHODS OF IMPROVING NEUROPSYCHOLOGICAL FUNCTION IN PATIENTS WITH NEUROCOGNITIVE DISORDERS - The present invention provides methods of improving neuropsychological function in a patient having a neurocognitive disorder by chemical or electrically modulating a target site(s) in the ventral striatum/ventral capsule region. Methods also include modulating the treatment based on a closed-loop feedback system that measures bodily activities associated with the neuropsychological function (i.e. that help to determine whether a neuropsychological function is or can be improved.11-20-2008
20090177243TRANSCRANIAL ELECTROSTIMULATION DEVICE - The device refers to physiotherapy and is intended to protective brain mechanisms stimulation during the treatment of different diseases.07-09-2009
20090099622Methods and Systems for Establishing Neural Stimulation Parameters and Providing Neural Stimulation - Methods for providing electrical stimulation therapy to a cortex of a patient via a plurality of electrodes proximate to the cortex and a pulse generator implanted in the patient. One embodiment of a method in accordance with the invention comprises determining whether the current applied via the plurality of electrodes results in a sufficient current density in the cortex. The current density, for example, may need to be high enough to induce a response in the patient for determining the activation threshold of the specific stimulation site, or the current density may need to be high enough to perform a specific therapy. If the current density is not sufficient, the method continues by selecting a subset of the plurality of electrodes, and applying electrical current to the cortex via the subset of the electrodes. For example, if the current density is not sufficient when the current is applied to the full plurality of electrodes at approximately the maximum output of the pulse generator, then the current level from the pulse generator can be applied to only a subset of the electrodes to effectively increase the current density in the cortex at the active electrodes.04-16-2009
20110307029Brain stimulation methods for treating central sensitivity - Methods are disclosed for stimulating targeted regions of a brain to alleviate symptoms, treat conditions and/or modify brain activities associated with central sensitivity in a subject. The methods may include selecting a subject suffering from central sensitivity, identifying regions of the brain involved in central sensitivity, and stimulating one or more of these regions of the brain.12-15-2011
20110307030Methods for Evaluating and Selecting Electrode Sites of a Brain Network to Treat Brain Disorders - The present invention involves methods and systems for treatment of brain disorders using neuromodulation of brain networks. Implantation occurs by selecting sites which modulate the network in selected manners, or are modulated by a stimulus in a particular manner that is relevant to treatment of the network. The candidate locations within a brain region are evaluated in relation to how these are indirectly modulated by stimulation at a different brain region. Treatment of one or more brain networks associated with a brain disorder is realized with a consideration of network dynamics and coupling effects such as indirect stimulation of non-target regions. A brain modulation system (BMS) increases, decreases, or otherwise modulates network regional activity in a differential manner. Therapy and electrode locations are adjusted using sensed data and target implantation criteria related to the brain network model. Linking rules be derived during the implantation procedure and used in the subsequent adjusting of the therapy of regions of a brain network.12-15-2011
20110307031LEAD EXTENSION WITH INPUT CAPABILITIES - A lead extension useful in deep brain stimulation treatment includes a body portion having a distal end and a proximal end, wherein the proximal end receives a stimulation signal from a generator. A lead interface is disposed at the distal end to send the stimulation signal to a brain stimulation lead. The lead extension also includes a sensor interface disposed at the distal end to receive an input signal from a sensor that is detached from the stimulation lead and send the input signal to the generator.12-15-2011
20090254146DEEP BRAIN STIMULATION IMPLANT WITH MICROCOIL ARRAY - An implant for deep brain stimulation (DBS) has an array of electromagnetic microcoils dispersed over the length of the implant. The microcoils produce magnetic fields that are directed into, and induce current in, the adjacent brain tissue. The microcoils may be selectively operated to direct and focus electrical stimulation to targeted areas of the brain. The implant is useful in studying or treating neurophysiological conditions associated with the deep regions of the brain such as Parkinson's disease, drug addiction, and depression.10-08-2009
20110112602Deep Brain Stimulation Device Having Wireless Power Transmission Mechanism - Provided is a deep brain stimulation (DBS) device using a wireless power transmission mechanism to wirelessly receive microwaves from a power transmission antenna installed at a hat put on a patient, transform the microwaves into power, and drive electrodes implanted into a brain of the patient using the power so as to correct abnormal motor and sensory functions of the patient using power which is wirelessly transmitted from an outside into a body of the patient. The DBS device includes: a hat module which is installed at a hat put on a head of the patient to transmit microwaves; and an implantation module which is implanted through a skull under a scalp to contact the cerebral nerve of the patient, receives the microwaves from the hat module, transforms the microwaves into direct current (DC) power, and stimulates the cerebral nerve using the DC power.05-12-2011
20090112280SYSTEMS, METHODS AND DEVICES FOR A SKULL/BRAIN INTERFACE - Systems, methods and devices are disclosed for directing and focusing signals to the brain for neuromodulation and for directing and focusing signals or other energy from the brain for measurement, heat transfer and imaging. An aperture in the skull and/or a channel device implantable in the skull can be used to facilitate direction and focusing. Treatment and diagnosis of multiple neurological conditions may be facilitated with the disclosed systems, methods and devices.04-30-2009
20120209346TRANSCRANIAL STIMULATION - A method includes coupling electrodes to a patient's head and identifying whether any of the electrodes form a functional set, such that a desired therapeutic effect is achieved when the two or more electrodes deliver a total amount of current to the patient regardless of what portion of the total amount of current each respective electrode carries. One or more constant current sources are provided, each having a supply and return terminal, which supply and return equal amounts of current at any given time. The constant current source(s) are coupled to the electrodes in such a manner that each supply terminal and each return terminal is coupled to no more than the electrodes of a single one of the functional sets, if any, or to a single one of the electrodes not included in one of the functional sets.08-16-2012
20120046710METHODS, SYSTEMS, AND DEVICES FOR DEEP BRAIN STIMULATION USING HELICAL MOVEMENT OF THE CENTROID OF STIMULATION - A method of treating a target region in the brain includes a) contacting tissue to be stimulated with a lead of a stimulation device, the stimulation device comprising a pulse generator coupled to the lead, the lead having a plurality of segmented electrodes disposed at a distal end of the lead, the stimulation device being configured and arranged to stimulate a target region using a positionable centroid of stimulation; b) providing stimulation current to at least one of the segmented electrodes of the lead to generate a centroid of stimulation at a location and stimulate tissue around the location of the centroid of stimulation; c) repositioning the centroid of stimulation to a next location along a helical path by altering the provision of stimulation current to the plurality of electrodes and stimulating tissue around the location of the repositioned centroid of stimulation; and d) repeating c) for each location along the helical path. The method may optionally include collecting data associated with each of the locations of the centroid of stimulation; and displaying at least a portion of the collected data.02-23-2012
20120004702ELECTRONIC PACEMAKER AND PACEMAKER LEAD - A pacemaker lead includes a body and an insulation layer. The body includes at least one carbon nanotube yarn. The at least one carbon nanotube yarn includes a plurality of carbon nanotubes. The carbon nanotubes are interconnected along an axis of the body by van der Waals force. The insulation layer covers an outer surface of the body.01-05-2012
20120209347Apparatus And Method For Modulating Neurochemical Levels In the Brain - A treatment for Parkinson's Disease uses a stimulus electrode implanted in a subthalamic nucleus with a chemosensor implanted in a globus pallidus pars interna (GPi) of the subject. A level of a neurochemical is sensed with the chemosensor, and compared to a desired level. When the level of the neurochemical is less than desired, an electrical stimulation is provided to the stimulus electrode. In alternative embodiments, the neurochemical sensed is glutamate or dopamine. An alternative system uses a chemosensor implanted in the striatum instead of the GPi. An alternative system for treating benign essential tremor uses a stimulus electrode implanted in the thalamus with feedback taken from a chemosensor in the striatum.08-16-2012
20120046711METHOD, SYSTEM AND APPARATUS FOR AUTOMATED TERMINATION OF A THERAPY FOR AN EPILEPTIC EVENT UPON A DETERMINATION OF EFFECTS OF A THERAPY - A method comprising detecting an epileptic event in a patient; applying an electrical therapy to a first target area in at least one of a brain region or a cranial nerve of said patient in response to said detecting; receiving a body signal responsive to the electrical therapy, wherein said body signal is selected from an autonomic signal, a neurologic signal, a metabolic signal, an endocrine signal, or a tissue stress marker signal; determining whether said body signal indicates that said electrical therapy has an efficacious effect; and terminating the application of said electrical therapy if the response indicates that the electrical therapy has an efficacious effect. An apparatus capable of performing the method. A non-transitive, computer-readable storage device for storing data that when executed by a processor, perform the method.02-23-2012
20110166620SYSTEMS AND METHODS FOR IMPLANTABLE LEADLESS BRAIN STIMULATION - Systems and methods are disclosed to stimulate brain tissue to treat medical conditions such as movement disorders, pain and epilepsy. The disclosed invention uses electrical stimulation of the brain tissue, where vibrational energy from a source is received by an implanted device and converted to electrical energy and the converted electrical energy is used by implanted electrodes to stimulate the pre-determined brain site. The vibrational energy is generated by a controller-transmitter, which could be either implanted or located externally. The vibrational energy is received by a receiver-stimulator, which could be located under the skull, within the brain, on the dura, or in the cranial space close to the brain. As a therapeutic treatment, the implantable receiver-stimulator stimulates the brain sites that are effective in altering brain activity.07-07-2011
20120016435OPTIMAL DEEP BRAIN STIMULATION THERAPY WITH Q LEARNING - A closed loop Deep Brain Stimulation (DBS) system constituted of: a physiological sensor; a multi-electrode DBS lead; an adaptive control system in communication with the physiological sensor; and an implantable pulse generator (IPG) responsive to the adaptive control system, the adaptive control system comprising a learning module operable to learn to find the optimal stimulation parameters, classify and associate patient conditions responsive to the physiological sensor with optimal stimulation parameters in a plurality of patient conditions. The adaptive DBS device control system learns to deliver the optimal stimulation parameters based on Watkins and Dayan Q learning recursive formula, the closed loop adaptive DBS control system thus finds the optimal stimulation parameters online.01-19-2012
20120016434POST-ACUTE ELECTRICAL STIMULATION TREATMENT OF ADVERSE CEREBROVASCULAR EVENTS - A method for treatment is provided, including identifying that a subject has suffered from an adverse cerebrovascular event, excluding Alzheimer's disease and Parkinson's disease. Responsively to the identifying, beginning at least nine hours after the event, electrical stimulation is applied to a site of the subject selected from the group consisting of: a sphenopalatine ganglion (SPG), a greater palatine nerve, a lesser palatine nerve, a sphenopalatine nerve, a communicating branch between a maxillary nerve and an SPG, an otic ganglion, an afferent fiber going into the otic ganglion, an efferent fiber going out of the otic ganglion, an infraorbital nerve, a vidian nerve, a greater superficial petrosal nerve, and a lesser deep petrosal nerve. The stimulation is configured to excite nervous tissue of the site at a strength sufficient to induce at least one neuroprotective occurrence selected from the group consisting of: an increase in cerebral blood flow (CBF) of the subject, and a release of one or more neuroprotective substances.01-19-2012
20120022610Devices for Delivering Neuro Electro Adaptive Therapy NEAT - A new class of therapeutic neuro-electro-adaptive devices for delivering cranial electrotherapy (NEAT) to patients for the treatment of various diseases and disorders, including those involving Reward Deficiency Syndrome (RDS), are described, as are various methods for using such devices, for example, to treat RDS behaviors.01-26-2012
20120065699DEVICES AND METHODS FOR TISSUE MODULATION AND MONITORING - A tissue stimulating device has an elongate member, a proximal annular stimulating region and a distal annular stimulating region. Each of the annular stimulating regions circumscribe the elongate member, and each has a plurality of independently energizable electrodes that deliver current into tissue. Adjacent electrodes in the annular stimulating regions are separated from one another by an insulating member. The annular stimulating regions are axially separated from one another by a gap. An internal electrical connector electrically couples a first electrode in the proximal annular stimulating region with a first electrode in the distal annular stimulating region. The first internal electrical connector is disposed within the elongate member, and extends across the gap between annular stimulating regions. A recording electrode is disposed in the gap and is adapted to record local tissue potentials from the tissue.03-15-2012
20120116475AROUSAL STATE MODULATION WITH ELECTRICAL STIMULATION - In some examples, an arousal network of a brain of a patient can be activated to modify the arousal state of the patient, which may be useful in treating a cognitive disorder of the patient. In some examples, a bioelectrical brain signal indicative of electrical activity in a first portion of the brain is monitored to determine whether the patient is in a first arousal state, and, in response to determining the patient is in the first arousal state, electrical stimulation is delivered to a second portion of the brain to activate an arousal neural network in the first portion of the brain to induce a second arousal state to treat the cognitive disorder, where the second arousal state is different than the first arousal state.05-10-2012
20120065700SYSTEMS AND METHODS FOR ENHANCING OR OPTIMIZING NEURAL STIMULATION THERAPY FOR TREATING SYMPTOMS OF PARKINSONS DISEASE AND OR OTHER MOVEMENT DISORDERS - Systems and methods for treating a neurological disorder comprising determining a first set of neural stimulation parameters capable of treating a first subset of symptoms, determining a second set of neural stimulation parameters capable of treating a second subset of symptoms, and applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient. The first set of neural stimulation parameters can include electrical stimulation at a first frequency, and the second set of neural stimulation parameters can include electrical stimulation at a second frequency. In other embodiments, a treatment method comprises applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval, and applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval.03-15-2012
20120158092STIMULATION SYSTEM AND METHOD TREATING A NEUROLOGICAL DISORDER - According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a neurological condition. The system includes an electrical stimulation lead adapted for implantation into a subcutaneous area in communication with a predetermined site, wherein the site is neuronal tissue that is associated with C2/C3 dermatome area, or stimulating cervical nerve roots and/or stimulating cranial nerves and/or stimulating any area associated with the occipital area. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a neurological disorder or condition.06-21-2012
20120071947METHOD AND APPARATUS FOR EVENT-TRIGGERED REINFORCEMENT OF A FAVORABLE BRAIN STATE - Methods and apparatuses are disclosed for potentiating a favorable brain state that is associated with relief in symptoms of a brain condition. Techniques include monitoring one or more brain signals and detecting an episode of a favorable brain state based on the one or more brain signals, the favorable brain state associated with a decrease in one or more symptoms of a brain condition of the patient. Then, in response to the detection of the favorable brain state episode, electrical stimulation that potentiates the favorable brain state is delivered to the brain of the patient, the electrical stimulation delivered within a window of time opened for detection of each favorable brain state episode.03-22-2012
20110106206PATIENT CONTROLLED BRAIN REPAIR SYSTEM AND METHOD OF USE - A method of maintaining an information rate of a Brain-computer interface (BCI) system, implanted in a patient's brain, by regulating arousal level in the patient's brain is disclosed. The method includes selecting a patient with the implanted BCI device configured to receive neuronal activity from one or more electrodes connected to the patient's brain and to establish a communication channel between the patient and an external device controlled by the patient. Accordingly, a rate of information passage through the communication channel from the BCI device is measured, and a region of the patient's brain involved in arousal regulation, is stimulated in response to said measuring, under conditions effective to adjust the rate of information passing from the BCI device through the communication channel. A computer medium for carrying out this method and a BCI Arousal Regulation system are also disclosed.05-05-2011
20100280572OPEN LOOP DEEP BRAIN STIMULATION SYSTEM FOR THE TREATMENT OF PARKINSON'S DISEASE OR OTHER DISORDERS - A deep brain stimulation (DBS) system (11-04-2010
20100094377Method and apparatus for closed-loop deep brain stimulation in treating neurological diseases - A system that incorporates teachings of the present disclosure may include, for example, implanted deep brain stimulation electrodes, a stimulation sequence pulse generator, one or more implanted sensors for collecting data associated with one or more electrical signal from the vicinity of the site where stimulation is applied by the stimulation electrodes, and one or more noninvasive surface EMG electrodes to be attached to the patient's skin, say, on certain limbs and which may incorporate a wireless transmitter microchip, and a controller. The controller may incorporate one or more wireless receiver microchips to receive inputs from the sensors. It may also have wire input, if placed under the skin of the skull, for inputs from the implanted sensors. It will incorporate a signal processor to process and coordinate the sensed data from the various sensors and to predict the timing for its output commands. The controller also incorporates a decision element to produce a control output to be sent by wire or wireless to the stimulation sequence generator and which may be an on-off command. The signal processor will also discriminate between tremors and intentional movements in the EMG signals utilizing the EMG spectrum. An electronic switch device may be incorporated to allow the implanted electrodes to switch between serving as stimulation electrodes and voltage sensors, thus eliminating the need to implant any separate sensing electrodes. Alternatively, only noninvasive EMG sensing may be employed for closed-loop control.04-15-2010
20090210026SPG STIMULATION FOR ENHANCING NEUROGENESIS AND BRAIN METABOLISM - A method is provided, including identifying an electrical stimulation protocol as being suitable for augmenting genesis of one or more cell populations in at least one brain region of the subject. The cell genesis is augmented by applying the identified stimulation protocol to an SPG, a greater palatine nerve, a branch of the greater palatine nerve, a lesser palatine nerve, a sphenopalatine nerve, a communicating branch between a maxillary nerve and an SPG, an otic ganglion, an afferent fiber going into the otic ganglion, an efferent fiber going out of the otic ganglion, an infraorbital nerve, a vidian nerve, a greater superficial petrosal nerve, a lesser deep petrosal nerve, a maxillary nerve, a branch of the maxillary nerve, a nasopalatine nerve, a peripheral site that provides direct or indirect afferent innervation to the SPG, or a peripheral site that is directly or indirectly efferently innervated by the SPG.08-20-2009
20120316616IMPLANTABLE SYSTEM WITH INPUTS - A stimulation system can have a first sensor to generate a first reading and a second sensor to generate a second reading. An analysis module of a programmer such as a patient programmer, which programs a stimulation signal to be delivered to a patient, conducts an evaluation of the patient based on the first and second readings. Evaluations may include determinations such as range of motion determinations, posture determinations, physical task-specific brain activity determinations, cognitive task-specific brain activity determinations, and brain activity-specific movement determinations.12-13-2012
20120221074IMPLANTABLE MEDICAL DEVICE FOR PROVIDING STIMULATION THERAPY - An electrical stimulation system provides stimulation therapy to a patient. The system includes a neurostimulation lead that contacts patient tissue and couples with an implantable stimulation device, such as an implantable pulse generator, that receives stimulation parameters for providing stimulation therapy to a patient. The implantable stimulation device includes a header with a plurality of connector assemblies that receive an end of the neurostimulation lead, and a case containing a charging coil and a telemetry coil coupled to programming circuitry on a printed circuit board, which is in turn coupled to the connector assemblies via a feedthrough assembly. The telemetry coil receives data from an external programmer and transmits the data to the programming circuitry, which in turn uses the data to communicate to the connector assemblies and the neurostimulation lead to provide stimulation therapy to a patient.08-30-2012
20120221075COMPUTERIZED SYSTEM OR DEVICE AND METHOD FOR DIAGNOSIS AND TREATMENT OF HUMAN, PHYSICAL AND PLANETARY CONDITIONS - The invention outlines a system, method or device capable of modulating the planetary, physical, and brain related aspects of human existence through the combination of diagnostic and corrective or therapeutic or stimulation modalities that are capable of identifying and evaluating any imbalances or pathological conditions or abnormal conditions pertaining to the environment, brain condition, or physical conditions of human beings and applying corrective or stimulation modalities or influences that are capable of improving or optimizing or healing or otherwise balancing these planetary, physical, human, brain related or bodily aspects or measures or conditions.08-30-2012
20120165899NEURAL STIMULATION SYSTEM AND METHOD RESPONSIVE TO COLLATERAL NEURAL ACTIVITY - A neural stimulation system responsive to collateral neural activity that may arise in association with a neural stimulation procedure includes a stimulation interface configured to deliver stimulation signals to a target neural population, a monitoring interface positioned to receive signals corresponding to a neural activity within the target neural population, a stimulus unit coupled to deliver stimulation singals to the stimulation interface, and a sensing unit coupled to the monitoring device and the stimulus unit. The neural stimulation procedure may be directed toward rehabilitating, restoring, and/or enhancing one or more neural functions by facilitating and/or effectuating a neuroplastic change or reorganization; and/or affecting a neurological condition that exists on a continuous or essentially continuous basis absent the stimulation procedure. The sensing unit determines whether evidence of an collateral neural activity exists, whereupon the stimulus unit attempts to abate the collateral neural activity.06-28-2012
20120165898NEUROSTIMULATION SYSTEM FOR SELECTIVELY ESTIMATING VOLUME OF ACTIVATION AND PROVIDING THERAPY - An external control device, neurostimulation system, and method of programming a neurostimulator. A volume of tissue activation for each of a first one or more candidate stimulation parameter sets is simulated without conveying electrical stimulation energy into the tissue. One of the first candidate stimulation parameter set(s) is selected based on each simulated volume of tissue activation. Electrical stimulation energy is conveyed into the tissue in accordance with a second one or more candidate stimulation parameter sets, wherein the initial one of the second candidate stimulation parameter set(s) is the selected one of the first candidate stimulation parameter set(s). One of the second candidate stimulation parameter set(s) is selected based on a therapeutic efficacy of the electrical stimulation energy conveyed into the tissue. The neurostimulator is programmed with the selected one of the second candidate stimulation parameter set(s).06-28-2012
20120316615SYSTEMS AND METHODS FOR MAKING AND USING IMPROVED LEADS FOR ELECTRICAL STIMULATION SYSTEMS - A method for manufacturing a lead includes forming an elongated multi-lumen conductor guide defining a central stylet lumen and a plurality of conductor lumens arranged around the stylet lumen. The multi-lumen conductor guide is twisted to form at least one helical section where the plurality of conductor lumens each forms a helical pathway around the stylet lumen. Each of the helical pathways of the at least one helical section has a pitch that is no less than 0.04 turns per centimeter.12-13-2012
20100204749STIMULATION SYSTEM AND METHOD TREATING A NEUROLOGICAL DISORDER - According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a neurological condition. The system includes an electrical stimulation lead adapted for implantation into a subcutaneous area in communication with a predetermined site, wherein the site is neuronal tissue that is associated with C2/C3 dermatome area, or stimulating cervical nerve roots and/or stimulating cranial nerves and/or stimulating any area associated with the occipital area. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a neurological disorder or condition.08-12-2010
20100204748IDENTIFYING AREAS OF THE BRAIN BY EXAMINING THE NEURONAL SIGNALS - The present invention relates to a method of identifying a region of the brain by measuring neuronal firing and/or local field potentials by recording discharges from at least one implanted electrode and analyzing the recording of the discharges within the beta frequency band range to determine an area of beta oscillatory activity. Once the region of the brain is identified, this region may be stimulated to disrupt the beta oscillatory activity thereby treating a movement disorder.08-12-2010
20120136410SYSTEMS AND METHODS FOR NEUROMODULATION USING PRE-RECORDED WAVEFORMS - A method is provided for neuromodulation to treat stroke. One step of the method includes recording an input waveform from a first site in the nervous system in a source subject. The first site is healthy or at least partially functioning. Next, an output waveform is applied to a second site in the nervous system of a target subject suffering from the stoke. The second site is diseased due to the stroke.05-31-2012
20120136411APPARATUS AND METHODS FOR DETECTING MIGRATION OF NEUROSTIMULATION LEADS - Apparatus and methods for detecting lead migration through the use of measured artifactual data about the tissue in the vicinity of the lead.05-31-2012
20120136409RULE-BASED STIMULATION PROGRAM SEARCH - Techniques that involve application of one or more rules to a “parent” program to generate a plurality of different “child” programs are described. Each of the rules may define a respective electrode configuration modification, and each child program may be a variation of the parent based on a modification of the electrode configuration of the parent according to one of the rules. The systems or devices may generate further generations of child programs from a previous generation child program using the same one or more rules. The child programs may be provided to a user, so that the user may test the efficacy of the new programs, assisting the user in identifying desirable programs. The child programs may be relatively minor variations of the parent program, and the user may “fine tune” a generally desirable parent program by testing the child programs.05-31-2012
20120136408WAVEFORM SHAPES FOR TREATING NEUROLOGICAL DISORDERS OPTIMIZED FOR ENERGY EFFICIENCY - Systems and methods for stimulation of neurological tissue apply a stimulation waveform that is derived by a developed genetic algorithm (GA), which may be coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. The waveform is optimized for energy efficiency.05-31-2012
20110184486COMBINATION OF TONIC AND BURST STIMULATIONS TO TREAT NEUROLOGICAL DISORDERS - The present application relates to a new stimulation design which can be utilized to treat neurological conditions. The stimulation system produces a combination of burst and tonic stimulation which alters the neuronal activity of the predetermined site, thereby treating the neurological condition or disorder.07-28-2011
20090149913Wireless System for Epilepsy Monitoring and Measurement - A wireless system for monitoring a patient's brain tissue including (1) a plurality of electrodes abutting brain tissue, (2) main circuitry outside the patient's body to transmit power at radio frequencies and send/receive data using infrared energy, and (3) subcutaneously-implanted remote circuitry connected to the electrodes and configured to (a) receive transmitted RF power, (b) capture and digitize EEG signals from the electrodes, and (c) send/receive data to/from the main circuitry using IR energy, including sending digitized EEG signals from each electrode to capture the full bandwidth of each EEG signal. The system preferably includes circuitry to measure the electrical impedance of each electrode for real-time monitoring of the condition of the electrode/tissue interfaces to enhance interpretation of captured EEG signals.06-11-2009
20100298908Various Apparatus and Methods for Deep Brain Stimulating Electrodes - A deploying deep brain stimulating probe with a shaft, at least one opening on said shaft, at least one extendable tendril, said tendril deploying from said shaft into surrounding tissue through said opening and an electrode disposed on said tendril.11-25-2010
20090105782VAGUS NERVE STIMULATION APPARATUS, AND ASSOCIATED METHODS - Methods and apparatus for providing vagus nerve stimulation for the treatment of diseases such as depression and epilepsy that do not require an onboard, implanted power supply. Power may be supplied from outside of the body by near-field inductive coupling with an external power supply provided in a support article (e.g., garment) worn by the patient. Power may also be supplied by providing an antenna for harvesting ambient RF energy and converting it into DC power. In addition, the methods and apparatus provide for remote, wireless programming of the parameters that specify the nature of current pulses provided to the vagus nerve by probes implanted in the body of the patient. The preferred stimulation profile is 1-2 milliamp pulses of 250 microseconds in duration at a frequency of 20 to 30 Hz, wherein the profile is repeatedly on for 30 seconds and off for 5 minutes.04-23-2009
20120191157TARGET THERAPY DELIVERY SITE SELECTION - In some examples of selecting a target therapy delivery site for treating a patient condition, a relatively high frequency electrical stimulation signal is delivered to at least two areas within a first region (e.g., an anterior nucleus of the thalamus) of a brain of a patient, and changes in brain activity (e.g., as indicated by bioelectrical brain signals) within a second region (e.g., a hippocampus) of the brain of the patient in response to the delivered stimulation are determined. The target therapy delivery site, an electrode combination, or both, may be selected based on the changes in brain activity.07-26-2012
20090018609Closed-Loop Feedback-Driven Neuromodulation - A neurological control system for modulating activity of any component or structure comprising the entirety or portion of the nervous system, or any structure interfaced thereto, generally referred to herein as a “nervous system component.” The neurological control system generates neural modulation signals delivered to a nervous system component through one or more neuromodulators, comprising intracranial (IC) stimulating electrodes and other actuators, in accordance with treatment parameters. Such treatment parameters may be derived from a neural response to previously delivered neural modulation signals sensed by one or more sensors, each configured to sense a particular characteristic indicative of a neurological or psychiatric condition.01-15-2009
20110004268Responsive Electrical Stimulation for Movement Disorders - An implantable neurostimulator system for treating movement disorders includes a sensor, a detection subsystem capable of identifying episodes of a movement disorder by analyzing a signal received from the sensor, and a therapy subsystem capable of supplying therapeutic electrical stimulation to treat the movement disorder. The system treats movement disorders by detecting physiological conditions characteristic of an episode of symptoms of the movement disorder and selectively initiating therapy when such conditions are detected.01-06-2011
20110004267DEVICES AND METHODS FOR BRAIN STIMULATION - A device for brain stimulation that includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; and at least one recording electrode, separate from the at least one stimulation electrode, disposed along the longitudinal surface of the lead.01-06-2011
20120239110NEUROSTIMULATION SYSTEM AND METHOD FOR ROSTRO-CAUDALLY STEERING CURRENT USING LONGITUDINAL IDEAL MULTIPOLE CONFIGURATIONS - A system for an electrical neurostimulator coupled to a plurality of electrodes. The system comprises a user-controlled input device configured for generating directional control signals. The system further comprises control circuitry configured for sequentially defining a plurality of different ideal bipole/tripole configurations relative to the plurality of electrodes in response to the directional control signals, generating a plurality of stimulation parameter sets respectively corresponding to the plurality of ideal bipole/tripole configurations, each stimulation parameter set defining relative amplitude values for the plurality of electrodes that emulate the respective ideal bipole/tripole configuration, and instructing the electrical neurostimulator to convey electrical energy to the plurality of electrodes in accordance with the plurality of stimulation parameter sets.09-20-2012
20120239109NEUROSTIMULATION SYSTEM FOR DEFINING A GENERALIZED IDEAL MULTIPOLE CONFIGURATION - A system for a neurostimulator coupled to electrodes. The system comprises an input device configured for generating control signals. The system further comprising memory storing a first set of variable values defining a first spatial relationship between a central ideal pole of a first polarity and the plurality of electrodes, a second set of variable values defining a second spatial relationship respectively between four ideal poles of a second polarity and the first ideal pole, and a third set of variable values defining relative intensities between the four ideal poles. The system further comprises control circuitry configured for modifying the first variable values, the second variable values, and/or the third variable values, and generating stimulation parameter values defining relative amplitude values for the electrodes that emulate the ideal poles, and instructing the neurostimulator to convey electrical energy to the electrodes in accordance with the stimulation parameter values.09-20-2012
20120239108APPARATUS FOR ENERGY EFFICIENT STIMULATION - An apparatus is disclosed for providing efficient stimulation. As an example, a variable compliance regulator can be connected to supply a compliance voltage to a power supply rail, which compliance voltage can vary dynamically based on a stimulus waveform. A pulse generator can be configured to provide an output waveform to one or more output based on the stimulus waveform for delivery of electrical therapy.09-20-2012
20120265266DEVICE LONGEVITY PREDICTION FOR A DEVICE HAVING VARIABLE ENERGY CONSUMPTION - A system and method for estimating the longevity of an implantable medical device (IMD). In one embodiment of a method for estimating a life of a power source of an implantable medical device, a first life estimate of the power source is determined based on a first open-loop value corresponding to an open-loop parameter for open-loop therapy delivery, a first closed loop value corresponding to a closed-loop parameter for closed-loop therapy delivery, and prior usage data corresponding to prior therapy delivery. The first life estimate of the power source is displayed. The first life estimate displayed includes a first open-loop portion associated with open-loop therapy delivery and a first closed-loop portion associated with closed-loop therapy delivery.10-18-2012
20120265267CLINICIAN PROGRAMMER SYSTEM AND METHOD FOR CALCULATING VOLUMES OF ACTIVATION - A system and method for providing a volume of activation (VOA) of a stimulation electrode leadwire may include a processor that calculates a VOA for each of a plurality of sets of parameter settings of the leadwire, stores in a database each of the calculated VOAs in association with the respective set of parameter settings for which it was calculated, obtains a set of parameter settings of the leadwire for a stimulation, and determines a VOA for the obtained set of parameter settings based on the stored VOAs.10-18-2012
20110046693Deep Brain Stimulation Device Having Wireless Power Feeding By Magnetic Induction - Provided is a deep brain stimulation (DBS) device having power wirelessly fed by a magnetic induction to form a rotating magnetic field using a rotating magnetic field disk installed inside a hat put on a patient and generate induced power using an induction coil plate fixed underneath a scalp of the patient to be combined with the rotating magnetic field, to drive electrodes implanted into a brain of the patient so as to correct abnormal motor and sensory functions of the patient using power wirelessly fed from an outside into a body of the patient. The DBS device includes: a hat module which is installed inside a hat put on a head of the o patient to generate a rotating magnetic field; and an implantation module which is implanted through a skull under a scalp to contact a nervous system of the patient and combined with the rotating magnetic field of the hat module to stimulate the cerebral nerve using induced power generated by the magnetic induction.02-24-2011
20120271375ELECTRICAL BRAIN THERAPY PARAMETER DETERMINATION BASED ON A BIOELECTRICAL RESONANCE RESPONSE - Various methods and apparatuses are disclosed that concern delivering electrical stimulation to a brain at a plurality of different stimulation frequencies, sensing one or more bioelectrical signals, and identifying a bioelectrical resonance response of the brain to the electrical stimulation. The bioelectrical resonance response may be identified based on a parameter of oscillation of the one or more bioelectrical signals and indicative of resonance of an area of the brain to one stimulation frequency of the plurality of stimulation frequencies. A stimulation frequency parameter for a therapy may be set based on the identified bioelectrical resonance response, wherein the stimulation frequency parameter is set at or near the one stimulation frequency.10-25-2012
20120271376CLINICIAN PROGRAMMER SYSTEM AND METHOD FOR STEERING VOLUMES OF ACTIVATION - A system and method for selection of stimulation parameters for Deep Brain Stimulation (DBS) may include a processor that displays in a display device and in relation to a displayed model of a leadwire including model electrodes, a current field corresponding to a first stimulation parameter set, provides a user interface for receipt of user input representing a shift of the current field, in response to the user input, moves, in the display device, the current field with respect to the displayed model, determines a second stimulation parameter set that results in the moved current field, and outputs the second stimulation parameter set and/or sets a stimulation device with the second stimulation parameter set, where the stimulation device is configured for performing a stimulation using the leadwire in accordance with the second stimulation parameter set.10-25-2012
20120271377TRANSCRANIAL STIMULATION DEVICE AND METHOD BASED ON ELECTROPHYSIOLOGICAL TESTING - Embodiments of the disclosed technology provide a combination electroencephalography and non-invasive stimulation devices. Upon measuring an electrical anomaly in a region of a brain, various tDCS or other electrical stimulations are utilized to correct neural activity. Devices of the disclosed technology may utilize visual, balance, auditory, and other stimuli to test the subject, analyze necessary brain stimulations, and administer stimulation to the brain.10-25-2012
20120271374ELECTRICAL THERAPY FOR FACILITATING INTER-AREA BRAIN SYNCHRONIZATION - Methods and apparatuses are described for monitoring synchronization of two or more brain areas and delivering an electrical therapy to the brain to facilitate synchronization of the two or more brain areas. The electrical therapy can be titrated to improve synchronization between the two or more areas of the brain based on the one or more signals, the synchronization between the two or more areas of the brain occurring in response to the patient being exposed to external sensory stimulus, wherein the electrical therapy does not independently cause activation of either of the two or more areas of the brain.10-25-2012
20110213440ELECTROMAGNETIC SIGNAL DELIVERY FOR TISSUE AFFECTED BY NEURONAL DYSFUNCTION, DEGRADATION, DAMAGE, AND/OR NECROSIS, AND ASSOCIATED SYSTEMS AND METHODS - Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods are disclosed. A method in accordance with one embodiment of the invention includes identifying an affected region, with the affected region including neuronal tissue that, at least during a pre-dysfunctional period, was in neural communication with neuronal tissue in a dysfunctional region. The affected tissue can be functionally adversely affected by neuronal dysfunction in the dysfunctional region. The method can further include applying electromagnetic signals to the neuronal tissue in the affected region. For example, the electromagnetic signals can be applied to a hypo-active neural region that is not physically damaged, and has been identified as likely to recover at least in part as a result of electromagnetic signals. Signals can be applied at sub-threshold levels to cortical and/or subcortical regions.09-01-2011
20120277821High Resolution Electrical Stimulation Leads - System for providing a stimulus comprising a probe with multiple electrodes each capable of providing a particular current to surrounding tissue a generator for providing to each of the electrodes the particular current a controller for controlling the generator to provide current to the electrodes to achieve a desired electrical field around the probe.11-01-2012
20120277820ENTRAINMENT OF BIOELECTRICAL BRAIN SIGNALS - The disclosure relates to the delivery of electrical stimulation therapy to the brain of a patient, e.g., to treat or otherwise manage a patient disorder. In one example, the disclosure relates to a method comprising generating electrical stimulation via a medical device; delivering the electrical stimulation at a first frequency to a brain of a patient when the bioelectrical brain signals of the patient oscillate at a second frequency, where the second frequency corresponds to pathological brain signals of the patient, where the electrical stimulation is selected to entrain the bioeiectrical brain signals of the patient; and adjusting the delivered electrical stimulation from the first frequency to a third frequency, where adjusting the delivered electrical stimulation changes the bioelectrical brain signal oscillations to a fourth frequency different from the second frequency. The fourth frequency may correspond to an oscillation frequency of non-pathological brain signals of the patient.11-01-2012
20090264957ANALYZING A WASHOUT PERIOD CHARACTERISTIC FOR PSYCHIATRIC DISORDER THERAPY DELIVERY - A characteristic of a washout period following the delivery of therapy to a patient according to a therapy program may be determined based on a physiological parameter of the patient. A washout period includes the period of time during which a carryover effect from the therapy dissipates. The washout period characteristic may include, for example, a duration of the washout period, an amplitude or a trend in a physiological signal during the washout period or a power level or a ratio of power levels in frequency bands of the physiological signal. In some embodiments, washout period characteristics associated with a plurality of therapy programs may be used to compare the programs. In other embodiments, a washout period characteristic may be used to determine a mood state of the patient and, in some cases, modify a therapy program. Monitoring a washout period may also be useful for timing therapy program trials.10-22-2009
20120277819OVERWRAP FOR NERVE STIMULATION SYSTEM - A nerve overwrap for an implantable nerve stimulation system includes a flexible sheet of electrically insulative material, having an electrical resistivity of from about 1011-01-2012
20120330374SYSTEM AND METHOD FOR DETERMINING TARGET STIMULATION VOLUMES - A system and method may include determining a target stimulation volume based on modifying a patient population image for which an efficacious volume had been determined. A system and method for suggesting stimulation devices may include determining which stimulation device is capable of producing an output volume of activation that most closely matches the target volume. A system and method for facilitating selection of stimulation parameters may include graphically identifying a maximum volume in which tissue is stimulatable by an implanted stimulation device. A system and method may pre-compute volumes of activation that result from a predetermined modification of programming settings. A system and method may transmit stimulation programming settings from a stimulation programming module to a stimulation generating device.12-27-2012
20110319962MEDICAL METHOD AND DEVICE FOR MONITORING A NEURAL BRAIN NETWORK - Bioelectrical signals may be sensed within the brain by two or more electrodes to determine characteristics of a function of the brain. The signals obtained by the electrodes may be plotted over time to determine whether the brain function exhibits a normal or an abnormal pattern. If the brain function exhibits an abnormal pattern, an implantable medical device may dynamically determine based on the abnormal pattern and a previously-obtained plot associated with normal brain function, an appropriate electrical stimulation therapy. Application of the appropriate electrical stimulation therapy causes the brain function to shift from the abnormal pattern to the normal pattern.12-29-2011
20120101547ELECTRICAL STIMULATION BASED ON PHASE RESPONSE MAPPING - This disclosure describes techniques for delivering electrical stimulation at one or more phases relative to an ongoing oscillating signal in a patient, and then mapping the response to the oscillating signal. The techniques may reduce or eliminate the oscillating signal. In one example, the disclosure is directed to a method that includes delivering a set of first electrical stimulation at a plurality of phases relative to an oscillating signal, measuring a response in the oscillating signal to the set of first electrical stimulation after delivering electrical stimulation at each respective phase of the plurality of phases, determining a phase at which to deliver second electrical stimulation based on the measured responses, and delivering the second electrical stimulation to the patient at the determined phase to produce a therapeutic effect.04-26-2012
20120290039MANAGEMENT OF STIMULATION SAFETY LIMITS IN A NEUROSTIMULATION SYSTEM - A neurostimulation system for management of stimulation safety limits. The system determines a tissue charge injection metric at each electrode, compares the metric to the hard stop charge limit, and prevents the neurostimulator from delivering stimulation energy to the tissue region in accordance based on the comparison. The hard stop limit may be user-programmable or may be automatically modified in response to detection of electrode characteristics. The system may quantitatively notify a user of a value of the injected charge injected into the tissue. The electrodes may be organized into different sets, in which case, the system may directly control tissue charge independently at each of the electrode sets. If current steering is provided, the system may displace the electrical stimulation energy along the tissue region in one direction, while preventing the charge injection value at each of the electrodes from meeting or exceeding the hard stop charge limit.11-15-2012
20120290038MANAGEMENT OF STIMULATION SAFETY LIMITS IN A NEUROSTIMULATION SYSTEM - A neurostimulation system for management of stimulation safety limits. The system determines a tissue charge injection metric at each electrode, compares the metric to the hard stop charge limit, and prevents the neurostimulator from delivering stimulation energy to the tissue region in accordance based on the comparison. The hard stop limit may be user-programmable or may be automatically modified in response to detection of electrode characteristics. The system may quantitatively notify a user of a value of the injected charge injected into the tissue. The electrodes may be organized into different sets, in which case, the system may directly control tissue charge independently at each of the electrode sets. If current steering is provided, the system may displace the electrical stimulation energy along the tissue region in one direction, while preventing the charge injection value at each of the electrodes from meeting or exceeding the hard stop charge limit.11-15-2012
20120290040MANAGEMENT OF STIMULATION SAFETY LIMITS IN A NEUROSTIMULATION SYSTEM - A neurostimulation system for management of stimulation safety limits. The system determines a tissue charge injection metric at each electrode, compares the metric to the hard stop charge limit, and prevents the neurostimulator from delivering stimulation energy to the tissue region in accordance based on the comparison. The hard stop limit may be user-programmable or may be automatically modified in response to detection of electrode characteristics. The system may quantitatively notify a user of a value of the injected charge injected into the tissue. The electrodes may be organized into different sets, in which case, the system may directly control tissue charge independently at each of the electrode sets. If current steering is provided, the system may displace the electrical stimulation energy along the tissue region in one direction, while preventing the charge injection value at each of the electrodes from meeting or exceeding the hard stop charge limit.11-15-2012
20100204750METHOD AND APPARATUS FOR UTILIZING AMPLITUDE-MODULATED PULSE-WIDTH MODULATION SIGNALS FOR NEUROSTIMULATION AND TREATMENT OF NEUROLOGICAL DISORDERS USING ELECTRICAL STIMULATION - A computing device-controlled system is described for the generation of amplitude-modulated pulse-width modulation (AMPWM) signals for use in treating neurological dysfunction via cranial neurostimulation, where the AMPWM signal is specifically designed to minimize the electrical impedance of the tissues of the head. A low-frequency carrier signal is determined for the AMPWM signal by measuring EEG activity at a reference site or sites, generally corresponding with the location of suspected brain dysfunction. Carrier signal frequency is variably related to critical frequency components of the EEG power spectral density, determined from statistical analysis of amplitudes and variability, and dynamically changed as a function of time to prevent entrainment. The AMPWM signal is presented to a subject via a plurality of neurostimulation delivery modes for therapeutic use.08-12-2010
20100185256METHODS AND SYSTEMS FOR ESTABLISHING, ADJUSTING, AND/OR MODULATING PARAMETERS FOR NEURAL STIMULATION BASED ON FUNCTIONAL AND/OR STRUCTURAL MEASUREMENTS - Methods and systems for establishing, adjusting, and/or modulating parameters for neural stimulation based, at least in part, on functional and/or structural measurements are disclosed. A method in accordance with one embodiment includes measuring a volume of functionally active neural tissue within a patient's central nervous system both before and after affecting a target neural population of the patient with electromagnetic stimulation. The method further includes controlling at least one signal delivery parameter with which the electromagnetic stimulation is applied to the patient based, at least in part, on the measured difference in the volume of functionally active neural tissue.07-22-2010
20100131030METHODS AND APPARATUS FOR EFFECTUATING A CHANGE IN A NEURAL-FUNCTION OF A PATIENT - The present disclosure is directed generally to methods and apparatus for effectuating a change in a neural function of a patient. A method in accordance with a particular embodiment includes implanting an electrode at a cortical stimulation site selected to promote recovery of the affected neural-function, with the cortical stimulation site being at least proximate to the cortex. The method can further include estimating a threshold for the specific patient at which an electrical signal delivered via the implanted electrode directly triggers a neural reaction associated with the stimulation site in response to the delivered electrical signal, and electrically stimulating the cortical stimulation site by Passing an electrical current through the electrode.05-27-2010
20120150258COLLECTING POSTURE AND ACTIVITY INFORMATION TO EVALUATE THERAPY - A medical device, programmer, or other computing device may determine values of one or more activity and, in some embodiments, posture metrics for each therapy parameter set used by the medical device to deliver therapy. The metric values for a parameter set are determined based on signals generated by the sensors when that therapy parameter set was in use. Activity metric values may be associated with a postural category in addition to a therapy parameter set, and may indicate the duration and intensity of activity within one or more postural categories resulting from delivery of therapy according to a therapy parameter set. A posture metric for a therapy parameter set may indicate the fraction of time spent by the patient in various postures when the medical device used a therapy parameter set. The metric values may be used to evaluate the efficacy of the therapy parameter sets.06-14-2012
20120150257Seizure prediction and neurological disorder treatment - A prediction and stimulation system or method is provided for neurological disorders characterized by a local dysfunction in neuronal activity regulation. An array of electrodes detects neuronal electrical activity of selected brain region. A detection module detects in each electrode changes in electric field and neuronal activity. A prediction module predicts for each electrode abnormal regimes determined by neurological disorder. A neuromodulation module interfaced with the electrodes selects one or more electrodes in the array where a predefined threshold has been exceeded and stimulates the brain region through each of these selected electrodes using an intermittent therapeutic stimulation pattern with a frequency between 150 and 200 Hz. The provided therapy allows for seizure prediction and detection with high accuracy, potential low risk and increased battery life. The flexibility of the method and system allows it to be used in different neurological disorders by tuning the parameters using a calibration procedure.06-14-2012
20120150256System and Method for Deep Brain Stimulation06-14-2012
20130018435STIMULATION OF THE AMYGDALOHIPPOCAMPAL COMPLEX TO TREAT NEUROLOGICAL CONDITIONS - A system and/or method treating for a neurological disorder by brain region stimulation. The system and/or method comprises a probe and a device to provide stimulation. The probe has a stimulation portion implanted in communication with a predetermined brain region site. The stimulation portion of the probe may be implanted in contact with a predetermined brain region.01-17-2013
20100125311Adjustable implant electrode system and implant electrode assembly thereof - An adjustable implant electrode system comprises an adjustable implant electrode assembly and an adjustment device for adjusting the adjustable implant electrode assembly to a desired position. The adjustable implant electrode assembly comprises an implant, a plurality of electrodes, and a plurality of magnetic components. The electrodes are disposed in the implant for providing stimulating currents according to a control signal. The magnetic components are combined with the electrodes in one-to-one correspondence. The adjustment device comprises a control unit, an excitation unit, and one or more magnetic units. The control unit is used to select one or more magnetic components to be moved from the magnetic components, and the excitation unit is used to excite the selected one or more magnetic components for the same to generate a magnetic pole, and the magnetic unit is adapted to generate a magnetic filed to drive the magnetic pole and accordingly move the implant.05-20-2010
20110160796AUTOMATIC EVALUATION TECHNIQUE FOR DEEP BRAIN STIMULATION PROGRAMMING - Neurostimulation systems and methods for providing therapy to a patient suffering from a symptom of a disease that latently responds to electrical stimulation therapy are provided. First electrical stimulation energy is conveyed to or from a tissue region of the patient in accordance with a first set of stimulation parameters, thereby affecting the symptom. A predetermined period of time estimated for the symptom to resolve in response to electrical stimulation therapy is allowed to elapse. Second electrical stimulation energy is conveyed to or from the tissue region in accordance with a second set of stimulation parameters different from the first set of stimulation parameters.06-30-2011
20110160795SYSTEM AND APPARATUS FOR AUTOMATED QUANTITATIVE ASSESSMENT, OPTIMIZATION AND LOGGING OF THE EFFECTS OF A THERAPY - A method for assessment, optimization and logging of the effects of a therapy for a medical condition, including (a) receiving into a signal processor input signals indicative of the subject's brain activity; (b) characterizing the spatio-temporal behavior of the brain activity using the signals; (c) delivering a therapy to a target tissue of the subject; (d) characterizing the spatio-temporal effect of the therapy on the brain activity; (e) in response to the characterizing, optimizing at least one parameter of the therapy if the brain activity has not been satisfactorily modified and/or has been adversely modified by the therapy; (f) characterizing the spatio-temporal effect of the at least one optimized parameter; and (g) logging to memory the at least one optimized parameter. A computer readable program storage unit encoded with instructions that, when executed by a computer, performs the method.06-30-2011
20080234780SELECTIVE NERVE STIMULATION WITH OPTIONALLY CLOSED-LOOP CAPABILITIES - Systems and methods for steering one or more stimulation fields to a selected nerve target, thereby optimizing one or a combination of low stimulation thresholds, desired therapy outcomes, or a minimization of adverse stimulation side-effects. An array of electrodes disposed, at least in part, on two or more neural stimulation leads are used for steering the stimulation fields to the selected nerve target and are positioned adjacent the selected target. The stimulation may be titrated based on, among other things, a detected physiologic response to the applied stimulation.09-25-2008
20080228239Systems And Methods For Altering Vestibular Biology - The present invention relates to systems and methods for management of brain and body functions and sensory perception. For example, the present invention provides systems and methods of sensory substitution and sensory enhancement (augmentation) as well as motor control enhancement. The present invention also provides systems and methods of treating diseases and conditions, as well as providing enhanced physical and mental health and performance through sensory substitution, sensory enhancement, and related effects. In particular, the present invention provides systems and methods for altering vestibular biology to, among other things, treat diseases and conditions or enhance performance related to vestibular functions.09-18-2008
20110264165STIMULATION ELECTRODE SELECTION - One or more stimulation electrodes may be selected based on a bioelectrical signal sensed in a brain of a patient with a sense electrode combination that comprises at least one electrode and a physiological model that indicates one or more anatomical structures of the brain of the patient that are proximate the implanted at least one electrode. In some examples, the bioelectrical brain signal indicates which electrodes are located closest to a target tissue site. The physiological model can be generated based on a location of implanted at least one electrode within a patient and patient anatomy data, which can, for example, indicate one or more characteristics of patient tissue proximate to the implanted at least one electrode. In some example, the physiological model includes a therapy field model that represents a region of the tissue of the patient to which therapy is delivered via a selected set of electrodes.10-27-2011
20130178913METHODS FOR TARGETING DEEP BRAIN SITES TO TREAT MOOD AND/OR ANXIETY DISORDERS - The present invention relates to a method of identifying a target such as within the subgenual area by measuring neuronal activity in response to a stimulus. Once the target is identified, it can be stimulated to treat a neurological disorder, such as a mood disorder or an anxiety disorder.07-11-2013
20130178914NEUROSTIMULATOR INVOLVING STIMULATION STRATEGIES AND PROCESS FOR USING IT - This is a neurostimulator that is configured to treat epilepsy and other neurological disorders using certain stimulation strategies, particularly changing various pulse parameters, during the imposition of a burst of those pulses. The invention includes the processes embodying those stimulation strategies.07-11-2013
20120253421SYSTEMS AND METHODS FOR AUTOMATICALLY OPTIMIZING STIMULUS PARAMETERS AND ELECTRODE CONFIGURATIONS FOR NEURO-STIMULATORS - System and method for automatically optimizing the stimulus parameters and/or the configuration of electrodes to provide neural stimulation to a patient, the system includes an electrode array having a support member configured to be implanted into the patient and a plurality of therapy electrodes carried by the support member. The system can also have a pulse system operatively coupled to the therapy electrodes to deliver a stimulus to the therapy electrodes, and a sensing device configured to be attached to a sensing location of the patient. The sensing device generates response signals in response to the stimulus. The system can also include a controller that generates command signals that define the stimulus delivered by the pulse system, evaluates the response signals from the sensing device, and determines a desired configuration for the therapy electrodes and/or a desired stimulus to be delivered to the therapy electrodes.10-04-2012
20130138176BRAIN STIMULATION PROGRAMMING - A programming system allows a user to program therapy parameter values for therapy delivered by a medical device by specifying a desired therapeutic outcome. In an example, the programming system presents a model of a brain network associated with a patient condition to the user. The model may be a graphical representation of a network of anatomical structures of the brain associated with the patient condition and may indicate the functional relationship between the anatomical structures. Using the model, the user may define a desired therapeutic outcome associated with the condition, and adjust excitatory and/or inhibitory effects of the stimulation on the anatomical structures. The system may determine therapy parameter values for therapy delivered to the patient based on the user input.05-30-2013
20130138177ELECTRICAL STIMULATION SYSTEM AND METHOD FOR STIMULATING TISSUE IN THE BRAIN TO TREAT A NEUROLOGICAL CONDITION - According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a neurological condition. The system includes an electrical stimulation lead adapted for implantation in communication with a predetermined site, wherein the site is brain tissue site. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a neurological disorder or condition.05-30-2013
20130090704SYSTEM AND METHOD OF DELIVERING VESTIBULAR STIMULATION CUSTOMIZABLE TO INDIVIDUAL SUBJECTS - The vestibular system of a subject is stimulated in accordance with a therapy regime that dictates one or more parameters of the stimulation. The system is configured such that at a single site, one or more parameters of the stimulation varies for different locations at the site. This may enhance the customizability and/or effectiveness of the stimulation.04-11-2013
20110313485GUIDED PROGRAMMING WITH FEEDBACK - Techniques that involve generating test stimulation programs based upon specific patient feedback to guide the programming process for stimulation therapy are described. The patient describes positive effects and adverse effects of the test stimulation by listing and/or rating specific types of effects, both positive and adverse, and the location of each effect. In this manner, a programming device, i.e. a programmer, uses the feedback to generate subsequent test stimulation programs. Initially, programs with unipolar electrode configurations are tested, but the programmer may generate bipolar electrode configurations to test if the patient rates the unipolar electrode combinations poorly. After the stimulation programs are tested and rated, the programmer sorts the tested programs based upon the feedback and presents the tested programs to the user. The user selects the best tested program to use for chronic stimulation therapy. Additionally, the patient may utilize the guided programming technique for continued therapy optimization.12-22-2011
20130131755PATIENT DIRECTED THERAPY CONTROL - A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.05-23-2013
20130204316APPARATUS FOR THE TREATMENT OF BRAIN AFFECTIONS AND METHOD IMPLEMENTING THEREOF - The present invention relates to an apparatus for the treatment of a brain affection, which comprises at least one implantable generator (08-08-2013
20130204317IMPLANTABLE DEVICE OF THE NEURAL INTERFACE TYPE AND ASSOCIATED METHOD - The main object of the invention is an implantable device of the neural interface type for processing signals, including: 08-08-2013
20130204318Thin Film for a Lead for Brain Applications - A thin film for a lead for brain applications includes at least one section comprising a high conductive metal and a low conductive metal, whereby the low conductive metal is a biocompatible metal and has a lower electrical conductivity than the high conductive metal and whereby the high conductive metal is at least partially encapsulated by the low conductive metal. Furthermore, the present invention relates to a method of manufacturing a thin film for a lead for brain applications and a deep brain stimulation system.08-08-2013
20130131754LEADLESS SYSTEM FOR DEEP BRAIN STIMULATION USING TIME REVERSAL ACOUSTICS - A leadless Deep Brain Stimulation system includes an implantable stimulator configured to convert incoming acoustic energy into an electric stimulation signal. The acoustic energy is provided by one or more external transmitters acoustically coupled to a head of the subject. To focus ultrasound energy onto the location of the stimulator, a wireless beacon (including a piezoelectric receiving transducer and an RF emitting antenna) is incorporated with the stimulator for providing an electromagnetic feedback signal to the external controller. The external controller is configured to send an initial unfocused acoustic signal towards the stimulator and receive the electromagnetic radiofrequency feedback signal generated by the receiving piezotransducer when affected by the acoustic signal after reverberation in the skull. This signal is then time-reversed and used to send a second signal towards the stimulator. This signal is inherently focused on the site of the stimulator and is configured to carry sufficient energy to operate the stimulator for DBS purposes.05-23-2013
20080208285Methods for Treating Neurological Disorders, Including Neuropsychiatric and Neuropsychological, Disorders, and Associated Systems - Methods for treating neurological disorders, including neuropsychiatric and neuropsychological disorders, and associated systems are disclosed. One such method includes identifying one or more neural populations, including a cortical target neural population, associated with a neurological condition. The method can further include comparing a patient-specific measure of a characteristic parameter for a selected one of the neural populations with a target measure for the same parameter. If the patient-specific measure differs from the target measure by at least a target amount, the method can include selecting an electrical signal polarity, frequency, or both polarity and frequency based at least in part on the difference between the patient-specific measure and the target measure. The method can further include applying electrical signals to the target neural population at the selected signal polarity, frequency, or both polarity and frequency to reduce the difference between the patient-specific measure and the target measure.08-28-2008
20080200967Apparatus and Method For Electrostimulation /Sensing in Vivo - An apparatus and method for electrostimulation treatment of neurological diseases is disclosed herein. The apparatus and method include an array (08-21-2008
20110224753Electrical Stimulation Device and Method for the Treatment of Neurological Disorders - An electrical stimulation system and method for the treatment of neurological disorders is disclosed. In a preferred embodiment, the electrical stimulation system includes channels of electrodes positioned in electrical contact with tissue of a neuromuscular target body region of a patient to provide pattered neuromuscular stimulation to the patient's musculature. In addition, at least one electrode from a channel is positioned in electrical contact with a tissue of the motor control region of the brain. A series of patterned electrical pulses are then applied to the patient through the channels to provide peripheral neuromuscular stimulation, and a direct current is applied transcranially to the brain. Various exemplary embodiments of the invention are disclosed.09-15-2011
20100286747METHODS FOR APPLYING BRAIN SYNCHRONIZATION TO EPILEPSY AND OTHER DYNAMICAL DISORDERS - For analyzing a multi-component system, a method acquires a plurality of signals, each having a different spatial location of the multi-component system, and generates dynamic profiles for each of the plurality of signals. Each of the plurality of dynamic profiles reflects dynamic characteristics of the corresponding signal in accordance with each one of a plurality of dynamic measures. The method selects pairs of dynamic profiles from the acquired dynamic profiles based on a predetermined level of synchronization and generates a statistical measure for each of the selected plurality of pairs of dynamic profiles. The method characterizes state dynamics of the multi-component system as a function of at least one of the generated statistical measures, and generates a signal indicative of the characterized state dynamics of the multi-component system. The method enables seizure detection, seizure prediction, seizure focus localization, differential diagnosis of epilepsy and evaluation of seizure intervention strategies11-11-2010
20110238129HELICAL RADIAL SPACING OF CONTACTS ON A CYLINDRICAL LEAD - A device for brain stimulation includes a lead having a longitudinal surface, a proximal end and a distal end; and a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes at least four segmented electrodes having exposed surfaces where each exposed surface has a center point. The center points of the at least four segmented electrodes are disposed on a substantially helical path about the longitudinal surface of the lead.09-29-2011
20100292754SYSTEMS AND METHODS FOR ENHANCING OR OPTIMIZING NEURAL STIMULATION THERAPY FOR TREATING SYMPTOMS OF PARKINSON'S DISEASE AND/OR OTHER MOVEMENT DISORDERS - Systems and methods for treating a neurological disorder comprising determining a first set of neural stimulation parameters capable of treating a first subset of symptoms, determining a second set of neural stimulation parameters capable of treating a second subset of symptoms, and applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient. The first set of neural stimulation parameters can include electrical stimulation at a first frequency, and the second set of neural stimulation parameters can include electrical stimulation at a second frequency. In other embodiments, a treatment method comprises applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval, and applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval.11-18-2010
20100292750APPARATUS AND METHOD FOR FOCAL ELECTRICALLY ADMINISTERED SEIZURE THERAPY USING TITRATION IN THE CURRENT DOMAIN - An ECT system capable of focusing the electrical signals on a specific portion of the patient's brain is provided. The ECT system includes a means of applying unidirectional electrical signals and asymmetric electrodes for focusing the signals on the patient. A method of titrating an electro-convulsive therapy (ECT) system and a method of operating an ECT system are also provided. The method includes setting an initial current value, administering an ECT signal to the patient, determining if the seizure threshold has been achieved, and repeating as necessary until the seizure threshold is achieved.11-18-2010
20130184779VOLTAGE LIMITED NEUROSTIMULATION - Methods and systems for delivering voltage limited neurostimulation to a patient. In one aspect, a method includes initiating a flow of electrical current through a first electrode and a second electrode coupled to the patient and increasing the flow of electrical current toward a target value by increasing a voltage across the first electrode and second electrode. Prior to reaching the target value of electrical current, the method includes preventing the voltage across the first electrode and second electrode from increasing beyond a first predetermined limit; and subsequently, maintaining the voltage across the first electrode and second electrode at or within a predetermined range that does not exceed the first predetermined limit. The amplitude of the electrical current continues to increase toward the target value during at least part of a time when the voltage across the first electrode and the second electrode is maintained within the predetermined range.07-18-2013
20130184781Brain Stimulation for Enhancement of Learning, Motivation, and Memory - A system and method for stimulating a brain structure of a patient for treating a condition. A stimulating electrode is inserted into a brain structure of the patient. After inserting the stimulating electrode into a brain structure of the patient, the patient is prompted with a task. When the task is completed by the patient, the stimulating electrode is used to transmit a stimulating signal into the brain structure of the patient. In an alternative implementation, the patient's brain is monitored for the existence of a particular condition. When the condition is detected, the stimulating electrode is used to transmit a stimulating signal into the brain structure of the patient.07-18-2013
20130184780DIFFERENTIAL NEUROSTIMULATION THERAPY DRIVEN BY PHYSIOLOGICAL THERAPY - An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.07-18-2013
20110319961PERSONALIZED PATIENT CONTROLLED NEUROSTIMULATION SYSTEM - A method for personalized patient controlled neurostimulation is disclosed. The method generally includes steps (A) to (D). Step (A) may obtain (i) physical data of an individual and (ii) one or more manual inputs from the individual. Step (B) may generate compare data in a processor circuit by comparing the physical data with profile data of the individual. Step (C) may generate customized data by processing the one or more manual inputs and the compared data using a set of rules. The rules are generally (i) reprogrammable and (ii) govern generation of a nerve stimulation signal having predetermined control characteristics applicable to the individual. Step (D) may control the neurostimulation of the individual with the nerve stimulation signal based on the customized data.12-29-2011
20090287273Clinician programmer system interface for monitoring patient progress - A therapy tracking system and method may include a processor that obtains physiological information regarding a patient and a time period during which a deep brain stimulation (DBS) therapy is conducted. The information may be organized into a plurality of sessions. The processor may arrange in a display device a separate representation of the information for each of at least a subset of the sessions, such that the sessions are presented in order of time.11-19-2009
20120022611METHODS AND APPARATUS FOR EFFECTUATING A LASTING CHANGE IN A NEURAL-FUNCTION OF A PATIENT - The following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. The methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.). The methods in accordance with the invention can also be used to enhance neural-function of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain).01-26-2012
20130197602SYSTEMS AND METHODS FOR IDENTIFYING THE CIRCUMFERENTIAL POSITIONING OF ELECTRODES OF LEADS FOR ELECTRICAL STIMULATION SYSTEMS - A lead assembly for an electrical stimulation system includes terminals disposed along a proximal end of a lead body and electrodes disposed along a distal end of the lead body. The electrodes include segmented electrodes. At least one distal marker is disposed along the distal end of the lead body. The distal marker identifies the circumferential position of at least one of the segmented electrodes along the lead body. The distal marker is aligned with at least one of the segmented electrodes along the longitudinal length of the lead body. At least one proximal marker is disposed along the proximal end of the lead body. The proximal marker is aligned with the distal marker along the longitudinal length of the lead body. The distal marker and the proximal marker are discontinuous with one another along the lead body.08-01-2013
20080312714HEPATIC ELECTRICAL STIMULATION - The present invention relates to a method of providing electrical stimulation to a liver of a subject which includes providing one or more stimulatory electrodes to the liver of the subject and providing electrical stimulation to the liver of the subject. The invention further relates to methods of reducing risk factors of metabolic syndrome, treating diabetes, treating a subject having eating disorders and reducing glucose levels of a subject using methods of the present invention.12-18-2008
20130204315SYSTEMS FOR AND METHODS OF TRANSCRANIAL DIRECT CURRENT ELECTRICAL STIMULATION - A system according to the present invention provides a portable, non-invasive device adapted to deliver electrical stimulation to a brain, such as to treat tinnitus. Such system is preferably a head-worn system configured to provide transcranial direct current electrical stimulation (tDCS) to a patient, where a therapy based at least partially thereon may be self-administered by the patient. tDCS is a non-invasive method of brain stimulation to treat tinnitus, or other neurological indications, that may provide significant relief. Methods according to the present invention include preferably brief sessions of anodal tDCS to assist in determining adequate electrode location and stimulus intensity by producing transient decreases in tinnitus intensity. Methods may also or alternatively include a number of sessions of cathodal tDCS at a confirmed electrode location and stimulus intensity to provide sustained tinnitus relief. Methods may also or alternatively include a number of maintenance sessions to prolong the sustained relief.08-08-2013
20120095524METHOD OF COUNTERACTING SEIZURES - The present invention provides a method for counteracting seizure events in a mammalian brain, the method comprising applying an electrical stimulus to the brain, the electrical stimulus being pulsatile and comprising pulses forming a pulse train. In order to effectively “desynchronize” the neural activity patterns in the brain, the pulse train can be at a frequency greater than substantially 300 Hz and at a duty cycle greater than substantially 20%, the pulse train can have an inconstant inter pulse interval such that the pulse rate is not constant throughout the pulse train, and the pulses can have a pulse width greater than substantially 300 μsec. Apparatus for carrying out the method is also described.04-19-2012

Patent applications in class Treating mental or emotional disorder