Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Cardioverting/defibrillating

Subclass of:

607 - Surgery: light, thermal, and electrical application

607001000 - LIGHT, THERMAL, AND ELECTRICAL APPLICATION

607002000 - Electrical therapeutic systems

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
607006000 Sensing body condition or signal other than electrocardiographic signal 68
607007000 Controlling or indicating stimulation level 48
607008000 Computing energy required or contact impedance 17
Entries
DocumentTitleDate
20110184481STORAGE OF DATA FOR EVALUATION OF LEAD INTEGRITY - In general, the disclosure describes techniques for storing data corresponding to sensed high-rate non-sustained episodes that occur close in time to detection of a lead integrity condition. A method comprises detecting a first high-rate non-sustained episode, activating a data storage operation for storing data associated with high rate non-sustained episodes in response to detecting the first episode, and storing data associated with the first episode in an episode log in response to activating the data storage operation. Another method comprises detecting a lead integrity condition, and activating a data storage operation for storing data associated with high rate non-sustained episodes in response to detecting the condition.07-28-2011
20110208259DEFIBRILLATOR/MONITOR SYSTEM HAVING A POD WITH LEADS CAPABLE OF WIRELESSLY COMMUNICATING - A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: a base containing a defibrillator to deliver a defibrillation shock to a patient, (b) one or more pods each connectable to a patient via patient lead cables to collect at least one patient vital sign, the pods operable at a distance from the base, (c) a wireless communications link between the base and a selected one of the two or more pods to carry the at least one vital sign from the selected pod to the base, the selection being based on which pod is associated with the base.08-25-2011
20090292331METHOD AND APPARATUS FOR IDENTIFYING OVERSENSING USING FAR-FIELD INTRACARDIAC ELECTROGRAMS AND MARKER CHANNELS - A method for identifying and classifying various types of oversensing in implantable medical devices (IMDs), such as implantable cardioverter defibrillators (ICDs), to assist a physician in choosing corrective action to reduce the likelihood of oversensing and inappropriate therapy delivery. Far-field electrogram (EGM) signals are analyzed to detect the occurrence of R-waves, and the result is compared to the number and pattern of R-waves sensed by the IMD and indicated on the marker channel. A marker channel with more sensed R-waves than indicated by analysis of the far-field EGM indicates the presence of oversensing, including double-counting of R-waves, T-wave oversensing, lead malfunction or failure, poor lead connections, noise associated with electromagnetic interference, non-cardiac myopotentials, etc. Identification of the type of oversensing may be determined by analysis of the number and pattern of marker channel sensed R-waves with respect to the timing of the R-waves detected from the far-field EGM.11-26-2009
20120172942SYNCHRONIZATION OF ELECTRICAL STIMULATION THERAPY TO TREAT CARDIAC ARRHYTHMIAS - Systems and methods are described for analyzing a plurality of beats after detection of a suspected cardiac arrhythmia to determine a beat discriminator, identify a beat subsequent to completion of charging of an implantable medical device by applying the beat discriminator, and synchronize delivery of a shock from the medical device to the identified beat. In some examples, identifying the beat using the beat discriminator may help to accurately synchronize the shock with a beat representative of physiological cardiac events instead of an oversensed beat, e.g., noise sensed signal that is misclassified as a cardiac beat.07-05-2012
20120172941DISABLING AN IMPLANTABLE MEDICAL DEVICE - Various techniques for using a disconnection element to disable an implantable medical device (IMD) are described. The disconnection element may be responsive to energy delivered from outside of the IMD to the disconnection element within the IMD. In response to the delivery of the energy, the power source and operational circuitry of the IMD may be decoupled.07-05-2012
20090240297METHOD AND APPARATUS FOR REMOTE-OPERATED AUTOMATED EXTERNAL DEFIBRILLATOR INCORPORATED INTO A HAND-HELD DEVICE - The apparatus according to the current invention, referred herein as “Rescue Cell” is an AED integrated into a handheld device such as mobile phone; pocket PCs, Personal Digital Assistant (PDA), etc. Rescue Cell device according to embodiments of the present invention is portable; it is integrated into a device that is in regular use by most people. A user of a Rescue Cell is likely to carry his Rescue Cell device with him during his daily routine and to have the device at hand most of the time. Thus, there is high likelihood of the Rescue Cell to be available to him in case of cardiac emergency to himself or to someone near him.09-24-2009
20090192559Cordless Internal Defibrillator - A single-handle cordless internal defibrillator includes a pair of paddles, and a pair of electrodes that are respectively connected to a first-end portion of the pair of paddles. The pair of paddles has a second-end portion in communication with a single-handle, with a least one paddle of the pair of paddles being pivotable about a pivot arranged between the one paddle and the single-handle. A regulator arm in communication with the pivot adjusts the pivot of at least one paddle about the pivot so that the distance between the electrodes is variable by moving the regulator arm, and defibrillator circuitry is arranged within the single-handle. A dual-handle structure also provides tangle-free and clutter-free applications as the defibrillator circuitry is self-contained in the handle/handles or paddles of the defibrillator, eliminating the need for long cables which obstruct and can contaminate an operating room.07-30-2009
20100076510AED HAVING CPR PERIOD WITH PAUSE FOR ECG ACQUISITION - A defibrillator is described which executes a resuscitation protocol having a CPR pause period. The CPR pause period may be interrupted for the acquisition of ECG signal data which is not contaminated by chest compression artifacts. Following the acquisition of ECG signal data, the CPR period resumes and continues for its full period. The ECG signal data acquired during the interruption of the CPR period is analyzed and, if a shockable rhythm is identified, a shock sequence is initiated immediately upon conclusion of the CPR period.03-25-2010
20100114213SINGLE-CHAMBER HEART STIMULATOR - A single-chamber heart stimulator has an electrically conductive housing, first and second detection units, and a VT/SVT discrimination unit. The first detection unit is connected to an electrode pair of a ventricular electrode lead for obtaining a first electrocardiogram signal recorded in bipolar fashion, and is designed to sense and classify ventricular heartbeats. The second detection unit is connected on one side to an electrode of the ventricular electrode lead, and on the other side to the electrically conductive housing, for obtaining a second electrocardiogram signal containing signal features characteristic of atrial heartbeats. The VT/SVT discrimination unit is connected to the first and second detection units, and effects discrimination between ventricular and supraventricular tachycardias based on ventricular heartbeats measured through the first detection unit, and on atrial heartbeats measured through the second detection unit to the extent the rate of measured ventricular heartbeats exceeds a threshold value (VT zone threshold).05-06-2010
20100114207INTERFERENTIAL CARDIAC PRECONDITIONING AND DEPOLARIZATION - Exemplary systems, devices, and methods pertaining to cardiac related therapy and particularly to interferential cardiac preconditioning and depolarization are described. A cardiac arrhythmia is detected from electrogram data sensed from a patient's heart and a region of the heart affected by the cardiac arrhythmia is determined. The affected region is the interferentially energized by multiple cycles of two concurrently delivered alternating currents which are offset in frequency.05-06-2010
20090157131APPARATUS AND METHOD FOR TREATING VENTRICULAR FIBRILLATION AND VENTRICULAR TACHYCARDIA - An apparatus for treating ventricular fibrillation or ventricular tachycardia comprises means for dynamically steering or selecting two or more current vector paths sequentially or simultaneously for defibrillation so as to change the transmembrane potential in the left and right ventricles sufficiently to halt VF or VT.06-18-2009
20130079837MAGNETIC SWITCHING DEVICE - A magnetic switching device includes an electromagnet adapted to be arranged proximate to an exterior surface of an object having a magnetically-switchable device therein and a control circuit electrically connected to the electromagnet. The electromagnet is constructed to generate a magnetic field of sufficient strength and orientation to engage a switch in the magnetically-switchable device. The invention further includes an electrocautery system, including an electrocautery device, a control circuit electrically connected to the electrocautery device, and an electromagnet electrically connected to the control circuit. The electromagnet is adapted to be arranged proximate to an exterior surface of an object having a magnetically-switchable device therein. Operation of the electrocautery device causes the electromagnet to generate a magnetic field of sufficient strength to engage a switch in the magnetically-switchable device.03-28-2013
20080288010Subcutaneous diaphragm stimulation device and method for use - A cardiovascular treatment assembly is provided including a cardiac rhythm management device and an electrical stimulation device configured to elicit a diaphragm contraction to thereby treat heart failure.11-20-2008
20130041421ELECTROCARDIOGRAM MONITORING - Techniques for determining whether one or more leads are not adequately connected to a patient, e.g., for ECG monitoring, are described. The techniques involve injection of an integrated signal (which includes a test signal) into one lead, and monitoring the driven lead and the response at the other leads, including the common mode and the difference between the other leads. These “lead-off” detection techniques may be provided by an external defibrillator that provides three-wire ECG monitoring. Techniques for determining a type of a cable coupled to a defibrillator are also described. The cable-type identification may allow a defibrillator to, for example, operate in either a three-wire ECG monitoring mode or a therapy mode, based on whether a three-wire ECG cable or a defibrillation cable is coupled to the defibrillator.02-14-2013
20130041420SINTERED CAPACITOR ELECTRODE INCLUDING A 3-DIMENSIONAL FRAMEWORK - An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a current collector formed of a framework defining cells extending to three axes, an anode conductor coupled to the current collector formed of a framework defining cells extending to three axes in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a cathode disposed in the capacitor case, a separator disposed between the cathode and the anode and a cathode terminal disposed on an exterior of the capacitor case and in electrical communication with the cathode, wherein the anode terminal and the cathode terminal are electrically isolated from one another.02-14-2013
20100100143DEVICE, METHOD AND COMPUTER-READABLE STORAGE MEDIUM FOR CLASSIFYING ATRIAL TACHYARRHYTHMIA - Device for classifying tachyarrhythmia that obtains pre-defined values, monitors atrial intervals and compares lengths of each interval with pre-defined value IL, stores length of atrial interval if length is shorter than IL, in case X of most recent Y number of atrial intervals have length shorter than IL, evaluates most recent <=N atrial intervals with length=1 criteria, and controls a cardiac device depending on the classification. Atrial intervals are first evaluated by using the “X-out-of-Y” criterion and subsequently checked for stability after an atrial tachyarrhythmia is detected using “X-out-of-Y” criterion. For stability check, only intervals found shorter than the interval limit are used. Check is based on interval-to-interval comparison rather than as generally practiced, comparisons of individual intervals with the minimum or average of all intervals.04-22-2010
20090149903SYNCHRONIZATION OF DEFIBRILLATION AND CHEST COMPRESSIONS - A resuscitation system for use by a rescuer for resuscitating a patient having a ventricular arrhythmia, comprising circuitry and processing configured for detection of chest compression/phase timing information indicative of the start of the decompression phase, circuitry and processing configured for delivery of electromagnetic therapy for the termination of ventricular arrhythmias, wherein the circuitry and processing for the delivery of electromagnetic therapy utilizes the chest compression phase timing information to initiate delivery of the electromagnetic therapy within 300 milliseconds of the start of the decompression phase.06-11-2009
20100042171Wireless communication device with integrated defibrillator - A handheld wireless communication device having a defibrillator integrated therein to be employed in an emergency situation to supply electrical therapy to a victim who is experiencing cardiac distress. The defibrillator being powered by at least one thermally powered battery contained within the wireless communications device. The wireless communication device may also include a cardiac module which will determine whether the victim's heart beat has become irregular and whether defibrillation is necessary. The wireless communication device will guide the user through the use of the defibrillator /cardiac modules. The wireless device may also include a tracking unit that will provide the user's location and wireless two-way voice communication with emergency personnel upon activation of the defibrillator.02-18-2010
20090157132DEFIBRILLATION SHOCK OUTPUT CIRCUIT - This document discusses, among other things, techniques for generating and delivering a high voltage defibrillation shock using an implantable cardiac rhythm management device. An output energy delivery bridge can be programmed to provide desired shock vectors or polarities. A bootstrapped fully solid-state switch control voltage generation circuit is described. Automatic polarity or vector reconfiguration embodiments are described, such as in response to an unsuccessful attempt to convert the heart to a normal rhythm.06-18-2009
20100106208Automated Resuscitation Device with Ventilation Sensing and Prompting - A device for assisting a caregiver in delivering cardiac resuscitation to a patient, the device comprising a user interface configured to deliver prompts to a caregiver to assist the caregiver in delivering cardiac resuscitation to a patient; at least one sensor configured to detect the caregiver's progress in delivering the cardiac resuscitation, wherein the sensor is configured to provide a signal containing information indicative of ventilation; a memory in which a plurality of different prompts are stored, including at least one ventilation progress prompt to guide the rescuer's performance of ventilation; a processor configured to process the output of the sensor to determine a parameter descriptive of ventilation progress and to determine whether the ventilation progress prompt should be selected for delivery. Possible parameters descriptive of ventilation progress include ventilation rate, delivered tidal volume, and flow rate.04-29-2010
20100023074Method and Apparatus for Contacting an Over-the-Counter Automatic External Defibrillator - A method and apparatus are described by which messages can be sent wirelessly or over communication lines to an AED located in a home or office. The AED contains a receiver for receiving short messages directing the owner to call for service, conduct maintenance such as battery or electrode pad replacement, respond to an emergency or locate the AED. A wireless receiver enables the AED to be reached wherever it is stored by an over-the-counter purchaser and can sound or display a simple message instructing the owner to take a specified action. Either terrestrial or extraterrestrial transmission systems can be used and the communication can be point-to-point or by a wide area broadcast.01-28-2010
20120185005Subcutaneous Defibrillator Implantation With Right-Side Active Canister - A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart.07-19-2012
20100094368System and/or method for refibrillation of the heart for treatment of post-countershock pulseless electrical activity and/or asystole - A method and/or system for inducing ventricular fibrillation (VF) of the heart for treatment of post-countershock pulseless electrical activity (PEA) or asystole. In certain example embodiments, it has been found that reinduction of ventricular fibrillation, followed by restoration of blood flow with cardiopulmonary resuscitation (CPR), can make subsequent countershocks more successful in restoring a heart rhythm associated with blood flow.04-15-2010
20090318988SIMPLIFIED BISPHASIC DEFIBRILLATOR CIRCUIT WITH MAKE-ONLY SWITCHING - A biphasic pulse delivery circuit for a defibrillator includes two capacitors, a first one of which is charged and delivers the first phase of the biphasic pulse and a second one of which is charged and delivers the second phase of the biphasic pulse. At least a portion of the charge on the second capacitor is provided by the current flow through the patient during delivery of the first pulse phase. Switches are provided for initiating the first phase, initiating the second phase, and terminating the second phase. In an illustrated circuit a shunt circuit path is provided to at least partially charge the second capacitor from the first capacitor prior to delivery of the second phase of the biphasic pulse. The inventive circuit can be controlled entirely with switching devices that only need to be closed during pulse delivery.12-24-2009
20080294210Leadless Implantable Cardioverter Defibrillator - A leadless implantable cardioverter defibrillator (11-27-2008
20100137930Subcutaneous Electrode with Improved Contact Shape for Transthoracic Conduction - One embodiment of the present invention provides a lead electrode assembly for use with an implantable cardioverter-defibrillator subcutaneously implanted outside the ribcage between the third and twelfth ribs comprising the electrode.06-03-2010
20090306731ANTITACHYCARDIAC HEART STIMULATOR - An implantable cardiac stimulator includes a cardioversion/defibrillation unit connected to at least one electrode pair for generation and delivery of cardioversion or defibrillation shocks; an atrial sensing unit detecting atrial contraction, and outputting an atrial sensing signal indicating a atrial event when an atrial contraction is detected; a ventricular sensing unit detecting ventricular contraction, and outputting a ventricular sensing signal when a ventricular contraction is detected; a tachycardia detection unit connected to the atrial and ventricular sensing units and detecting a tachycardia, and classifying it as a ventricular tachycardia (VT) or as a supraventricular tachycardia (SVT); and a treatment control unit designed to trigger at least one atrial cardioversion shock when a ventricular rhythm detected by the ventricular sensing unit is faster than a programmed frequency limit, and the tachycardia detection unit classifies an SVT as an atrial fibrillation (AFib).12-10-2009
20090306730DEFIBRILLATOR WITH HOUSING ARRANGEMENT AND SUPPORT DEVICE - A defibrillator for permanent external application to a patient, with a protective shell arrangement receiving a base unit with defibrillator components, an electrode arrangement connected or connectable to the shell arrangement, and a support device. An ergonomic adaptation to the person wearing the defibrillator is achieved by the defibrillator components being spatially combined into subsidiary modules, and the shell arrangement has several subsidiary shells to which the subsidiary modules are distributed and which are movable relative to one another and connected to one another mechanically and electrically.12-10-2009
20110152957CHAOS-BASED DETECTION OF ATRIAL FIBRILLATION USING AN IMPLANTABLE MEDICAL DEVICE - Techniques are provided for detecting atrial fibrillation (AF) based on variations in ventricular intervals detected by a pacemaker, implantable cardioverter-defibrillator (ICD) or implantable cardiac monitor (ICM). In one example, ventricular beats are detected and intervals between the ventricular beats are measured, such as RR intervals. Irregular ventricular beats are identified, including ectopic beats, bigeminal beats, and the like. The degree of variability within the ventricular intervals is then determined while excluding any intervals associated with irregular beats. AF is then detected based on the degree of variability. That is, AF is detected based on variability occurring within ventricular intervals after ectopic beats and other irregular beats have been eliminated, thus mitigating detection problems that might arise if the variability were instead calculated based on all ventricular beat intervals. Techniques are also described herein for distinguishing AF from sinus tachycardia, which can also cause a high degree of variability in RR intervals.06-23-2011
20090270932Methods and Implantable Devices for Inducing Fibrillation by Alternating Constant Current - The present invention is directed toward methods for inducing fibrillation in a patient using a controlled current AC signal applied via an implanted ICD. In some embodiments, the AC signal is applied as a series of alternating constant current pulses. Some embodiments make use of a specialized H-bridge circuit for applying the AC signal. A low-side current controlling portion of an ICD's circuitry may make up part of the specialized H-bridge circuit. Further embodiments include devices embodying these methods.10-29-2009
20090270931METHOD, MOBILE TERMINAL, AND COMPUTER PROGRAM PRODUCT FOR FACILITATING RESUSCITATION - A method for facilitating resuscitation comprising starting an automatic resuscitation sequence, wherein the automatic resuscitation sequence comprises at least one from the group of: emitting audible instructions, displaying text instructions, displaying images, displaying animations, emitting metronome signals, emitting inflation sounds, displaying a clock showing elapsed time since starting the automatic resuscitation sequence, wherein the displaying of animations is associated with the metronome signals, wherein the displaying of animations is associated with the emitting of blowing sounds.10-29-2009
20090270930External Defibrillator With Adaptive Protocols - A method and apparatus for a defibrillating system is disclosed that monitors the patient during treatment and then uses the information it gathers to adjust treatment protocols during treatment based on the patient's response. The protocols may include adaptive rhythm analysis intervals, adaptive CPR intervals, and adaptive shock stacks. A method of operating a defibrillator may include the steps of: obtaining a data set on at least one physiological parameter of a patient in a first data gathering interval; performing an analysis of the data set; and determining a time interval between the analysis of the first data set and a second data set, or the duration of a CPR interval, or the number of shocks in a shock stack, based on the result of the analysis of the data set.10-29-2009
20130066389PCB Blade Connector System and Method - The connector between the patient electrode pads and the base unit of an automatic external defibrillator (AED) system can be formed by capturing a printed circuit board (PCB) within a connector housing. The PCB can have conductive metal traces that serve as the contact points between the wires from the patient electrodes and the electronics within the AED base unit. The PCB in combination with the conductive metal traces can be shaped similar to a conventional two-prong or two-blade connector. Employing such a PCB-based connector may result in AED pads which are less complex and less costly to manufacture. The PCB can also support a configuration circuit that is positioned between the conductive metal traces and that allows the AED to read and store information about the attached pads. For example, the AED can use this data storage feature to check the expiration date of the pads.03-14-2013
20120197326METHOD FOR THE MANUFACTURE OF A CERMET-CONTAINING BUSHING FOR AN IMPLANTABLE MEDICAL DEVICE - One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The cermet has a metal fraction in a range from 30% by volume to 60% by volume.08-02-2012
20090234402SYSTEM AND METHOD FOR CARDIAC LEAD SHIELDING - An implantable medical device (IMD) can include a cardiac pacemaker or an implantable cardioverter-defibrillator (ICD). Various portions of the IMD, such as a device body, a lead body, or a lead tip, can be provided to reduce or dissipate a current and heat induced by various external environmental factors. According to various embodiments, features can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate the induced Current and heat created due to an induced current in the lead. For example, an IMD can include at least one outer conductive member and a first electrode. The first electrode can be in electrical communication with the at least one outer conductive member. The first electrode can dissipate a current induced in the at least one outer conductive member via a first portion of the anatomical structure.09-17-2009
20100063559SINGLE-USE EXTERNAL DEFIBRILLATOR - A single-use battery-powered external defibrillator comprises a sealed defibrillator housing 03-11-2010
20080288011Method and Article for Storing an Automatic External Defibrillator for Use Without a Prescription - A method and article for storing an automatic external defibrillator for use without a prescription are described. The hermetically sealed electrode pads of the OTC AED are electrically coupled to the OTC AED base unit where they are constantly accessible to self-test circuitry inside the base unit for periodic, automatic self-test. In one embodiment the self-test is designed to determine whether the conductive gel of the electrode pads has dried out. In another embodiment self-test circuitry also tests the battery while the OTC AED is being stored prior to use.11-20-2008
20090076558METHOD AND APPARATUS FOR VARIABLE CAPACITANCE DEFIBRILLATION - An Automated External Defibrillator (AED) for delivering therapeutic electrical energy to a patient's heart comprising at least one variable capacitance capacitor having a large positive voltage coefficient such that a given amount of energy can be stored at a lower voltage than a traditional fixed capacitor having an equivalent capacitance. Due to the variable capacitance capacitor's ability to store energy at a lower voltage, initial defibrillation current levels are reduced effectively minimizing the risk of tissue damage caused by high initial current levels. In addition, the use of a variable capacitance capacitor reduces the amount of current decay throughout the discharge cycle as opposed to current AED designs utilizing fixed capacitance capacitors which experience an exponential decline in defibrillation current during the discharge cycle.03-19-2009
20110190834DEVICES AND METHODS FOR SUPPRESSION OF SYMPATHOEXCITATION - The present invention relates to devices and methods for suppression of sympathoexcitation and/or sudden cardiac death. In particular the present invention provides devices and methods which prevent sympathoexcitation and/or sudden cardiac death through an elevated heart rate stimulus.08-04-2011
20110106192METHOD AND APPARATUS FOR DEFROSTING A DEFIBRILLATION ELECTRODE - A device and method for defrosting a defibrillation electrode are provided. This includes an automated external defibrillator that is capable of defrosting one or more frozen electrodes. The device is includes a portable housing containing a battery powered energy source and a controller as well as at least a pair of electrodes which are operably coupled to the housing. The electrodes are designed for attachment to the chest of a patient in need of resuscitation and contain a conductive interface medium that has temperature dependent properties. A controller is configured to selectively heat the conductive interface medium by applying limited electrical impulses and raise the electrode temperature to a desired temperature range.05-05-2011
20090138059Heart Defibrillator With Contactless ECG Sensor For Diagnostics/Effectivity Feedback - Heart defibrillator comprising a high-voltage power supply, a storage capacitor, and at least two electrodes, and at least one contactless biometric sensor. Since the biometric sensor does not need to be in contact with the skin of the patient, it maintains its sensing capabilities even through any regular clothing between the sensor and the body of which one or several biometric signal are to be measured. Therefore, an initial assessment of the health state of a patient can be quickly obtained. The high-voltage power supply, the storage capacitor and the at least two electrodes are used for producing an electrical pulse and applying said pulse to a patient.05-28-2009
20090187224Switching Circuit - An H-bridge switching circuit for an automated external defibrillator comprises an SCR (D07-23-2009
20110282405SYSTEMS AND METHODS FOR USE WITH AN IMPLANTABLE MEDICAL DEVICE FOR DISCRIMINATING VT AND SVT BE SELECTIVELY ADJUSTING ATRIAL CHANNEL SENSING PARAMETERS - Techniques are described for discriminating ventricular tachycardia (VT) from supraventricular tachycardia (SVT) in circumstances when the ventricular rate exceeds the atrial rate (i.e. V>A). In one example, an initial atrial rate is detected while employing adjustable atrial channel detection parameters that can affect the detection of the true atrial rate—such as a post-ventricular atrial blanking (PVAB) interval or an atrial channel sensitivity level. If the ventricular rate exceeds a VT rate zone threshold with V>A, the device does not immediately deliver high voltage shock therapy as done in other devices. Rather, the device instead selectively adjusts the atrial channel detection parameter(s) to determine if the true atrial rate is equal to the ventricular rate. If so, then such is an indication that the arrhythmia might be SVT rather than VT and various discrimination procedures are employed to distinguish SVT from VT before therapy is delivered.11-17-2011
20110282407IMPLANTABLE CARDIOVERTER DEFIBRILLATOR WITH PROGRAMMABLE CAPACITOR CHARGING LEVEL - An implantable cardioverter defibrillator (ICD) has a programmable ICD energy level corresponding to the maximum defibrillation energy deliverable with each defibrillation shock pulse. The ICD energy level is programmable within the maximum energy capacity of the defibrillation capacitor(s) of the ICD. In various embodiments, after a user enters the ICD energy level, one or more corresponding ICD performance parameters are presented. Restrictions are applied to the energy level programming of the ICD to ensure the predictability of the one or more ICD performance parameters.11-17-2011
20110282406Method and Devices for Performing Cardiac Waveform Appraisal - Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.11-17-2011
20100168808PREVENTING BIOFILM FORMATION ON IMPLANTABLE MEDICAL DEVICES - Biodegradable polymer-coated surgical meshes formed into pouches are described for use with cardiac rhythm management devices (CRMs) and other implantable medical devices. Such meshes are formed into a receptacle, e.g., a pouch or other covering, capable of encasing, surrounding and/or holding the cardiac rhythm management device or other implantable medical device and preventing or retarding the formation of a biofilm.07-01-2010
20120290027IMPLANTABLE HEART STIMULATOR AND METHOD FOR TRENDING ANALYSIS OF VENTRICULAR ACTIVATION TIME - Exemplary versions of the invention include methods and apparatuses for assessing ventricular activation time by determining a point in time t11-15-2012
20110301657Durable small gauge wire electrical conductor suitable for delivery of high intensity energy pulses - Implantable medical devices intended for electrostimulation and sensing devices typically incorporate one or more electrical conductors as leads for electrical stimulation to, or retrieval of localized sensing data from, discrete points in the body, such as the heart. Certain applications require delivery of high intensity electrical pulses, i.e. CRTs, or defibrillators. As described herein a CRT delivers high energy pulses via a durable fine wire lead formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating. A unipolar electrical conductor can have an outer diameter of about 150 microns or even smaller. The buffered fibers support conduction of high intensity electrical pulses as required for internal or external defibrillators, or other biomedical applications, as well as non-medical applications. Defibrillation pulses can be transmitted through less cross-sectional area of metal in the subject fine wire conductor than would be the case with conventional solid core metal wires. Multiple such coated fibers can act as a single conductor. An outer protective sheath of a flexible polymer material can be included.12-08-2011
20110288604WEARABLE THERAPEUTIC DEVICE - A wearable therapeutic device that includes a garment configured to contain an external defibrillator. The garment is configured to house at least one of an alarm module and a monitor and to house a first therapy electrode and a second therapy electrode. The garment is also configured to releasably receive a receptacle that contains a conductive fluid proximate to at least one of the first therapy electrode and the second therapy electrode, and to electrically couple the receptacle with the garment.11-24-2011
20110288605WEARABLE AMBULATORY MEDICAL DEVICE WITH MULTIPLE SENSING ELECTRODES - An ambulatory medical device including a plurality of electrodes configured to be disposed at spaced apart positions about a patient's body, an electrode signal acquisition circuit, and a monitoring circuit. The acquisition circuit has a plurality of inputs each electrically coupled to a respective electrode of the plurality of electrodes and is configured to sense a respective signal provided by a plurality of different pairings of the plurality of electrodes. The monitoring circuit is electrically coupled to an output of the acquisition circuit and is configured to analyze the respective signal provided by each of the plurality of different pairings and to instruct the acquisition circuit to select at least one of the plurality of different to pairings to monitor based on at least one of the quality of the respective signal, a phase difference between the respective signal and that of other pairings, a position of electrodes relative to the patient's body, and other criteria.11-24-2011
20090210022SIMPLIFIED BIPHASIC DEFIBRILLATOR CIRCUIT WITH MAKE-ONLY SWITCHING - A biphasic pulse delivery circuit for a defibrillator includes two capacitors, a first one of which is charged and delivers the first phase of the biphasic pulse and a second one of which is charged and delivers the second phase of the biphasic pulse. At least a portion of the charge on the second capacitor is provided by the current flow through the patient during delivery of the first pulse phase. Switches are provided for initiating the first phase, initiating the second phase, and terminating the second phase. In an illustrated circuit a shunt circuit path is provided to at least partially charge the second capacitor from the first capacitor prior to delivery of the second phase of the biphasic pulse. The inventive circuit can be controlled entirely with switching devices that only need to be closed during pulse delivery.08-20-2009
20090292330IMPLANTABLE SHOCK ELECTRODE LINE AND IMPLANTABLE DEFIBRILLATION ARRANGEMENT - An implantable shock electrode line having a proximal terminal for connection to an implantable defibrillator, an elongated flexible line body, and a shock electrode and a drug delivery device arranged at or near the distal end of the line body. A drug depot connected to the drug delivery device is provided in the shock electrode line, and the terminal is designed as a purely electric standard terminal. The drug delivery device is designed for control by an electric pulse transmitted over the electric terminal to the shock electrode line.11-26-2009
20100152798Electrode Spacing in a Subcutaneous Implantable Cardiac Stimulus Device - Methods and implantable cardiac stimulus devices that include leads designed to avoid post-shock afterpotentials. Some examples are directed toward lead-electrode designs that reduce the impact of an applied stimulus on sensing attributes. These examples may find particular use in systems that provide both sensing and therapy delivery from subcutaneous location06-17-2010
20090157130APPARATUS AND METHOD FOR TREATING ATRIAL FIBRILLATION AND ATRIAL TACHYCARDIA - An apparatus for treating atrial fibrillation or atrial tachycardia comprises means for dynamically steering or selecting two or more current vector paths sequentially or simultaneously for defibrillation to change the transmembrane potential in the left and right atria sufficiently to halt AF or AT. The apparatus is useful to treat AF or AT in patients.06-18-2009
20100211128Public Access CPR and AED Device - A system for resuscitation of a heart attack victim. The system includes CPR device which compresses the victim's chest, a defibrillator which may be used to defibrillate the patient, and an identification system for identifying the person operating the system. Depending on the identity of the operator, the system permits varying degrees of access to components and enablement of the functions of the various subsystems.08-19-2010
20100211127CPR MONITORING AND REPORTING SYSTEM AND METHOD - A system for providing improved feedback on administration of CPR is disclosed. A compression sensor (08-19-2010
20090125074MODULAR MEDICAL DEVICE, BASE UNIT AND MODULE THEREOF, AND AUTOMATED EXTERNAL DEFIBRILLATOR (AED), METHODS FOR ASSEMBLING AND USING THE AED - A modular automated external defibrillator (AED) system includes a base unit and at least one interconnected module. The base unit typically includes a functional circuit and includes an interface that couples the functional circuit to the module. Likewise, the module includes an interface that couples the module to the base unit By manufacturing such modular AED models instead of one-piece, i.e., integrated, AED models, a manufacturer can reduce the cost and complexity of its manufacturing process. Furthermore, the manufacturer may be able to bring such a modular AED to market more quickly than it could bring an integrated model of the AED to market. Moreover, a modular AED allows the manufacturer and customer flexibility in respectively providing and selecting feature sets. In addition, a customer can obtain replacements for broken modules, and the manufacturer can provide cheaper upgrades by upgrading a module or base unit instead of upgrading the entire AED.05-14-2009
20090125075Method and Apparatus for Beat Alignment and Comparison - Methods of using a template having a template data set and template parameters to provide improved alignment of captured cardiac signal data to a stored template. More particularly, in an illustrative method, a captured cardiac signal is first configured using template parameters for a stored template. Then, once configured, the captured cardiac signal is then compared to the stored template. Other embodiments include implantable cardiac treatment devices including operational circuitry configured to perform the illustrative method. In a further embodiment, more than one stored templates may be used. Each template can have independently constructed parameters, such that a single captured cardiac signal may be configured using first parameters for comparison to a first template, and using second parameters for comparison to a second template.05-14-2009
20100114212SINGLE-CHAMBER CARDIAC STIMULATOR - A single-chamber cardiac stimulator (05-06-2010
20100114216INTERFERENCE MITIGATION FOR IMPLANTABLE DEVICE RECHARGING - A therapy or monitoring system may implement one or more techniques to mitigate interference between operation of a charging device that charges a first implantable medical device (IMD) implanted in a patient and a second IMD implanted in the patient. In some examples, the techniques may include modifying an operating parameter of the charging device in response to receiving an indication that a second IMD is implanted in the patient. The techniques also may include modifying an operating parameter of the second IMD in response to detecting the presence or operation of the charging device.05-06-2010
20100114211SHUNT-CURRENT REDUCTION TECHNIQUES FOR AN IMPLANTABLE THERAPY SYSTEM - Techniques for minimizing interference between the first and second medical devices or between the different therapy modules of a common medical device are described herein. In some examples, a medical device may include shunt-current mitigation circuitry and/or at least one clamping structure that helps minimize or even eliminate shunt-current that feeds into a first therapy module of the medical device via one or more electrodes electrically connected to the first therapy module. The shunt-current may be generated by the delivery of electrical stimulation by a second therapy module. The second therapy module may be enclosed in a common housing with the first therapy module or may be separate, e.g., a part of a separate medical device.05-06-2010
20100114219PULSE DETECTION METHOD AND APPARATUS USING PATIENT IMPEDANCE - The presence of a cardiac pulse in a patient is determined by evaluating fluctuations in an electrical signal that represents a measurement of the patient's transthoracic impedance. Impedance signal data obtained from the patient is analyzed for a feature indicative of the presence of a cardiac pulse. Whether a cardiac pulse is present in the patient is determined based on the feature in the impedance signal data. Electrocardiogram (ECG) data may also be obtained in time coordination with the impedance signal data. Various applications for the pulse detection of the invention include detection of PEA and prompting PEA-specific therapy, prompting defibrillation therapy and/or CPR, and prompting rescue breathing depending on detection of respiration.05-06-2010
20100114206Patient Interface Device and Therapy Delivery System - A method and system for diagnosing a medical condition, alerting a patient that a therapy is impending, and allowing the patient to override or modify the impending therapy are provided. The system may include an implantable medical device (“IMD”) and a patient interface device. The IMD may sense a physiological parameter within a patient, determine whether the physiological parameter qualifies for therapy based on a therapy criteria, and alert the patient via the patient interface device that therapy is impending if the physiological parameter qualifies for therapy. The patient may be given an opportunity to respond to the alert with the patient interface device and send an therapy modification indication if the therapy is not needed or wanted. The IMD may wait a predetermined period of time for the patient response and deliver the therapy if the patient response is not transmitted before expiration of the predetermined period of time or withhold the therapy if the patient overrides the delivery of the therapy within the predetermined period of time. The IMD may adjust one or more operational settings applied during its operation in response to the activity of the system. The patient interface device may be configured to avoid accidental override or modification of the delivery of the therapy.05-06-2010
20100114208IMPLANTABLE MEDICAL DEVICE CROSSTALK EVALUATION AND MITIGATION - Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.05-06-2010
20090312812CARDIAC STIMULATOR FOR TREATMENT OF TACHYCARDIAC ARRHYTHMIAS OF THE HEART - An implantable antitachycardiac cardiac stimulator has at least one right-ventricular sensing unit, a defibrillation shock generator and a control unit, as well as an additional detection unit for detecting ventricular events which operates independently of the right-ventricular detection electrode, and an evaluation unit (e.g., as an additional component of the control unit) which suppresses the delivery of a defibrillation shock on reliable detection of the normal rhythm via the additional detection unit.12-17-2009
20090088810ASSESSING MEDICAL ELECTRODE CONDITION - The invention presents an apparatus and techniques for determining whether a medical electrode, such as a defibrillation electrode coupled to an automated external defibrillator, is in a condition for replacement. The determination can be made as a function of one or more data. In one exemplary embodiment, the determination is a function of one or more measurements of an impedance of a hydrogel bridge in a test module. In another exemplary embodiment, the determination is a function of one or more environmental condition data from one or more environmental sensors.04-02-2009
20100268293DELAY TO THERAPY FOLLOWING PATIENT CONTROLLED ATRIAL SHOCK THERAPY REQUEST - An implantable cardiac device detects a patient therapy request originating from external to the implantable device. A shock therapy delay period is timed in response to the detection of the patient therapy request. Atrial shock therapy is provided to the patient after expiration of the shock therapy delay period (if the presence of an ongoing atrial arrhythmia is detected). The patient therapy request may be provided by a patient activator including a magnet for operating a reed switch in the implanted device to provide the request. A patient activator including an input and receiver/transmitter circuitry may be employed to request the immediate providing of atrial shock therapy, and/or to set the duration the shock therapy delay period. By allowing specific delays to therapy after a therapy request, a patient can prepare for the requested therapy and thereby mitigate therapy discomfort.10-21-2010
20100268292HERMETICALLY SEALED WET ELECTROLYTIC CAPACITOR - A hermetically sealed wet electrolytic capacitor includes a hermetically sealed case, a cathode, an anode, and an insulator between the anode and the cathode to provide electrical insulation between the anode and the cathode. An electrolytic solution is disposed within the case. A first terminal is electrically connected to the anode and a second terminal is electrically connected to the cathode. The cathode comprises a metal substrate having an alloy layer formed with a noble metal and a noble metal/base metal electrode element layer electrochemically deposited thereon. The electrolytic solution has a conductivity between 10 and 60 mS/cm. The capacitor may be used in an implantable device.10-21-2010
20100268291APPARATUS AND METHOD FOR THE DETECTION AND TREATMENT OF ATRIAL FIBRILLATION - Embodiments of the invention provide methods for the detection and treatment of atrial fibrillation (AF) and related conditions. One embodiment provides a method comprising measuring electrical activity of the heart using electrodes arranged on the heart surface to define an area for detecting aberrant electrical activity (AEA) and then using the measured electrical activity (MEA) to detect foci of AEA causing AF. A pacing signal may then be sent to the foci to prevent AF onset. Atrial wall motion characteristics (WMC) may be sensed using an accelerometer placed on the heart and used with MEA to detect AF. The WMC may be used to monitor effectiveness of the pacing signal in preventing AF and/or returning the heart to normal sinus rhythm (NSR). Also, upon AF detection, a cardioversion signal may be sent to the atria using the electrodes to depolorize an atrial area causing AF and return the heart to NSR.10-21-2010
20090149904LV UNIPOLAR SENSING OR PACING VECTOR - An implantable medical device configured to deliver a defibrillation energy to a heart can sense a left ventricular activation using information received from a unipolar sensing or pacing vector defined between a left ventricle and an internal thoracic location external to a heart.06-11-2009
20110264156DEVICES AND METHODS FOR TREATMENT OF MYOCARDIAL CONDITIONS - Provided are devices and methods for treating a subject having a myocardial condition using sub-threshold electrical stimulation.10-27-2011
20110213433System and Method for Effectively Indicating Element Failure or a Preventive Maintenance Condition in an Automatic External Defibrillator (AED) - Battery powered systems with long standby times, such as automatic external defibrillators (AEDs), may be required to indicate their operational status to a user by blinking lights or sounding speakers or buzzers. These active status indication activities consume power thereby reducing the battery life of the system. To conserve power and to be more effective in seeking attention from a human operator, the status alerts for the AED produced by an active status indicator (ASI) system can be more meaningful to humans or more unique relative to status alerts provided by conventional devices. Additionally, the ASI system may automatically adjust power consumed by the indicators in response to sensing environmental conditions of the AED.09-01-2011
20080319496Endocardial Pacing Devices and Methods Useful for Resynchronization and Defibrillation - According to one aspect, various methods and apparatus are used for modifying cardiac operation, for treating a condition of a patient's heart, and for monitoring cardiac operation. In one approach consistent therewith, an electrode arrangement (including at least one electrode) is placed in a right ventricle (“RV”) of the heart. The electrode arrangement is used to capture the myocardium for re-synchronization of the left and right ventricles by providing first and second signal components having opposite polarity on respective electrodes. The electrode arrangement is connected to an implantable CRM device that has the capability of pacing/sensing atrium, pacing/sensing ventricles, and deliver defibrillation therapy from the right side of the heart. The CRM device captures ventricular contractions to treat conduction abnormalities in one or more of the ventricles. Use of a defibrillation lead may be particularly useful as the lead need not contain pacing/sensing electrodes, thereby eliminating or lessening the pull-back of the RV coil, which has been known to lower the defibrillation threshold. Other aspects involve use of such cardiac modulation technique to facilitate mechanically and/or electrically synchronous contractions for resynchronization, and a technique for pacing and/or mapping by generating pulses for delivery to a cardiac site useful for improving heart function as measured, e.g., by QRS width, fractionation, late LV activation timing, mechanical synchronicity of free wall and septal wall, effective throughput/pressure, or a combination thereof.12-25-2008
20120109239DEFIBRILLATOR WITH MUTABLE SOUND PROMPTS - Defibrillators, software and methods are provided, for issued verbal prompts to rescuers. A defibrillator may receive a muting input and, responsive thereto, cause a verbal prompt to not be issued or to be issued less loudly relative another verbal prompt.05-03-2012
20120109238AUTOMATIC PERSONALIZATION OF PARAMETER SETTINGS AND ALGORITHMS IN A MEDICAL DEVICE - A system includes a data retrieval module and a determination module. The data retrieval module receives a command from a user, the command indicating a first implantable medical device (IMD) and a second IMD. The data retrieval module also retrieves a first set of data from the first IMD in response to the command and retrieves a second set of data from a datastore. The second set of data includes data retrieved from the first IMD and stored in the datastore prior to receiving the command. The determination module determines a third set of data based on the first and second sets of data and transfers the third set of data to the second IMD.05-03-2012
20120109237SUPRAVENTRICULAR STIMULATION TO CONTROL VENTRICULAR RATE - Various techniques for delivering atrial pacing and supraventricular stimulation to achieve a desired ventricular rate and/or cardiac output are described. One example method described includes delivering a pacing signal configured to cause an atrial depolarization to a heart of a patient, wherein the atrial depolarization results in an associated refractory period during the cardiac cycle, and delivering a signal to a supraventricular portion of the heart of the patient subsequent to the atrial refractory period and during a ventricular refractory period of the cardiac cycle.05-03-2012
20080234770Cardiac rhythm template generation system and method - A method and system provides for generating a snapshot representative of one beat of a patient's normal cardiac rhythm. Cardiac rate channel signals and shock channel signals are sensed. A fiducial point is determined for a predefined number of the cardiac rate channel signals. A predefined number of the shock channel signals are aligned using the fiducial point. A template is generated using the aligned shock channel signals, whereby the template is representative of one of the patient's normal supra-ventricular conducted cardiac beats. The template is updated on a periodic basis.09-25-2008
20090216289CARDIAC RHYTHM MANAGEMENT SYSTEMS AND METHODS USING MULTIPLE MORPHOLOGY TEMPLATES FOR DISCRIMINATING BETWEEN RHYTHMS - This document describes systems, devices, and methods that use multiple morphology templates for discriminating between rhythms, such as supraventricular tachyarrhythmias (SVTs) and ventricular tachyarrhythmias (VTs), for delivering a countershock in response to a VT episode, but withholding delivery of such a countershock in response to an SVT episode. In certain examples, the particular morphology used for storing morphological features is selected at least in part using a sensor-indicated activity level of a subject, or a metabolic need of the subject.08-27-2009
20090054937SYSTEM AND METHOD FOR TRANSMITTING AND ACTIVATING A PLURALITY OF CONTROL DATA - A cardiac pacemaker, defibrillator, or other programmable medical device (02-26-2009
20090005826METHOD AND APPARATUS FOR CARDIAC ARRHYTHMIA CLASSIFICATION USING TEMPLATE BAND-BASED MORPHOLOGY ANALYSIS - An implantable cardioverter/defibrillator (ICD) includes a tachyarrhythmia detection and classification system that classifies tachyarrhythmias based on a morphological analysis of arrhythmic waveforms and a template waveform. Correlation coefficients each computed between morphological features of an arrhythmic waveform and morphological features of the template waveform provide for the basis for classifying the tachyarrhythmia. In one embodiment, a correlation analysis takes into account the uncertainty associated with the production of the template waveform by using a template band that includes confidence intervals.01-01-2009
20080208271High Frequency Stimulation for Treatment of Atrial Fibrillation - The invention relates to methods and devices for treating and/or preventing atrial fibrillation. In an embodiment, the invention includes a method of treating and/or preventing atrial fibrillation including applying an oscillating electrical stimulus to a tissue of a patient, the oscillating electrical stimulus sufficient to block transmission of electrical signals through the tissue. In an embodiment, the invention includes an implantable medical device including a stimulator configured to generate an oscillating electrical stimulus at a frequency and amplitude sufficient to block transmission of electrical signals through a tissue, a stimulation electrode in communication with the stimulator, the stimulation electrode configured to deliver the oscillating electrical stimulus to the tissue, and control circuitry in communication with the stimulator, the control circuitry configured to selectively deliver the oscillating electrical stimulus to treat and/or prevent atrial fibrillation. Other embodiments are also described herein.08-28-2008
20120271370Automated external defibrillator locating system and method - A defibrillator locating system and method enables would-be responders to quickly identify defibrillator location for effecting prompt defibrillation. The system may be said to comprise a number of spaced heart-shaped signal-transmitting devices, a signal-receiving/alarm device, and an automatic external defibrillator pair-positioned in visual proximity to the signal-receiving/alarm device. A responder may send a signal from any of the transmitter devices for activating the nearest receiving/alarm device, the latter of which activates an alarm signal for guiding the responder toward the automatic external defibrillator. The alarm signal is preferably auditory and has sufficient intensity whereby the responder may be able to aurally perceive the auditory signal and follow the same to the defibrillator site along an unobstructed pathway. The removably attached defibrillator enables the responder to quickly carry said defibrillator to a cardiac emergency site.10-25-2012
20100137929IMPLANTABLE MEDICAL DEVICE INCLUDING A PLURALITY OF LEAD CONNECTION ASSEMBLIES - An implantable medical device (IMD) may include at least two separate lead connection assemblies, each with electrical connectors for connecting implantable leads to the IMD. In some examples, a IMD may include a first therapy module configured to generate a first electrical stimulation therapy and a second therapy module configured to generate a second electrical stimulation therapy for delivery to the patient. The IMD may include a first lead connection assembly including a first electrical connector electrically coupled to the first therapy module and a second lead connection assembly including a second electrical connector electrically coupled to the second therapy module. In some examples, the first and second lead connection assemblies are distributed around the outer perimeter of the IMD housing.06-03-2010
20090299422ELECTROGRAM STORAGE FOR SUSPECTED NON-PHYSIOLOGICAL EPISODES - Techniques for storing electrograms (EGMS) that are associated with sensed episodes or events that may be non-physiological and, instead, associated with a sensing integrity condition are described. In some examples, a device or system identifies suspected non-physiological NSTs, and stores an EGM for the suspected non-physiological NSTs within an episode log. In some examples, a device or system determines whether to store an EGM for a suspected non-physiological episode or event based on whether an impedance integrity criterion has been satisfied. For example, a device or system may store an EGM for a detected short interval if the impedance integrity criterion has been met. In some examples, a device or system determines whether to buffer EGM data based on whether an impedance integrity criterion or other sensing integrity criterion has been met.12-03-2009
20100137928IMPLANTABLE LEAD - A highly flexible implantable lead that offers improved flexibility, fatigue life and fatigue and abrasion resistance improved reliability, effective electrode tissue contact with a small diameter and low risk of tissue damage during extraction. In one embodiment the lead is provided with both defibrillation electrodes and pacing/sensing electrodes. For defibrillation/pacing leads, the lead diameter may be as small as six French or smaller. The construction utilizes helically wound conductors. For leads incorporating multiple separate conductors, many of the helically wound conductors are arranged in a multi-filar relationship. Preferably, each conductor is a length of wire that is uninsulated at about the middle of its length to create an electrode, wherein the conductor is folded in half at about the middle of the length to create first and second length segments that constitute parallel conductors.06-03-2010
20110270336METHOD AND APPARATUS FOR SOLID STATE PULSE THERAPY CAPACITOR - One embodiment includes an apparatus that includes an implantable device housing, a capacitor disposed in the implantable device housing, the capacitor including a dielectric comprising CaCu11-03-2011
20110270335METHOD AND APPARATUS FOR DETECTING AND DISCRIMINATING TACHYCARDIA - A medical device and associated method for discriminating cardiac events includes determining whether a cardiac evidence counter is greater than a predetermined detection threshold, advancing from a concerned state to a convinced state in response to the evidence counter being greater than the predetermined detection threshold, determining whether a reduction in the cardiac evidence counter occurs while in the convinced state, determining whether one of a first rate corresponding to the first sensing vector and a second rate corresponding to the second sensing vector is less than a predetermined rate limit, and determining whether to advance from the convinced state to one of a therapy delivery state, the concerned state and the unconcerned state in response to determining whether one of the first rate and the second rate is less than a predetermined rate limit.11-03-2011
20120296384MEDICAL DEVICES ALERTING USER ABOUT POTENTIAL INTERRUPTION OF WIRELESS PATIENT DATA TRANSFER - An external defibrillator can receive wirelessly a data signal transmitted by a transmitting device over a communication link. The defibrillator can include a processor configured to monitor a reception parameter of the communication link while the data signal is being received and to set an alert flag if the processor determines from the reception parameter that reception of the data signal may be discontinued prematurely. The defibrillator can also include a user interface capable of outputting an alerting user notification responsive to the alert flag being set.11-22-2012
20100217344CONTROL SYSTEM TO GENERATE DEFIBRILLATION WAVES OF AUTOMATICALLY COMPENSATED CHARGE WITHOUT MEASUREMENT OF THE IMPEDANCE OF THE PATIENT - The disclosed invention describes a system to control the generation of biphasic defibrillation waves and its main feature is to eliminate the need of measuring the patient impedance. This simplification is achieved by delivering the charge in pulses and making this charge proportional to the instant charge remaining in the storage capacitor at the end of each pulse or sample cycle. To this end, the charge delivered to the patient (integral of the current) is compared with a fraction of the tension present in the capacitor, annulling the current in the instant that the integral of the current reaches the value of said fraction. In this way, the charge in the straight direction and the charge in the inverse direction are exclusively function of the selected dose (energy or charge, as preferred) and constant for different values of patient impedance, and the necessary voltage in the capacitor is exclusively function of the selected dose.08-26-2010
20080312708Automatic External Defibrillator with Increased Cpr Administration Time - An automated external defibrillator (AED) is described which spends an increased proportion of a rescue in a CPR mode. This is accomplished by use of a single shock protocol which causes the AED to spend less time in shock analysis and delivery activities as compared with the typical multiple shock protocol. An AED of the present invention preferably is configured at the factory with a single shock protocol as the default rescue protocol. The rescue protocol can be modified or changed easily without the need to remove the battery or use specialized hardware or software. Preferably the shock waveform of the single shock is a biphasic waveform delivering at least 175 Joules of energy and more preferably at least 200 Joules of energy.12-18-2008
20100280566SYSTEM AND METHOD FOR GRAPHICALLY CONFIGURING LEADS - Systems and methods are provided for graphically configuring leads for a medical device. According to one aspect, the system generally comprises a medical device and a processing device, such as a programmer or computer, adapted to be in communication with the medical device. The medical device has at least one lead with at least one electrode in a configuration that can be changed using the processing device. The processing device provides a graphical display of the configuration, including a representative image of a proposed electrical signal to be applied by the medical device between the at least one electrode of the medical device and at least one other electrode before the medical device applies the electrical signal between the at least one electrode and the at least one other electrode. In one embodiment, the graphical display graphically represents the lead(s), the electrode(s), a pulse polarity, and a vector.11-04-2010
20090264948APPARATUS AND METHOD FOR MAINTAINING A DEFIBRILLATOR BATTERY CHARGE AND OPTIONALLY COMMUNICATING - Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.10-22-2009
20110009917CAPACITOR-INTEGRATED FEEDTHROUGH ASSEMBLY WITH IMPROVED GROUNDING FOR AN IMPLANTABLE MEDICAL DEVICE - A feedthrough assembly for use with implantable medical devices having a shield structure, the feedthrough assembly engaging with the remainder of the associated implantable medical device to form a seal with the medical device to inhibit unwanted gas, liquid, or solid exchange into or from the device. One or more feedthrough wires extend through the feedthrough assembly to facilitate transceiving of the electrical signals with one or more implantable patient leads. The feedthrough assembly is connected to a mechanical support which houses one or more filtering capacitors that are configured to filter and remove undesired frequencies from the electrical signals received via the feedthrough wires before the signals reach the electrical circuitry inside the implantable medical device. The mechanical support may further include an isolation structure that isolates the feedthrough wires.01-13-2011
20080208272Dual Battery Arrangement for an Automatic External Defibrillator - A defibrillator, equipped with a battery power source, is described which is arranged to operate in any one of both a first mode and a second mode, the battery power source comprising at least two voltage sources. The voltage sources are arranged to be connected in parallel to each other when the defibrillator is operating in a first mode, and in series with each other when the defibrillator is operating in a second mode. The invention can be implemented by a battery pack for a defibrillator. This arrangement allows both voltage sources to be drawn down at the same rate which lengthens the overall life of the batteries. A more efficient use of battery power is thereby obtained. The invention ultimately extends the projected life of the batteries and when applied to an automatic external defibrillator increases the shelf life of the defibrillator.08-28-2008
20080269813METHOD AND APPARATUS FOR SUBCUTANEOUS ECG VECTOR ACCEPTABILITY AND SELECTION - An implantable medical device system and associated method select subcutaneous sensing electrodes for use in monitoring the heart rhythm. A subset of multiple sensing vectors is selected from a number of electrodes positioned at a first subcutaneous location and one electrode positioned at a second subcutaneous location. The subset of sensing vectors includes one vector that includes the electrode positioned at the second location. A signal quality parameter corresponding to each of the sensing vectors of the subset is determined.10-30-2008
20090182388IMPLANTABLE MEDICAL DEVICE WITH WIRELESS COMMUNICATIONS - An implantable medical device for use in a patient management system is described, including a sensor capable of measuring a body characteristic and generating a data signal describing the measurement, and a processor configured to analyze the data signal and identify one or more significant events that warrant attention for the well-being of a patient. The implantable medical device further includes a first non-rechargeable battery configured to power at least the sensor and the processor. In addition, a first communications unit is configured to be powered by the first non-rechargeable battery and includes a wireless transmitter capable of establishing a first communications link with a host computer using an external local receiver, when said first wireless transmitter is within a short-range telemetry communication range of said local receiver, to deliver notification of the significant events to the host computer. The implantable medical device also includes a second rechargeable battery and a second communications unit powered by the second rechargeable battery. The second communications unit is capable of establishing a second communications link with said host computer over a pervasive wireless communications network, such as a cell phone network, to deliver notification of the significant events to the host computer.07-16-2009
20090187225PCB blade connector system and method - The connector between the patient electrode pads and the base unit of an automatic external defibrillator (AED) system can be formed by capturing a printed circuit board (PCB) within a connector housing. The PCB can have conductive metal traces that serve as the contact points between the wires from the patient electrodes and the electronics within the AED base unit. The PCB in combination with the conductive metal traces can be shaped similar to a conventional two-prong or two-blade connector. Employing such a PCB-based connector may result in AED pads which are less complex and less costly to manufacture. The PCB can also support a configuration circuit that is positioned between the conductive metal traces and that allows the AED to read and store information about the attached pads. For example, the AED can use this data storage feature to check the expiration date of the pads.07-23-2009
20090138058MRI OPERATION MODES FOR IMPLANTABLE MEDICAL DEVICES - One embodiment of the present invention relates to an implantable medical device (“IMD”) that can be programmed from one operational mode to another operational mode when in the presence of electro-magnetic interference (“EMI”). In accordance with this particular embodiment, the IMD includes a communication interface for receiving communication signals from an external device, such as a command to switch the IMD from a first operation mode to a second operation mode. The IMD further includes a processor in electrical communication with the communication interface, which is operable to switch or reprogram the IMD from the first operation mode to the second operation mode upon receiving a command to do so. In addition, the IMD includes a timer operable to measure a time period from when the processor switches the IMD to the second operation mode. In accordance with this aspect of the invention, the processor is in electrical communication with the timer, and is further operable to switch the IMD from the second operation mode back to the first operation mode when the measured time period reaches a predetermined time period.05-28-2009
20090326597SOLAR CELL FOR IMPLANTABLE MEDICAL DEVICE - An implantable medical device includes a solar cell configured to provide energy to recharge a power source such as a battery. The power source is coupled to a control circuit of the medical device and provides power to the circuit. The solar cell may be coupled to the power source via a wire and may be distanced from a housing of the medical device. The solar cell may also be attached to the housing or may be disposed in the housing. The medical device may be implanted in the body of a host such that a surface of the solar cell is provided under a layer of skin of the host. The translucent property of skin allows the solar cell to receive light or infrared radiation from outside the body. The solar cell converts the received energy and provides the converted energy to the power source for recharging.12-31-2009
20110224746Method, Apparatus and Computer Program for Defibrillation Delivery Decision - A method, apparatus and computer program for defibrillation delivery decision comprising the steps of: a)Determining a shockable rhythm with a first algorithm, whereby said first algorithm is adapted to analyze an ECG signal in the presence of chest compression; b) Determining a shockable rhythm with a second algorithm, whereby said second algorithm is adapted to analyze an ECG in the absence of chest compression; c) Determining with a third algorithm if the patient is undergoing chest compression.09-15-2011
20110224745Emergency Medical Station And Advertisement Display - A medical emergency station having a housing, an automated external defibrillator in the housing, and a video screen incorporated into a single unit. The medical emergency station includes a video regarding the proper use of the automated external defibrillator. The video is activated whenever the automated external defibrillator is removed from the housing. A commercial advertisement and other media appears on the video screen whenever the video regarding the use of the automated external defibrillator is not in use. The commercial advertisements help to offset the cost of the medical emergency station.09-15-2011
20080306561Multiple pulse defibrillation for subcutaneous implantable cardiac devices - Cardiac stimulation methods and systems provide for multiple pulse defibrillation, and involve sensing a fibrillation event, determining a fibrillation cycle length associated with the fibrillation event, and delivering a plurality of defibrillation pulses to treat the fibrillation event. Defibrillation pulses are delivered using a combination of subcutaneous non-intrathoracic electrodes. Delivery of each defibrillation waveform subsequent to a first defibrillation waveform is separated in time by a delay associated with the fibrillation cycle length. Delays between defibrillation waveform delivery may be associated with a percentage of the fibrillation cycle length.12-11-2008
20080306559Defibrillator with Cardiac Blood Flow Determination - A method of determining whether events in a heart's electrical activity result in corresponding blood flow events comprises simultaneously taking an electrocardiograph (ECG) and an impedance cardiograph (ICG) of the heart. Successive periods of the ECG are examined to detect successive occurrences of at least one periodic waveform feature indicative of electrical activity of the heart (12-11-2008
20080306560Wearable defibrillator with audio input/output - A wearable defibrillator and method of monitoring the condition of a patient are disclosed. The wearable defibrillator includes at least one therapy pad, at least one sensor and at least one processing unit operatively connected to the one or more therapy pads and the one or more sensors. The wearable defibrillator also includes at least one audio device operatively connected to the one or more processing units. The one or more audio devices are configured to receive audio input from a patient.12-11-2008
20090198297TRANSEPTAL LEAD - A lead includes a lead body and an electrode disposed proximate a distal end of the lead body. A retaining member is disposed proximate the distal end of the lead and adapted to retain the electrode proximate an interatrial septum when the retaining member is located on a left atrial side of the interatrial septum.08-06-2009
20090198296Adaptive Shock Delivery in an Implantable Cardiac Stimulus Device - Methods and devices that are configured to deliver cardiac stimuli in a particular fashion. In an illustrative embodiment, a method is used wherein a first stimulus is delivered using a first polarity, and, if the first stimulus fails to successfully convert an arrhythmia, a second stimulus having a second polarity that is different from or opposite of the first polarity is then delivered. Subsequent stimuli, if needed, are delivered in a continuing alternating-polarity manner. The first polarity may be determined by observing whether successfully-converting stimulus has been delivered previously and, if so, the polarity of the most recent stimulus that resulted in successful conversion is used as the first polarity. In additional embodiments, electrode configuration may be changed instead of or in addition to polarity, following unsuccessful stimulus delivery. Devices configured to perform such methods are included in additional illustrative embodiments.08-06-2009
20110144707EXTERNAL DEFIBRILLATOR WITH CHARGE ADVISORY ALGORITHM - An external defibrillator includes a therapy delivery circuit, a sensor, and a processor. The therapy delivery circuit is configured to be electrically charged and to deliver electrical therapy to a patient. The sensor is configured to sense a physiological condition of the patient and generate data indicative of a probability that therapy will be delivered to the patient. The processor is configured to analyze data generated by the sensor to determine whether there is a threshold level of the probability that the therapy delivery will be delivered to the patient, if the probability is at least at the threshold level, charge the therapy delivery circuit, and determine whether therapy delivery is advisable based on the physiological condition of the patient after determining whether the probability is at least at the threshold level.06-16-2011
20090054939Automated External Defibrillator (AED) With Context-Sensitive Help - A defibrillator system is disclosed including an operational state input, a user-operated information request input, and a user guidance output. The defibrillator system can be implemented as an AED, a manual defibrillator, or as a defibrillator trainer. The defibrillator system further utilizes the state and request inputs to determine a context-sensitive rescue information which is provided to the output.02-26-2009
20110230924SYSTEMS AND METHODS FOR ENHANCED DIELECTRIC PROPERTIES FOR ELECTROLYTIC CAPACITORS - This disclosure relates to methods and apparatus for enhanced dielectric properties for electrolytic capacitors to store energy in an implantable medical device. One aspect of the present subject matter includes a method for manufacturing a capacitor adapted to be disposed in an implantable device housing. An embodiment of the method includes providing a dielectric comprising aluminum oxide and doping the aluminum oxide with an oxide having a dielectric constant greater than aluminum oxide. Doping the aluminum oxide includes using sol-gel based chemistry, electrodeposition or atomic layer deposition (ALD) in various embodiments.09-22-2011
20120078317CARBON MONOFLUORIDE IMPREGNATED CURRENT COLLECTOR INCLUDING A 3D FRAMEWORK - One example includes a battery case sealed to retain electrolyte, an electrode disposed in the battery case, the electrode comprising a current collector formed of a framework defining open areas disposed along three axes (“framework”), the framework electrically conductive, with active material disposed in the open areas; a conductor electrically coupled to the electrode and sealingly extending through the battery case to a terminal disposed on an exterior of the battery case, a further electrode disposed in the battery case, a separator disposed between the electrode and the further electrode and a further terminal disposed on the exterior of the battery case and in electrical communication with the further electrode, with the terminal and the further terminal electrically isolated from one another.03-29-2012
20090204161EXTERNAL DEFIBRILLATOR HAVING AN AUTOMATIC OPERATION OVERRIDE - A defibrillator and method for delivering defibrillation energy to a patient are described. A patient ECG is analyzed and defibrillation energy is delivered to the patient in response to receiving manual input. The patient ECG is further analyzed while waiting for the manual input and the defibrillation energy is delivered to the patient after a time delay if the manual input is not received.08-13-2009
20090248102SIGNAL LINE OF AN IMPLANTABLE ELECTROMEDICAL CONFIGURATION - A signal line for an implantable electromedical configuration, having an electric line segment or line end and a mechanoelectric converter for converting an electric AC voltage signal into a mechanical oscillation. The oscillation can in turn be converted back into an electrical signal for delivery to a part of a human or mammal body, e.g., a heart.10-01-2009
20090248101METHOD FOR ENHANCING THE PERFORMANCE AND GENERAL CONDITION OF A SUBJECT - The invention concerns the therapy with a cardiac resynchronisation device (CRT) and/or therapy with an automated internal cardiac defibrilator (ICD) for the treatment of subjects without cardiac diseases, in particular patients with any cancer or patients with cachexia due to acute or chronic illness other than cardiac illness, including malignant tumor disease, COPD, chronic renal failure, liver cirrhosis, chronic infections, and/or AIDS.10-01-2009
20090240296SYSTEM AND METHOD FOR SHUNTING INDUCED CURRENTS IN AN ELECTRICAL LEAD - An implantable medical device (IMD) can include a cardiac pacemaker or an implantable cardiac defibrillator (ICD). Various portions of the IMD, such as a case or device body, the lead body, or the lead tip, can be provided to reduce or dissipate a heat production due to a current induced by various external environmental factors. According to various embodiments, features or portions can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate or increase the area of dissipation of thermal energy created due to an induced current in the lead.09-24-2009
20090281586IMPLANTABLE PULSE GENERATOR EMU FILTERED FEEDTHRU - Disclosed herein is an implantable pulse generator. The implantable pulse generator may include a header, a can and a feedthru. The header may include a lead connector block electrically coupled to a first conductor. The can may be coupled to the header and include a wall and an electronic component electrically coupled to a second conductor and housed within the wall. The feedthru may be mounted in the wall and include a header side with a first electrically conductive tab and a can side with a second electrically conductive tab electrically coupled to the first tab. The first tab is electrically coupled to the first conductor and the second tab is electrically coupled to the second conductor.11-12-2009
20120197327CERMET-CONTAINING BUSHING WITH HOLDING ELEMENT FOR AN IMPLANTABLE MEDICAL DEVICE - One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The electrical bushing includes a holding element to hold the electrical bushing in or on the housing. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The holding element is made, to at least 80% by weight with respect to the holding element, from a material selected from the group consisting of a metal from any of the subgroups IV, V, VI, VIII, IX, and X of the periodic system.08-02-2012
20090240295CPR ANALYSIS SYSTEM AND METHOD - Disclosed is a method and computer program product for analyzing treatment of a sudden cardiac arrest victim. The method includes attaching the victim to an automatic external defibrillator, capturing treatment information about the CPR event, alerting a rescuer of treatment steps, and displaying a chest compression interface based on the treatment information. The chest compression interface may include an event log about various AED, rescuer, and background events and may be used to generate a graphical chest compression chart for simple analysis of the quality of a CPR treatment.09-24-2009
20100152799Implantable Defibrillator Systems and Methods with Mitigations for Saturation Avoidance and Accommodation - Methods and implantable devices that address response to, or avoidance of, likely non-cardiac voltages including afterpotentials from external or internal stimulus. Some examples are directed toward methods of operation in implantable medical devices, the methods configured for identifying saturation of input circuitry and mitigating the effects of such saturation. Some examples are directed toward implantable cardiac stimulus or monitoring devices that include methods for identifying saturated conditions and mitigating the effects of such saturation.06-17-2010
20100274307METHODS OF PREPARING AN ELECTRODE - Methods of preparing an electrode are provided. A metal lead wire is pre-treated to facilitate bonding of the lead wire to a metal powder during subsequent de-oxidation sintering. A connection region can be formed by directly contacting the metal lead wire with a liquid reactive metal. After removal of resultant oxides, an additional metal powder can be de-oxidation sintered onto the connection region to form the electrode. The oxides formed during the de-oxidation sintering are then removed from the electrode.10-28-2010
20100160990FIRST AID SYSTEM, PROCEDURE FOR ITS OPERATION, AND PORTABLE FIRST-AID DEVICE FOR USE ESPECIALLY IN THE SYSTEM - The invention relates to a first aid application system, which has at least one installed unit (06-24-2010
20120197328Multisite Heart Pacing with Adjustable Number of Pacing Sites for Terminating High Frequency Cardiac Arrhythmias - High frequency cardiac arrhythmias and fibrillations are terminated by electric field pacing pulses having an order of magnitude less energy than a conventional cardioversion or defibrillation energy. The frequency and number of the pulses are selected based on a frequency analysis of a present high frequency cardiac arrhythmia or fibrillation. The energy of the pulses is selected from 1/400 to ½ of the conventional defibrillation energy, and the amplitude of the electric field pacing pulses are selected such as to activate a multitude of effective pacing sites in the heart tissue per each pacing electrode. The number and locations of the effective pacing sites in the heart tissue are regulated by the amplitude of the electric field pacing pulses, and by an orientation of the electric field of the pulses.08-02-2012
20120197325METHODS AND SYSTEMS FOR IMPLEMENTING A HIGH VOLTAGE SWITCHING CIRCUIT IN AN IMD - A high voltage switching and control circuit is provided for an implantable medical device (IMD). The circuit includes a high voltage positive (HVP) node, configured to receive a positive high voltage signal from a high energy storage source, and a high voltage negative (HVN) node, configured to receive a negative high voltage signal from a high energy storage source. Additionally, the circuit includes first, second and third output terminals that are configured to be connected to electrodes for delivering high voltage energy. First and second SCR switches are connected to the first and second output terminals, respectively. The first and second SCR switches are connected in series with one another and are connected to one of the HVP and HVN nodes. The first and second SCR switches have gating terminals. A control circuit is connected to the gating terminals and delivers first and second gating signals to turn ON the first and second SCR switches, respectively. The control circuit temporally offsets the first and second gating signals to turn ON the first and second SCR switches in a serial delayed manner.08-02-2012
20100217343METHODS AND SYSTEMS FOR TREATING VENTRICULAR ARRHYTHMIAS - The disclosure includes methods and systems for treating ventricular arrhythmias. Embodiments include an implantable cardiac device or system including a determining module that determines a value of a parameter indicative of a rate of an intrinsic pacemaker of a heart of a patient experiencing fast ventricular arrhythmia (FVA) and a delivery module, programmed to deliver therapy for ventricular arrhythmias to a patient. Some methods include determining a value of a parameter indicative of a rate of an intrinsic pacemaker of a heart of a patient experiencing an FVA; if the value indicates the rate is about equal to or higher than a threshold, delivering a first therapy to the patient for terminating the FVA, and if the value indicates the rate is lower than the threshold, delivering a second therapy, different from the first therapy, to the patient for terminating the FVA.08-26-2010
20100234909Repositionable Electrode and Systems and Methods for Identifying Electrode Position for Cardiotherapy - A system and method for positioning an electrode for cardiotherapy of atrial arrhythmia are described. Signals from patient electrical activity for a plurality of electrode locations on a patient are analyzed. An electrode can be repositioned to different locations on the patient to obtain signals from patient electrical activity therefrom. A human perceptible output indicative of the quality of the signals for the plurality of locations is generated and a final electrode location on the patient for placement of the electrode for cardiotherapy is identified based on the human perceptible output.09-16-2010
20100228306Method of Implanting a Subcutaneous Defibrillator - A subcutaneous implantable cardioverter-defibrillator is disclosed which has an electrically active canister which houses a source of electrical energy, a capacitor, and operational circuitry that senses the presence of potentially fatal heart rhythms. At least one subcutaneous electrode that serves as the opposite electrode from the canister is attached to the canister via a lead system. Cardioversion-defibrillation energy is delivered when the operational circuitry senses a potentially fatal heart rhythm. There are no transvenous, intracardic, or epicardial electrodes. A method of subcutaneously implanting the cardioverter-defibrillator is also disclosed as well as a kit for conducting the method.09-09-2010
20100228305Energy Efficient Defibrillation Current Limiter - A current limiter for a defibrillation pulse is powered by the defibrillation pulse and switches the current delivery path open and closed when an excessive current condition exists. The excessive current condition is sensed by a sense resistor of the current limiter. The controlled current is delivered by an inductor which delivers a current which varies in a range about a predetermined current level during excessive current conditions. The current limiter dissipates little energy of the defibrillation pulse so that most of the energy produced by the defibrillator is delivered to the patient.09-09-2010
20090248100System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator - An inventive system and method de-passivates a direct current (DC) power source of an Automatic External Defibrillator (AED), such as an AED lithium battery. The system includes a main processor and standby processor. The standby processor monitors the age and usage of the battery. Based on the status of the monitored parameters, the system executes a conditioning discharge to remove a layer of salt crystals on the DC power source.10-01-2009
20100241181EXTERNAL DEFIBRILLATOR - A variety of arrangements and methods relating to a defibrillator are described. In one aspect of the invention, a defibrillator includes two paddles that each include a defibrillator electrode covered in a protective housing. The two paddles are sealed together using a releasable seal to form a paddle module such that the housings of the paddles form the exterior of the paddle module. An electrical system including at least a battery and a capacitor is electrically coupled with the paddles. The battery is arranged to charge the capacitor. The capacitor is arranged to apply a voltage at the defibrillator electrodes, which generates an electrical shock for arresting a cardiac arrhythmia.09-23-2010
20100241182COMBINED HEMODYNAMIC AND EGM-BASED ARRHYTHMIA DETECTION - A medical device and associated method for detecting arrhythmias that includes sensing cardiac electrical signals and cardiac hemodynamic signals, determining a long-term baseline hemodynamic measurement in response to a plurality of the sensed cardiac hemodynaic signals, detecting a period of increased metabolic demand in response to the sensed cardiac electrical signals, determining a sinus tachycardia baseline hemodynamic measurement in response sensing of cardiac hemododynamic signals during the detected period of increased metabolic demand, and detecting the arrhythmia and delivering therapy in response to one of only the sensed cardiac electrical signals and the sensed cardiac electrical signals in combination with one or both of the determined long-term baseline hemodynamic measurement and the sinus tachycardia baseline hemodynamic measurement09-23-2010
20110112592NEURAL STIMULATION SYSTEM TO PREVENT SIMULTANEOUS ENERGY DISCHARGES - Various aspects of the present subject matter relate to a system. Various embodiments of the system comprise at least one port to connect to at least one lead with at least one electrode, at least one stimulator circuit and at least one controller. The at least one stimulator circuit is connected to the at least one port and is adapted to deliver neural stimulation to a neural stimulation target using the at least one electrode. The at least one controller is adapted to determine when another energy discharge other than the neural stimulation to the neural stimulation target is occurring and to prevent delivery of the neural stimulation simultaneously with the other energy discharge. Other aspects and embodiments are provided herein.05-12-2011
20100114215IMPLANTABLE MEDICAL DEVICE INCLUDING TWO POWER SOURCES - An implantable medical device (IMD) may include a battery dedicated to providing cardiac stimulation therapy and a separate power source that provides power for electrical stimulation therapy. Such a configuration preserves the battery dedicated for providing cardiac stimulation therapy even if the second power source is depleted. As an example, the IMD may comprise a cardiac stimulation module configured to deliver at least one stimulation therapy selected from a group consisting of pacing, cardioversion and defibrillation. The IMD further comprises a electrical stimulation module configured to deliver electrical stimulation therapy, a first power source including a battery, wherein the first power source is configured to supply power to the cardiac stimulation module and not to the electrical stimulation module, and a second power source. The second power source is configured to supply power to at least the electrical stimulation module.05-06-2010
20100087883INTERACTIVE FIRST AID INFORMATION SYSTEM - In general, the invention is directed to techniques for determining appropriate first aid and applying first aid that is appropriate. A first aid system receives patient status information from an input device or a sensor, and presents first aid information as a function of the received patient status information. The first aid system may be incorporated with an external defibrillator. The first aid system may acquire patient status information through an interaction with an operator, in which the first aid system asks the operator to supply patient status information. In one embodiment of the invention, the operator may supply patient status information by touching a diagram representing at least a portion of a human body.04-08-2010
20100198286SELECTIVE POWERING OF MEDICAL DEVICE DEPENDING ON AUTHENTICATION OF POWER ADAPTER SYSTEM - In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn from the power adapter system only if an inside battery is not charged.08-05-2010
20100198287SELECTIVE RECHARGING OF MEDICAL DEVICE DEPENDING ON AUTHENTICATION OF POWER ADAPTER SYSTEM - In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn more slowly from the power adapter system.08-05-2010
20120143273IMPLANTABLE LEAD INCLUDING A SPARK GAP TO REDUCE HEATING IN MRI ENVIRONMENTS - A medical device lead includes a proximal connector configured to couple the lead to a pulse generator, and an insulative lead body extending distally from the proximal connector. The first lead conductor is coupled to the proximal connector and extends through the lead body. The medical device lead also includes a distal defibrillation electrode. A first spark gap is connected between the first lead conductor and the distal defibrillation electrode and has a breakdown voltage that prevents transmission of magnetic resonance imaging (MRI) induced signals from the first lead conductor to the distal defibrillation electrode in an MRI environment and allows transmission of therapy signals to the distal defibrillation electrode.06-07-2012
20090005825MRI-SAFE DEFIBRILLATOR ELECTRODES - The present invention reduces patient risks associated with RF-induced thermogenic tissue damage and with pulsed gradient-field-induced arrhythmias by using a defibrillator lead having a self-healing dielectric material that prevents induced voltages from MRI equipment from damaging an ICD or causing unintended defibrillation shocks to a patient. Another aspect of the present invention utilizes a sliding contact arrangement to prevent induced voltages from MRI equipment from being electrically coupled to an ICD thereby reducing patient risks associated with RF-induced thermogenic tissue damage and with pulsed gradient-field-induced arrhythmias.01-01-2009
20090112274Defibrillator with remote region on its casing - A defibrillator device (04-30-2009
20120143274DEFIBRILLATION SHOCK OUTPUT CIRCUIT - This document discusses, among other things, techniques for generating and delivering a high voltage defibrillation shock using an implantable cardiac rhythm management device. An output energy delivery bridge can be programmed to provide desired shock vectors or polarities. A bootstrapped fully solid-state switch control voltage generation circuit is described. Automatic polarity or vector reconfiguration embodiments are described, such as in response to an unsuccessful attempt to convert the heart to a normal rhythm.06-07-2012
20090069856DEVICES, SYSTEMS AND METHODS FOR CHARACTERIZATION OF VENTRICULAR FIBRILLATION AND FOR TREATMENT OF VENTRICULAR FIBRILLATION - A defibrillation system for use in treatment of ventricular fibrillation includes at least one sensor to measure heart rhythm; at least one applicator to apply a defibrillation pulse to a patient; and at least one processor in communication with the sensor and the applicator to determine a first value related to the rate of change of a leading edge of a lagged phase space reconstruction of ventricular fibrillation heart rhythm measured over a period of time.03-12-2009
20090036939INDUCTIVE ELEMENT FOR INTRAVASCULAR IMPLANTABLE DEVICES - An inductive element adapted for use in implantable intravascular devices (IIDs) having an elongate form factor with a cross-section. The inductive element includes a core that has an outer surface contour that corresponds to the form factor. A set of elongate, or oblong, windings are situated lengthwise along the major length dimension of the inductive element. The windings are also situated to direct a magnetic field along a radial direction in relation to the elongate form factor. In one embodiment the form factor is generally cylindrical and the cross-section is generally round.02-05-2009
20130138166RECOMMENDED REPLACEMENT TIME BASED ON USER SELECTION - Systems and techniques that enable a user to selectively extend the time prior to providing an indication of power source depletion, e.g., allow an extended the recommended replacement time (RRT) prior to providing an elective replacement indication (ERI), are described. The user provides input, which may indicate an acceptable level of implantable medical device performance, e.g., that lesser performance for a period between a default RRT and an extended RRT is acceptable. In response to the input, the time until providing an RRT/ERI notification, or some other indication of depletion of the implantable medical device power source, may be extended.05-30-2013
20130138167AUTONOMIC MODULATION USING PERIPHERAL NERVE FIELD STIMULATION - Some embodiments provide a system, comprising a peripheral nerve field modulation (PNFM) therapy delivery system, PNFM electrodes configured to be implanted subcutaneously, and a controller. The PNFM electrodes are electrically connected to the PNFM therapy system. The PNFM therapy delivery system and the PNFM electrodes are configured to deliver current and/or control the field potentials at one or more peripheral nerve fields. The controller is configured to control the PNFM therapy delivery system to deliver a PNFM therapy to the one or more peripheral nerve fields. The controller includes a scheduler configured to control timing of the PNFM therapy.05-30-2013
20130144355WEARABLE DEFIBRILLATOR WITH AUDIO INPUT/OUTPUT - A wearable defibrillator and method of monitoring the condition of a patient. The wearable defibrillator includes at least one therapy pad, at least one sensor and at least one processing unit operatively connected to the one or more therapy pads and the one or more sensors. The wearable defibrillator also includes at least one audio device operatively connected to the one or more processing units. The one or more audio devices are configured to receive audio input from a patient.06-06-2013
20100331904Adaptive Confirmation of Treatable Arrhythmia in Implantable Cardiac Stimulus Devices - Methods and devices for adjusting therapy delivery decisions in an implantable cardiac stimulus device by observing cardiac activity following an initial identification of a treatable condition. In some examples, cardiac activity that appears benign is quantified and a therapy confirmation threshold is adjusted according to how much apparently benign cardiac activity is seen after an initial identification of a treatable condition. In other examples, a new threshold is applied following the initial identification of treatable condition, removing historical data preceding the initial identification from subsequent therapy delivery decisions.12-30-2010
20100331903HEART SOUND SENSING TO REDUCE INAPPROPRIATE TACHYARRHYTHMIA THERAPY - Techniques for detecting heart sounds to reduce inappropriate tachyarrhythmia therapy are described. In some examples, a medical device determines that a cardiac rhythm of the patient is treatable with a therapy, such as a defibrillation pulse, based on a cardiac electrogram (EGM). The medical device analyzes detected heart sounds, and withholds or allows the therapy based on the analysis of the heart sounds.12-30-2010
20110009916METHOD AND DEVICE FOR THREE-STAGE ATRIAL CARDIOVERSION THERAPY - Methods and apparatus for a three-stage atrial cardioversion therapy that treats atrial arrhythmias within pain tolerance thresholds of a patient. An implantable therapy generator adapted to generate and selectively deliver a three-stage atrial cardioversion therapy and at least two leads operably each having at least one electrode adapted to be positioned proximate the atrium of the patient. The device is programmed with a set of therapy parameters for delivering a three-stage atrial cardioversion therapy to the patient via both a far-field configuration and a near-field configuration of the electrodes upon detection of an atrial arrhythmia. The three-stage atrial cardioversion therapy includes a first stage for unpinning of one or more singularities associated with an atrial arrhythmia, a second stage for anti-repinning of the one or more singularities associated with the atrial arrhythmia, both of which are delivered via the far-field configuration of the electrodes, and a third stage for extinguishing of the one or more singularities associated with the atrial arrhythmia delivered via the near-field configuration of the electrodes.01-13-2011
20100185251METHOD AND APPARATUS FOR PREVENTING EXCESSIVE POWER DRAIN FROM AN IMPLANTABLE DEVICE - A method and apparatus are provided for controlling interrogation of an implantable device such as a pacemaker, an implantable cardioverter, or a defibrillator utilizing an external device in a home environment. The method controls how frequently a patient can retrieve status information from the implantable device based on a time period elapsed since a last interrogation and a power level of a battery.07-22-2010
20100185250VENTRICLE PACING DURING ATRIAL FIBRILLATION EPISODES - An adaptive cardiac resynchronization therapy system delivers biventricular stimulation to the heart with dynamic AV delay and VV interval. The stimulation is modified continuously in correlation with the hemodynamic performance of the heart. The system uses a spiking neural network comprising spike controller (07-22-2010
20110029032Cardioverter-Defibrillator Having a Focused Shocking Area and Orientation Thereof - One embodiment of the present invention provides an implantable cardioverter defibrillator for subcutaneous positioning between the third rib and the twelfth rib within a patient, the implantable cardioverter-defibrillator including a housing; an electrical circuit located within the housing; a first electrode coupled to the electrical circuit and located on the housing; and a second electrode coupled to the electrical circuit.02-03-2011
20110130798Dual-Mode Defibrillator Display - A medical device includes a display area that has a thin panel having a substantially flat front surface portion, a translucent layer on a back surface of the thin panel, a layer of text or graphics on a back surface of the translucent layer, and arranged so that the text or graphics is not visible to a user on the front side when light is not provided from inside the device housing, a switch to allow a user to select a first mode or a second mode for the device, and circuitry arranged to energize one or more light sources to provide light from behind the thin panel when the device is in the first mode, and to thereby make visible the text or graphics when the device is in the first mode.06-02-2011
20100152800CPR TIME INDICATOR FOR A DEFIBRILLATOR DATA MANAGEMENT SYSTEM - A system is disclosed wherein patient data, such as an electrocardiogram (“ECG”) signal or a chest impedance measurement signal, collected by a defibrillator device during a resuscitation event is analyzed and processed by a computing device to provide an assessment of CPR administered during the event. The CPR assessment results in one or more CPR figures of merit that relate to temporal characteristics of the CPR relative to the duration of the event. In one embodiment, the CPR figure of merit represents a percentage of the event period during which chest compressions were administered to the patient.06-17-2010
20110054553Memory Device Associated With Defibrillation Electrodes - An electrode package for use with a defibrillator, the electrode package comprising an outer shell providing a vapor barrier between an interior space inside the outer shell and an exterior environment, one or more defibrillation electrodes positioned in the interior space inside the outer shell, each of the defibrillation electrodes including a metallic layer in electrical contact with a conductive liquid-containing layer through which electrical current is delivered to a patient when the defibrillation electrodes have been applied to the patient, the conductive a liquid-containing layer being subject to drying out as liquid from the water-containing layer vaporizes and travels from the interior space to the external environment, and one or more electrical conductors extending from inside of the outer shell to a package electrical connector outside of the shell, the package electrical connector being configured to be connected to a mating defibrillator electrical connector connected to the defibrillator, and an electronic memory device positioned outside the outer shell and in electrical contact with some of the electrical conductors extending from the outer shell to the package electrical connector.03-03-2011
20110144706METHODS AND APPARATUS FOR TREATING FIBRILLATION AND CREATING DEFIBRILLATION WAVEFORMS - Methods and apparatus for treating fibrillation utilize biphasic waveforms. A cardiac stimulator includes a defibrillation circuit that uses a pulse width modulated capacitive discharge to generate various biphasic waveforms, one or more of which may be delivered to the heart to treat the fibrillation.06-16-2011
20110144705System and Method For Detecting Atrial Activity Signal Using A Monobody Lead In A Single Chamber Implantable Cardioverter/Defibrillator - A single-chamber implantable device for detecting a patient's atrial activity using a monobody lead is disclosed. The monobody lead (06-16-2011
20100114217THERAPY SYSTEM INCLUDING CARDIAC RHYTHM THERAPY AND NEUROSTIMULATION CAPABILITIES - An implantable medical system that includes a cardiac therapy module and a neurostimulation therapy module may identify when neurostimulation electrodes have migrated toward a patient's heart. In some examples, the system may determine whether the neurostimulation electrodes have migrated toward the patient's heart based on a physiological response to an electrical signal delivered to the patient via the neurostimulation electrodes. In addition, in some examples, the system may determine whether the neurostimulation electrodes have migrated toward the patient's heart based on an electrical cardiac signal sensed via the neurostimulation electrodes.05-06-2010
20090093855HOUSING FOR A MEDICAL IMPLANT - Housing for medical implant, such as cardiac pacemaker, defibrillator, cardioverter, etc. Housing including hollow housing and terminal body attached to hollow housing, which has electrical terminal(s), situated in an externally accessible cavity of the terminal body, for connecting an electrode line, and terminal body including a base body made of electrically insulating plastic, connected to hollow housing and carries electrical supply lines and electrical contacts, which are electrically connected thereto, for the electrical terminal so that the contacts are connected via the electrical supply lines to electrical components in the interior of the hollow housing, electrical supply lines being welded to the electrical contacts and the electrical supply lines and electrical contacts, which are welded to one another, being embedded in the base body and thus fixed in their final position, and the base body being glued to the hollow housing an adhesive between hollow housing and terminal body.04-09-2009
20090048636ASSESSING MEDICAL ELECTRODE CONDITION - The invention presents an apparatus and techniques for determining whether a medical electrode, such as a defibrillation electrode coupled to an automated external defibrillator, is in a condition for replacement. The determination can be made as a function of one or more data. In one exemplary embodiment, the determination is a function of one or more measurements of an impedance of a hydrogel bridge in a test module. In another exemplary embodiment, the determination is a function of one or more environmental condition data from one or more environmental sensors.02-19-2009
20100069979Methods for Determining a Vulnerable Window for the Induction of Fibrillation - Aspects of the invention include methods for determining a vulnerable window for the induction of fibrillation. The method includes obtaining an intracardiac waveform from a subject's heart; measuring an interval between a plurality of time points on the intracardiac waveform; and evaluating the morphology of the waveform so as to determine the optimal vulnerable window for the induction of fibrillation. Also provided are methods for delivering a stimulus to the heart of a subject during the determined vulnerable window.03-18-2010
20100057153ELECTROMAGNETIC INTERFERENCE ALARM - An apparatus and method are disclosed including an implantable medical device electrically coupled to a patient, having a sensor for sensing physiologic conditions and circuitry coupled to the sensor for emitting therapy in response to sensed physiologic conditions. A detector is coupled to the cardiac device for detecting the presence of electromagnetic interference and the intensity thereof and an alarm is coupled to the detector to signal the patient of the implantable medical device of the presence of electromagnetic interference.03-04-2010
20100063558Easy-to-use electrode and package - The invention presents techniques for making the operation of an automated external defibrillator easier to understand for an operator. The automated external defibrillator includes defibrillation electrodes packaged in a sealed, easy-to-open pouch. Visual cues such as instructive pictures show the operator how to open the pouch, retrieve the defibrillation electrodes and correctly position the electrodes on a patient's chest. 03-11-2010
20100069980CARDIAC FUNCTION MANAGEMENT INTEGRATING CARDIAC CONTRACTILITY MODULATION - An implantable cardiac rhythm/function management system integrates cardiac contractility modulation (CCM) and one or more other therapies, such as to preserve device safety, improve efficacy, enhance sensing and detection, or enhance therapy effectiveness and delivery. Examples of the one or more other therapies can include pacing, defibrillation/cardioversion, cardiac resynchronization therapy (CRT), or neurostimulation.03-18-2010
20110098764FREQUENCY DOMAIN ANALYSIS TO DETECT T WAVE OVERSENSING - Detection of T wave oversensing in an ICD is accomplished in order to prevent improper application of treatment to a patient. The ICD device senses for electrical impulses representing the R waves of a beating heart. In some instances the ICD device will sense T waves that it will assume to be R waves, because the ICD device expects or assumes that such sensed signals are R waves. Time intervals between each detected, assumed R waves are measured and a list of intervals is generated. The list is transformed into its frequency domain equivalent and analyzed for peaks and randomness criteria to determine whether T wave oversensing has occurred.04-28-2011
20110087301IMPLANTABLE DEVICE WITH HEMODYNAMIC SUPPORT OR RESUSCITATION THERAPY - An apparatus comprises an implantable sensor, a stimulation circuit, and a controller. The implantable sensor is configured to provide a sensor signal representative of hemodynamic function of a subject. The stimulation circuit is configured to provide electrical simulation energy to an implantable electrode. The controller is communicatively coupled to the stimulation circuit and the implantable sensor and includes a hemodynamic monitor module. The hemodynamic monitor module is configured to detect an episode of reduced hemodynamic capacity in a subject using the sensor signal. In response to the detected episode, the controller is configured to initiate delivery of the electrical stimulation energy to artificially induce at least one of deep ventilation or rapid ventilation in the subject. The hemodynamic monitor module is configured to obtain a measure of hemodynamic performance after delivery of the electrical stimulation energy.04-14-2011
20110082510DECIDING ON PATIENT ELECTRIC SHOCK THERAPY - Systems, devices, software and methods are provided, for making a decision as to whether to administer an electric shock to a patient. The decision can be made differently, depending on whether the patient has already been shocked or not.04-07-2011
20120123490MANUALLY INITIATING WIRELESS TRANSMISSION OF RESUSCITATION EVENT DATA TO MEDICAL DEVICE - An external defibrillator can include a bump sensor for generating motion information and a bump detector for determining whether the external defibrillator has been subjected to a local bump event. The external defibrillator can transmit wirelessly a data signal encoding resuscitation event data to a second external defibrillator over a wireless communication link between the two devices.05-17-2012
20110060379Anterior Active Housing Subcutaneous Positioning Methods - A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart.03-10-2011
20110034964Integrated Circuit Implementation and Fault Control System, Device, and Method - Apparatus and methods enable robust, reliable control for implantable medical devices, including cardiac pacemakers, defibrillators and cardiac resynchronization devices. Integrated circuits in the devices have minimized interfaces, can derive power from the interface signals, and have high voltage and latch-up protection. A device lead has a power generation circuit and a switching circuit using cascaded PMOS transistors for operating with a stable voltage despite fluctuations in the supplied voltage. The lead has control electronics that provide a very low impedance between an electrode and a lead conductor during most of the duration of a pacing pulse, but during a brief initial portion of the pacing pulse, provide a very high impedance to permit charging up a power supply that is local to the control electronics. A method of stabilizing the external impedance and a system for fault detection and fault recovery for an implantable device are also provided.02-10-2011
20100280565CARDIAC RHYTHM MANAGEMENT SYSTEM WITH INTRAMURAL MYOCARDIAL PACING LEADS AND ELECTRODES - Medical devices and therapeutic methods for use in the field of cardiology, cardiac rhythm management and interventional cardiology, and more specifically to catheter-based systems for implantation of pacing leads and electrodes, or intramural myocardial reinforcement devices, within the myocardial wall of the heart, such as the ventricles, to provide improved cardiac function.11-04-2010
20100114214IMPLANTABLE CARDIOVERTER DEFIBRILLATOR CAPACITOR ASSEMBLY WITH FLEX CIRCUIT - An implantable cardioverter defibrillator (“ICD”) comprises a battery, control circuitry and a capacitor assembly. The capacitor assembly includes at least one capacitor, a flex circuit for connection to the control circuitry of the ICD and a first and second support portions. The flex circuit is arranged between the first and second support portions and includes a plurality of tangs for connecting to the anode and cathode of the capacitor(s), as well as to the control circuitry of the ICD.05-06-2010
20100114218RESUSCITATION AND LIFE SUPPORT SYSTEM, METHOD AND APPARATUS - A method of applying electrotherapy to the heart of a patient includes positioning electrodes in communication with the heart of the patient; monitoring the patient's heart to determine if its fibrillating; and providing a first signal with a current generator to the heart through the electrodes in response to an indication that the heart is fibrillating. The first stimulus signal reduces the amount of fibrillation.05-06-2010
20100114210IMPLANTABLE MEDICAL DEVICE LEAD CONNECTION ASSEMBLY - A lead connection assembly of an implantable medical device (IMD) may include at least two different types of electrical connectors. In some examples, the lead connection assembly may include first and second electrical connectors that have at least one of a different electrical contact arrangement, a different lead connection receptacle geometry or a different size than the first electrical connector. The first electrical connector may be electrically connected to a first therapy module that generates cardiac rhythm therapy that is delivered to a heart of a patient, and the second electrical connector may be electrically connected to a second therapy module that generates electrical stimulation that is delivered to a tissue site within the patient. The second electrical connector may be configured to be incompatible with a lead that delivers the cardiac rhythm therapy to the patient.05-06-2010
20100114209COMMUNICATION BETWEEN IMPLANTABLE MEDICAL DEVICES - A first implantable medical device (IMD) implanted within a patient may communicate with a second IMD implanted within the patient by encoding information in an electrical stimulation signal. The delivery of the electrical stimulation signal may provide therapeutic benefits to the patient. The second IMD may sense the electrical stimulation signal, which may be presented as an artifact in a sensed cardiac signal, and process the sensed signal to retrieve the encoded information. The second IMD may modify its operation based on the received therapy information. Crosstalk between the first and second IMDs may be reduced using various techniques described herein. For example, the first IMD may generate the electrical stimulation signal to include a spread spectrum energy distribution or a predetermined signal signature. The second IMD may effectively remove a least some of the signal artifact in a sensed cardiac signal based on the predetermined signal signature.05-06-2010
20100004711MEDICAL IMPLANT - A medical implant, in particular a pacemaker, cardioverter, defibrillator or the like, having at least one functional unit (01-07-2010
20120203294CERAMIC BUSHING HAVING HIGH CONDUCTIVITY CONDUCTING ELEMENTS - One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet.08-09-2012
20110257695PINCH CASE FOR DEFIBRILLATOR ELECTRODE PADS AND RELEASE LINER - A defibrillator electrode assembly with a slot-like storage case is described which protects the pads prior to use and retains them in either an electrically connected or electrically disconnected configuration. When the electrode assembly is slidably inserted into the case, an optional pinch clip within the case presses electrodes on opposite sides of a thick release liner into electrical contact with each other.10-20-2011
20080319495External Defibrillator Having a Ceramic Storage Capacitor and Energy Conditioning Circuit - An external defibrillator for providing a defibrillating pulse to a patient includes a ceramic storage capacitor an d an energy conditioning circuit. A charging circuit coupled to the ceramic storage capacitor electrically charges the ceramic storage capacitor, which has an electrical discharge characteristic. The energy conditioning circuit coupled to the ceramic storage capacitor receives the electrical energy discharging according to the electrical discharge characteristic, and in response, provides output energy according to a modified electrical discharge characteristic. The output energy is delivered by a steering circuit to a patient as a defibrillating pulse having a defibrillating pulse characteristic.12-25-2008
20080255625System and Method for Providing Event Summary Information Using an Encoded Ecg Waveform - Systems and methods for transferring medical information from a first medical monitoring device to a second device are provided. Medical information from the first medical monitoring device is encoded as an ECG waveform and the ECG waveform having the encoded medical information is provided to the second device as an input ECG waveform.10-16-2008
20090281585OTC Automatic External Defibrillator With Quick Install Battery - An automatic external defibrillator is shipped from the manufacturer with the battery installed in the battery compartment of the AED. During shipment a removable tab is located between a battery terminal and an electrical contact inside the battery compartment. Upon receipt of the AED the user pulls the tab to remove it from the battery compartment. This completes the circuit between the AED and its battery and the AED begins a self-test. A packaging panel covers the controls of the AED to prevent actuation of controls during the self-test. The packaging panel includes instructions for setup of the AED including indication of a control to actuate during or at the conclusion of the self-test.11-12-2009
20110015688Defibrillators - Defibrillators are provided that include a graphical user interface to assist a caregiver in administering resuscitation.01-20-2011
20110054555METHOD AND APPARATUS FOR RETAINING MEDICAL IMPLANTS WITHIN BODY VESSELS - The present application describes a retention device for anchoring a medical device within the vasculature. The device may include expandable member coupled to an intravascular medical device and proportioned for receipt within a vessel. At least a portion of the expandable member is expandable to radially engage a vessel wall and to thereby retain the medical device within the vessel. The system is suitable for a variety of intravascular devices, including but not limited to ICD's, pacemakers, and intravascular drug delivery systems.03-03-2011
20110118800ECG ANALYSIS THAT RELATIVELY DISCOUNTS ECG DATA OF CPR PERIOD TRANSITIONS - Medical devices, software and methods are provided, for making a decision as to whether to administer electric shock therapy to a patient. The decision is made with respect to ECG data that is discounted at least partially, and sometimes even completely, if it occurs during a transition between chest compression group and a pause for ventilation.05-19-2011
20110118799METHOD AND APPARATUS FOR PROTECTING A FUNCTION MODE OF A MEDICAL DEVICE - Methods and apparatus for protecting a function mode of a medical device are described. A method may include the steps of: when an operator selects to use a function mode that needs protection in the medical device, presenting the operator information on a specified operation for entering the selected function mode; receiving an operation of the operator; determining whether the received operation of the operator is identical to the specified operation; and starting the selected function mode, if the determining result is confirmative.05-19-2011
20110125206SINGLE CHAMBER IMPLANTABLE MEDICAL DEVICE FOR CONFIRMING ARRHYTHMIA THROUGH RETROSPECTIVE CARDIAC SIGNALS - An implantable medical device is provided that comprises a housing, sensors configured to be located to proximate a heart, and a sensing module to sense cardiac signals originating from the heart over a channel defined by the sensors. The cardiac signals include intrinsic R-wave events and associated intrinsic confirmation events when the heart exhibits normal sinus rhythm. The device further includes memory to store the cardiac signals sensed over a channel, and a detection module. The detection module identifies an R-wave event within the cardiac signals. The detection module captures, in the memory, a segment of the cardiac signals that precedes the R-wave event as a retrospective segment. The detection module determines whether the retrospective segment includes an intrinsic confirmation event that is associated with and occurs before the R-wave event. The detection module declares an arrhythmia based at least in part on the determination of whether the retrospective segment includes the intrinsic confirmation event is absent from the retrospective segment.05-26-2011
20110137361Medical Device with Status Indication - A system and method provides a status indicator to a battery pack of a medical device. The battery pack includes a power supply capable of being connected to the medical device. The battery pack also includes an indicator to automatically indicate a status of at least a portion of at least one of the battery pack and the medical device. For example, the indicator can indicate a status of the power supply.06-09-2011
20100305634NEURAL STIMULATION SYSTEM FOR CARDIAC FAT PADS - Various aspects relate to a device which, in various embodiments, comprises a header, a neural stimulator, a detector and a controller. The header includes at least one port to connect to at least one lead, and includes first and second channels for use to provide neural stimulation to first and second neural stimulation sites for a heart. The controller is connected to the detector and the neural stimulator to selectively deliver a therapy based on the feedback signal. A first therapy signal is delivered to the first neural stimulation site to selectively control contractility and a second therapy signal is delivered to the second neural stimulation site to selectively control one of a sinus rate and an AV conduction. Other aspects and embodiments are provided herein.12-02-2010
20100324613METHOD AND APPARATUS FOR RATE ACCURACY ENHANCEMENT IN VENTRICULAR TACHYCARDIA DETECTION - An implantable cardioverter/defibrillator (ICD) executes a rate accuracy enhancement algorithm to select measured atrial and ventricular intervals for classifying a detected tachycardia based on average atrial and ventricular rates calculated from the selected atrial and ventricular intervals. The detected tachycardia is classified as ventricular tachycardia (VT) if the average ventricular rate is substantially higher than the average atrial rate.12-23-2010
20100179608Treatment Of Heart Failure By Controlled Adjustment Of The Atrioventricular And Interventricular Delays In An Active Implantable Medical Device - An active implantable medical device such as a cardiac prosthesis for the treatment of a heart failure by controlled adjustment of the atrioventricular and interventricular delays. The device provides atrioventricular and/or biventricular stimulation, a sensor delivering at least one hemodynamic parameter correlated with time intervals representative of the succession of the systolic and diastolic phases, and circuits to adjust the AV delay and/or VV delay. The device determines (07-15-2010
20090171409IMPLANTABLE DEVICE WITH VOLTAGE DELAY TEST - An implantable medical device (IMD), such as a defibrillator, performs a capacitor reform or other temporary high current mode, such as to maintain efficacy of a battery or a high voltage defibrillation energy storage capacitor in spite of non-use. Before performing the capacitor reform or other high current mode, a voltage delay test can be performed. A voltage delay can be declared when an initial battery voltage measurement is less than a later battery voltage measurement during a loaded condition such as the charging of the capacitor. If a voltage delay is present, the capacitor reform or other temporary high current mode is enabled, otherwise, the capacitor reform or other temporary high current mode is inhibited. This saves energy, increasing the life of the IMD before explant.07-02-2009
20110152958SINTERED ELECTRODES TO STORE ENERGY IN AN IMPLANTABLE MEDICAL DEVICE - An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a cathode disposed in the capacitor case, a separator disposed between the cathode and the anode and a cathode terminal disposed on an exterior of the capacitor case and in electrical communication with the cathode, with the anode terminal and the cathode terminal electrically isolated from one another.06-23-2011
20100121392PULSE DETECTION METHOD AND APPARATUS USING PATIENT IMPEDANCE - The presence of a cardiac pulse in a patient is determined by evaluating fluctuations in an electrical signal that represents a measurement of the patient's transthoracic impedance. Impedance signal data obtained from the patient is analyzed for a feature indicative of the presence of a cardiac pulse. Whether a cardiac pulse is present in the patient is determined based on the feature in the impedance signal data. Electrocardiogram (ECG) data may also be obtained in time coordination with the impedance signal data. Various applications for the pulse detection of the invention include detection of PEA and prompting PEA-specific therapy, prompting defibrillation therapy and/or CPR, and prompting rescue breathing depending on detection of respiration.05-13-2010
20110152959IMPLANTABLE ENERGY STORAGE DEVICE INCLUDING A CONNECTION POST TO CONNECT MULTIPLE ELECTRODES - An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a second electrode disposed in the capacitor case, a separator disposed between the second electrode and the anode and a second electrode terminal disposed on an exterior of the capacitor case and in electrical communication with the second electrode, with the anode terminal and the second electrode terminal electrically isolated from one another.06-23-2011
20120310294Electromagnetic Interference Shielding in an Implantable Medical Device - EMI shields for use in implantable medical devices that include inner and outer metal layers separated by a dielectric layer. When assembled as medical devices, the outer metal layer of an illustrative EMI shield is placed into electrical contact with a conductive inner surface of an associated canister for an implantable medical device.12-06-2012
20100082075DEFIBRILLATOR WITH CPR-VENTILATION ANALYSIS UTILIZING PATIENT PHYSIOLOGICAL DATA - A defibrillation system and method for treating a heart disorder that includes measuring electrical activity of a patient's heart and processing the measured electrical activity to determine a value descriptive of ventricular fibrillation. The value is compared to a threshold, and according to the comparison of the value to the threshold, an output communicating to the rescuer whether to perform cardio-pulmonary resuscitation with or without ventilation is generated.04-01-2010
20120150247Battery pack topology - A battery pack topology wherein the battery pack has multiple battery sub-stacks electrically connected in parallel such that the capacity of each battery sub-stack may be utilized but one is reduced unequally as to the others. As a result, one battery sub-stack will reach a point of failure before the other, which causes a drastic, observable change in the output voltage of the battery pack, but provides sufficient reserve capacity to permit a user of a device, such as an AED, having the battery pack to be notified in a timely fashion of the need to replace the battery pack.06-14-2012
20120209343METHOD AND DEVICE FOR THREE-STAGE ATRIAL CARDIOVERSION THERAPY - Methods and apparatus for a three-stage atrial cardioversion therapy that treats atrial arrhythmias within pain tolerance thresholds of a patient. An implantable therapy generator adapted to generate and selectively deliver a three-stage atrial cardioversion therapy and at least two leads, each having at least one electrode adapted to be positioned proximate the atrium of the patient. The device is programmed for delivering a three-stage atrial cardioversion therapy via both a far-field configuration and a near-field configuration of the electrodes upon detection of an atrial arrhythmia. The three-stage atrial cardioversion therapy includes a first stage for unpinning of one or more singularities associated with an atrial arrhythmia, a second stage for anti-repinning of the one or more singularities, both of which are delivered via the far-field configuration of the electrodes, and a third stage for extinguishing of the one or more singularities delivered via the near-field configuration of the electrodes.08-16-2012
20100030291SUBCUTANEOUS IMPLANTABLE LEAD - A subcutaneous implantable device is provided that includes a defibrillation electrode disposed along a portion of a lead, and a lead tip connected to the lead. The lead tip includes a trailing end coupled to a distal end of the lead, and first and second non-parallel sides extending from the trailing end that converge to a leading end that is configured to wedge between tissue layers as the lead is advanced subcutaneously.02-04-2010
20100030290EXTRAVASCULAR ARRHYTHMIA INDUCTION - A cardiac arrhythmia may be induced by delivering a sequence of pulses to a patient via one or more extravascular electrodes. In one example, one or more pacing pulses may be delivered to a patient via an extravascular electrode and a shock pulse may be delivered to the patient the extravascular electrode. In some examples, the pacing pulses and the shock pulse may be generated with energy from a common energy storage module and without interim charging of the module. For example, the pacing and shock pulses may be generated as the energy storage module dissipates. In another example, a cardiac arrhythmia may be induced in a patient by delivering a burst of pulses to a patient via an extravascular electrode. In some cases, the burst of pulses may be generated with energy from a common energy storage module and without interim charging of the energy storage module.02-04-2010
20100023076POST-DOWNLOAD PATIENT DATA PROTECTION IN A MEDICAL DEVICE - The disclosure describes techniques for protecting patient data stored in a medical device, such as an external defibrillator. The patient data may be transferred, or downloaded, from the medical device to another device, such as to a computing device for storage or analysis. In response to the download, the medical device may protect the patient data so that at least subset of users can no longer access the patient data. Patient data may be protected by modifying the data form, encrypting the data, moving the data to another memory module, password protecting the patient data, or modifying an access control list associated with the patient data. While the patient data may also be deleted as a technique for protecting the data, not deleting the data may allow the data to be recovered at a later time by an authorized user, i.e., a user not part of the subset.01-28-2010
20100023075SYSTEM AND METHOD FOR DETECTION ENHANCEMENT PROGRAMMING - A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.01-28-2010
20100016910MEDICAL DEVICE WITH RESUSCITATION PROMPTS DEPENDING ON ELAPSED TIME - Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator using a measurement of elapsed time. The present invention provides a defibrillator with a timer function. Upon activation of the defibrillator, an internal timer begins to run. By closely associating the activation of the defibrillator with the onset of the patient's attack, and by making allowances for inherent time differences between these events, the timer provides a measure of the elapsed time between the onset of the patient's emergency and the presentation of the defibrillator at the patient's side. Using this measure of elapsed time, the defibrillator determines an appropriate treatment therapy, such as CPR or defibrillation therapy.01-21-2010
20090287266HIGH-VOLTAGE TOLERANT MULTIPLEX MULTI-ELECTRODE STIMULATION SYSTEMS AND METHODS FOR USING THE SAME - High-voltage tolerant multiplex multi-electrode stimulations systems and methods of using the same are provided. Aspects of the systems include a multiplex multi-electrode stimulation device, such as lead, configured to deliver high-voltage stimulation pulses through low-voltage satellites. Also provided are low-power implantable defibrillation systems, where such systems may include a high-voltage tolerant multiplex multi-electrode stimulation system.11-19-2009
20100004710CPR ANALYSIS SYSTEM AND METHOD - Disclosed is a method and computer program product for analyzing treatment of a sudden cardiac arrest victim. The method includes attaching the victim to an automatic external defibrillator, capturing treatment information about the CPR event, alerting a rescuer of treatment steps, and displaying a chest compression interface based on the treatment information. The chest compression interface may include an event log about various AED, rescuer, and background events and may be used to generate a graphical chest compression chart for simple analysis of the quality of a CPR treatment.01-07-2010
20100198285CARDIAC STIMULATION WITH HEMODYNAMIC SENSOR GUARD - A method and system for regulating the operation of a cardiac pacemaker or defibrillator are disclosed. A processor receives signals of both an implanted hemodynamic sensor and intracardiac electrograms and digitizes them. The digitized signal of the hemodynamic sensor is used to prevent inappropriate cardiac stimulation and erroneous cardiac detection. The hemodynamic signal is also used to define arrhythmias. 08-05-2010
20110060378AUTOMATED EXTERNAL DEFIBRILLATOR DEVICE WITH INTEGRATED WIRELESS MODEM - An automatic external defibrillator (AED) includes an integral wireless modem configured so that, upon activation, the AED automatically connects to a wireless network and reports the event to an emergency services center or remote server to call for an ambulance. The activation report may be accomplished by calling an emergency services center and playing a prerecorded voice message that includes AED location information. Alternatively, the activation report may be transmitted via a wireless data network to a remote server which routes the information to appropriate authorities. After the activation report is transmitted, the AED may transmit patient and treatment data to the server. The AED may include a speaker phone capability so a caregiver can talk with a dispatcher or medical team. The AED may also automatically report activation data and periodic self-diagnostic testing results to a manufacturer or service provider via a wireless data call to a remote server.03-10-2011
20120046705Method of Implanting and Using a Subcutaneous Defibrillator - A subcutaneous implantable cardioverter-defibrillator is disclosed which has an electrically active canister which houses a source of electrical energy, a capacitor, and operational circuitry that senses the presence of potentially fatal heart rhythms. At least one subcutaneous electrode that serves as the opposite electrode from the canister is attached to the canister via a lead system. Cardioversion-defibrillation energy is delivered when the operational circuitry senses a potentially fatal heart rhythm. There are no transvenous, intracardiac, or epicardial electrodes. A method of subcutaneously implanting the cardioverter-defibrillator is also disclosed as well as a kit for conducting the method.02-23-2012
20120046706 EXTERNAL DEFIBRILLATOR - An external defibrillator estimates the phase of ventricular defibrillation (VF) by deriving, from an ECG exhibiting VF, at least one quality marker representing the morphology of the ECG and, therefore, the duration of the VF. The duration of the VF is calculated as a function of the value (s) of the quality marker (s). The quality marker (s) may comprise any one or more of the median slope of the ECG, the average slope of the ECG, the ratio of the power in relatively high and low frequency bands of the ECG, and a measure of the density and amplitude of peaks in the ECG, over a predetermined period.02-23-2012
20120046704SYSTEM AND METHOD FOR DETECTION ENHANCEMENT PROGRAMMING - A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.02-23-2012
20120004693SYSTEM AND METHOD FOR PREDICTING SUCCESSFUL DEFIBRILLATION FOR VENTRICULAR FIBRILLATION CARDIAC ARREST - A computer-assisted method for quantitative characterization and treatment of ventricular fibrillation includes acquiring a time series of a ventricular fibrillation (VF) signal using a probe from a patient experiencing VF, subtracting the mean from the time series of the VF signal, calculating a cumulative VF signal after the mean is subtracted from the time series of the VF signal, segmenting the cumulative VF signal by a plurality of sampling boxes, calculating the root-mean-square of the cumulative VF signal as a function of the sampling box size , extracting an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size, applying electrical defibrillation to the patient if the exponent is below a predetermined value, and applying cardiopulmonary resuscitation (CPR) to the patient if the exponent is above a predetermined value.01-05-2012
20110054554METHOD AND APPARATUS FOR DETECTION OF LEAD CONDUCTOR ANOMALIES USING DYNAMIC ELECTRICAL PARAMETERS - A method and apparatus to detect anomalies in the conductors of leads attached to implantable medical devices based on the dynamical electrical changes these anomalies cause. In one embodiment, impedance is measured for weak input signals of different applied frequencies, and a conductor anomaly is detected based on differences in impedance measured at different frequencies. In another embodiment, a transient input signal is applied to the conductor, and an anomaly is identified based on parameters related to the time course of the voltage or current response, which is altered by anomaly-related changes in capacitance and inductance, even if resistance is unchanged. The method may be implemented in the implantable medical device or in a programmer used for testing leads.03-03-2011
20120010672BATTERY LONGEVITY ESTIMATOR THAT ACCOUNTS FOR EPISODES OF HIGH CURRENT DRAIN - System and method for estimating a remaining capacity of a battery of an implantable medical device. The implantable medical device has a battery producing a current and having a remaining battery capacity, the implantable medical device being configured to utilize a relatively low amount of the current and, in specific instances, a relatively large pulse of the current. The processor is coupled to the battery and configured to calculate an estimate of the remaining battery capacity based, at least in part, on a measured battery parameter and occurrences of the specific instances of delivery of the relatively large pulse of the current.01-12-2012
20110166614IMPLANTABLE ANALYTE RF SPECTROSCOPY MEASURING SYSTEM - An analyte measuring system includes implantable medical device having a RF signal source arranged for generating a RF signal and a transmitting antenna for transmitting the RF signal into a surrounding tissue in a subject body. The system has a receiving RF antenna for receiving the RF signal from the tissue and a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectral analysis of the received RF signal.07-07-2011
20120059431Intravascular Device for Neuromodulation - The present disclosure describes intravascular systems that may be used for a variety of functions. The elements of the disclosed systems include at least one device body implanted within the vasculature. Electrodes on a lead and/or on the device body itself are used to direct electrical energy to neurological targets. These systems may additionally include one or more fluid reservoirs housing drugs or other agents to be delivered to tissue.03-08-2012
20120071940DEFIBRILLATOR WITH UTILITY LIGHT - Embodiments of the present concept are directed to external defibrillators that include a utility light for use by one or more rescuers using the defibrillator. In one implementation, an external defibrillator has a housing, an energy storage module for storing an electrical charge, a defibrillation port for guiding the stored electrical charge to a person, and a processor for determining when to guide the electrical charge. The defibrillator also includes a user interface that includes a screen showing indications by light, and a separate utility light coupled to the housing via a light-coupling structure. The utility light is structured to generate and cast a beam of light with a beam divergence angle of no more than 160 degrees in order to illuminate a certain point of the local environment. This illumination capability may help rescuers reach a person in need of medical attention and apply medical assistance to the person.03-22-2012
20120158074Fitted garment comprising heart monitoring with defibrillation capability - The fitted garment is an undergarment for containing heart monitoring and defibrillation devices that is interchangeable, washable and cleanable. The fitted garment is capable of being attached to a stylish and fashionable outer garment which carries and conceals the various connectors and electrodes.06-21-2012
20120071938Disposable Internal Defibrillation Electrodes - A disposable electrode paddle assembly is provided and includes a shaft having a proximal end and a distal end; a handle assembly supported at the proximal end of the shaft; a spoon supported at the distal end of the shaft; an electrical conductor extending from the handle assembly and establishing an electrical connection at the spoon; and an electrode assembly selectively, electrically connectable to the electrical connection provided at the spoon; wherein the electrode assembly includes a layer of silver/silver-chloride (Ag/AgCl) having one of an increasing and decreasing density extending in a radially outward direction.03-22-2012
20120071939MEDICAL DEVICE WITH SPEAKER HAVING EXTERIOR DIAPHRAGM - Embodiments of the present concept are directed to medical devices having features that prevent contaminants from infiltrating the housing of the device while providing a mechanism to provide clear auditory sounds to aid a rescuer in providing care to a patient. In one example, a medical device includes a housing having a transmission area associated with an enclosed voice coil. An exterior diaphragm formed integrally with the housing surrounds the transmission area and provides a watertight seal of the transmission area. In addition, the diaphragm is structured to generate a sound that can be heard by the rescuer from the voice coil.03-22-2012
20120158073BIPHASIC DEFIBRILLATION CIRCUIT AND DEFIBRILLATOR - A biphasic defibrillation circuit and defibrillator.06-21-2012
20110066199HIGH VOLTAGE CAPACITOR ROUTE WITH INTEGRATED FAILURE POINT - An implantable medical device may have a circuit failure mode. The disclosed circuit may have an integrated failure point designed to fail prior to those portions of the circuit. The integrated failure point may include a narrowed portion of a high voltage lead and a grounded lead having a narrow gap separating the grounded lead from the narrowed portion of the high voltage lead. During a high stress fault condition the narrowed portion of the high voltage lead acts as a fuse, forming a vaporized cloud of metal, which shorts current in the high voltage lead across the narrow gap to the grounded lead, thus protecting the remaining portion of the circuit from the high stress condition.03-17-2011
20110106193CARDIAC DISEASE TREATMENT AND DEVICE - A jacket of biological compatible material has an internal volume dimensioned for an apex of the heart to be inserted into the volume and for the jacket to be slipped over the heart. The jacket has a longitudinal dimension between upper and lower ends sufficient for the jacket to surround a lower portion of the heart with the jacket surrounding a valvular annulus of the heart and further surrounding the lower portion to cover at least the ventricular lower extremities of the heart. The jacket is adapted to be secured to the heart with the jacket surrounding at least the valvular annulus and the ventricular lower extremities. The jacket is adjustable on the heart to snugly conform to an external geometry of the heart and assume a maximum adjusted volume for the jacket to constrain circumferential expansion of the heart beyond the maximum adjusted volume during diastole and to permit unimpeded contraction of the heart during systole.05-05-2011
20110106191IMPLANTABLE MEDICAL DEVICE NOISE MODE - Techniques for activating an alternative operating mode in an implantable medical device based on a determination that the device is within a relatively high noise environment or otherwise exposed to relatively high noise. The implantable medical device can automatically detect its presence in a high noise environment and automatically revert to the alternative operating mode, the device may be manually switched to alternative operating mode, or a hybrid manual/automatic approach may be used to switch the device to alternative operating mode.05-05-2011
20110106190Defibrillator Having a Secure Discharging Circuit Comprising an H-Bridge - The invention relates to a cardiac defibrillator used to treat a patient in cardio-circulatory arrest by a shock from a dosed biphasic discharge from a capacitor through an H-bridge comprising a high-voltage switch A, B, C or D in each of the limbs thereof. Said cardiac defibrillator is characterised in that each opposing polarity phase of the biphasic shock is controlled in two stages in such a way that, for each pair of switches associated with a phase, the first switch is switched on and remains on during the entire phase, while the second switch switches off in a staggered manner in relation to the first switch for a controlled amount of time in order to pass the current through the patient during said phase, the same process being carried out for the second phase with the other pair of switches. The invention is especially suitable for manufacturers of defibrillation appliances.05-05-2011
20120165885CAPACITOR-INTEGRATED FEEDTHROUGH ASSEMBLY WITH IMPROVED GROUNDING FOR AN IMPLANTABLE MEDICAL DEVICE - A feedthrough assembly for use with implantable medical devices having a shield structure, the feedthrough assembly engaging with the remainder of the associated implantable medical device to form a seal with the medical device to inhibit unwanted gas, liquid, or solid exchange into or from the device. One or more feedthrough wires extend through the feedthrough assembly to facilitate transceiving of the electrical signals with one or more implantable patient leads. The feedthrough assembly is connected to a mechanical support which houses one or more filtering capacitors that are configured to filter and remove undesired frequencies from the electrical signals received via the feedthrough wires before the signals reach the electrical circuitry inside the implantable medical device.06-28-2012
20090131998Method for Adapting Charge Initiation for an Implantable Cardioverter-Defibrillator - Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia. The adaptive methods adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy.05-21-2009
20120123489ENERGY STORAGE ELEMENT DESIGN AND CONFIGURATION FOR IMPLANTABLE INTRAVASCULAR DEVICE - An energy storage component for use with an implantable intravascular medical device that maximizes the useful volume available in the implantable intravascular medical device by providing a bore in a capacitor or battery that allows connections between various segments of the implantable intravascular medical device to be connected with one another.05-17-2012
20120130441INDUCTIVE ELEMENT FOR INTRAVASCULAR IMPLANTABLE DEVICES - An inductive element adapted for use in implantable intravascular devices (IIDs) having an elongate form factor with a cross-section. The inductive element includes a core that has an outer surface contour that corresponds to the form factor. A set of elongate, or oblong, windings are situated lengthwise along the major length dimension of the inductive element. The windings are also situated to direct a magnetic field along a radial direction in relation to the elongate form factor. In one embodiment the form factor is generally cylindrical and the cross-section is generally round.05-24-2012
20100204742PATIENT CONTROLLED ATRIAL SHOCK THERAPY - An implanted cardiac device detects an atrial arrhythmia and provides periodically updated atrial arrhythmia status as long as the arrhythmia is ongoing. A patient may request an indication of ongoing atrial arrhythmia status from external to the patient using a patient activator. The patient activator may include a magnet for closing a reed switch in the implanted device to provide the request or may provide the request over a telemetry link to the implanted device. The implanted device may provide the requested atrial arrhythmia status and other information in the form of an audible tone produced by the implanted device or as a message telemetered from the implanted device to the patient activator. The patient activator may include a tone detector and display for providing a visual indication of the atrial arrhythmia status indication. The magnet activator may also be employed to request or withhold atrial shock therapy.08-12-2010
20120172943ACTIVE IMPLANTABLE MEDICAL DEVICE WITH ATRIAL PACING FOR THE TREATMENT OF DIASTOLIC HEART FAILURE - An active implantable medical device with atrial pacing for the treatment of diastolic heart failure. This device comprises circuits and leads for collecting right and left atrial events (07-05-2012
20120215270RESERVE BATTERY OPERATED EMERGENCY MEDICAL DEVICES - An automated external defibrillator including: a reserve power source for providing power to defibrillate a patient, the reserve power source including: a reserve battery which requires activation to produce power; an activator for activating the reserve power upon one of an electrical or mechanical activation; a pair of terminals operatively connected to the reserve battery for outputting the produced power to electrode pads configured to supply the produced power to a surface of the patient; and a stop for preventing the activator from activating the reserve power source, the stop being selectively removable when activation is desired.08-23-2012
20110184482NON-RECHARGEABLE BATTERIES AND IMPLANTABLE MEDICAL DEVICES - A non-rechargeable battery comprising: an anode; a cathode comprising a binder comprising styrene-butadiene rubber; a separator between the anode and the cathode; and an electrolyte contacting the anode, the cathode, and the separator. Such batteries can be used in implantable medical devices.07-28-2011
20100174331ENERGY DELIVERY APPARATUS AND METHOD - There is provided an energy delivery device comprising a storage device, a discharge circuit and a disarm circuit. The discharge circuit comprises a switch electrically connected to the storage device, and is selectively operable to deliver energy from the storage device to a load, e.g., a patient needing defibrillation, preferably in a multiphasic waveform. The disarm circuit comprises the switch. Preferably, the discharge circuit comprises an H-bridge circuit. There are also provided delivery devices: which comprise a shoot-through elimination circuit; which include housing elements which, when assembled, cause electrical connection between respective components; which include a housing having a small volume and an energy storage device having a large capacitance; which comprise a shunt circuit which, when activated, prevents switching of a switch. There are also provided methods of assembly and disassembly of an energy delivery unit and methods of delivering energy to a load.07-08-2010
20100174332Automatic external defibrillator with defibrillator pad assembly usage memory - The connector between the patient electrode pads and the base unit of an automatic external defibrillator (AED) system can be formed by capturing a printed circuit board (PCB) within a connector housing. The PCB can have conductive metal traces that serve as the contact points between the wires from the patient electrodes and the electronics within the AED base unit. The PCB in combination with the conductive metal traces can be shaped similar to a conventional two-prong or two-blade connector. Employing such a PCB-based connector may result in AED pads which are less complex and less costly to manufacture. The PCB can also support a configuration circuit that is positioned between the conductive metal traces and that allows the AED to read and store information about the attached pads. For example, the AED can use this data storage feature to check the expiration date of the pads.07-08-2010
20100049267Implanted medical device - A spectral fingerprint technique is disclosed that allows an ICD to eliminate unnecessary shocks to the heart.02-25-2010
20100049266CPR COACHING DEVICE WITH REDUCED SENSITIVITY TO MOTION - A CPR coaching device is designed for placement on the chest of a patient during CPR. Chest compressions are delivered to the patient by a rescuer by pressing on the device. A force sensor and an accelerometer are located in the device and are responsive to the chest compressions. When the patient's body is stationary there will be a high correlation of a depth signal produced by doubly integrating the acceleration signal of the accelerometer and the force signal, and the depth signal is deemed reliable. When the patient's body is subject to motion such as by the motion of a vehicle transporting the patient, there will be a low correlation of the depth and force signals, with the force signal being relatively immune to this motion. In such cases, the force signal is used in association with the previously determined relationship between depth and force in the absence of motion to produce an indication of chest compression depth.02-25-2010
20100298898BAROREFLEX ACTIVATION FOR ARRHYTHMIA TREATMENT - An aspect of the present subject matter relates to a system for providing baroreflex stimulation. An embodiment of the system comprises an adverse event detector to sense an adverse event and provide a signal indicative of the adverse event, and a baroreflex stimulator. The stimulator includes a pulse generator to provide a baroreflex stimulation signal adapted to provide a baroreflex therapy, and a modulator to receive the signal indicative of the adverse event and modulate the baroreflex stimulation signal based on the signal indicative of the adverse event to change the baroreflex therapy from a first baroreflex therapy to a second baroreflex therapy. Other aspects are provided herein.11-25-2010
20100298897INTEGRATED HIGH VOLTAGE OUTPUT CIRCUIT - An apparatus includes a cardioversion or defibrillation therapy energy source coupled to a bridge circuit. The bridge circuit includes a first switch for connection to a first implantable electrode, a second switch for connection to a second implantable electrode, a third switch coupled for connection to the first implantable electrode, and a fourth switch coupled for connection to the second implantable electrode. The first and second switches are formed on a shared first IC, the third and fourth switches are formed on a shared second IC, and the second IC is stacked substantially superjacent to the first IC such that a cathode of the first switch is coupled to an anode of the third switch and a cathode of the second switch is coupled to an anode of the fourth switch.11-25-2010
20120179218DEFIBRILLATOR HAVING SPECIALIZED OUTPUT WAVEFORMS - An output stage for use in a therapeutic defibrillator enables practical use of specialized output waveforms optimized for cardiac defibrillation. A pulse-width modulated (PWM) switching amplifier, connected to a high voltage source capacitor and to one or more output bridges corresponding to different electrode placements, is adapted to operate with high efficiency, demonstrated at about 80%. The amplifier is capable of delivering a defibrillating electric shock to a heart in the form of a time-varying output voltage waveform of arbitrary shape. Efficiency improvement is accomplished through the use of a high voltage reservoir capacitor network configured to minimize a voltage differential between the high voltage reservoir and the output voltage. The switching amplifier features both step-up and step-down amplifier capability. A PWM control unit is positioned within the circuit so as to reduce complexity by eliminating a need for additional isolation circuitry.07-12-2012
20120179217Planar Anode for Use in a Wet Electrolytic Capacitor - A relatively thin planar anode for use in a wet electrolytic capacitor is provided. Through a combination of specific materials and processing techniques, the present inventors have surprisingly discovered that the resulting anode may possess a high volumetric efficiency, and yet still be able to operate at a high voltage and capacitance, thus resulting in a capacitor with a high energy density. More particularly, the anode is a pressed pellet formed from an electrically conductive powder that contains a plurality of particles (including agglomerates thereof). The particles may have a flake-like morphology in that they possess a relatively flat or platelet shape. The present inventors have discovered that such a particle morphology can optimize packing density, and thus reduce the thickness of the anode and improve volumetric efficiency. Such particles can also provide a short transmission line between the outer surface and interior of the anode and also provide a highly continuous and dense wire-to-anode connection with high conductivity. Among other things, this may help increase the specific charge of the anode when anodized at higher voltages, thereby increasing energy density. The particles may also increase the breakdown voltage (voltage at which the capacitor fails) and help lower equivalent series resistance (“ESR”).07-12-2012
20080300640System and Method for Achieving Regular Slow Ventricular Rhythm in Response to Atrial Fibrillation12-04-2008
20120239099SYSTEM AND METHOD FOR DELIVERING MYOCARDIAL AND AUTONOMIC NEURAL STIMULATION - Various aspects of the present subject matter provide an implantable medical device. In various embodiments, the device comprises a pulse generator, a lead, a sensor, and a controller. The pulse generator generates a baroreflex stimulation signal as part of a baroreflex therapy. The lead is adapted to be electrically connected to the pulse generator and to be intravascularly fed into a heart. The lead includes an electrode to be positioned in or proximate to the heart to deliver the baroreflex signal to a baroreceptor region in or proximate to the heart. The sensor senses a physiological parameter regarding an efficacy of the baroreflex therapy and provides a signal indicative of the efficacy. The controller is connected to the pulse generator to control the baroreflex stimulation signal and to the sensor to receive the signal indicative of the efficacy of the baroreflex therapy. Other aspects are provided herein.09-20-2012
20110130799Dual-Mode Defibrillator With Latched Panel - A medical device includes a device housing and a door mounted to the device housing. The device also includes a first magnet mounted to the door, wherein magnetic force applied to the door exerts a moment on the door, and a second magnet mounted in the housing and positioned to hold the door shut by magnetic interaction with the first magnet. In addition, the device includes a user-movable mode-changing mechanism attached to a third magnet, and arranged to hold the third magnet out of proximity with the first and second magnets when the device is in a first mode, and to move the third magnet into proximity with the first and second magnets when the device is in a second mode so as to expel the first magnet away from the housing and open the door to expose items positioned behind the door.06-02-2011
20110046688Common Notebook, Laptop Computer, Tablet PC, PDA and Cell Phone With Automated External Defibrillator (AED) Capability and Methods for Adapting A Common Notebook, Laptop Computer, Tablet PC, PDA and Cell Phone To Enable Each to be Used as an Automated External Defibrillator - A notebook, laptop computer, tablet PC (personal computer) or desktop computer having an automated external defibrillator (AED) capability, and methods of utilizing the notebook, laptop computer or tablet PC (personal computer) defibrillator to treat victims of sudden cardiac arrest. A notebook, laptop computer or tablet PC (personal computer) having the technology to enable each to be used as an automated external defibrillator (AED). Methods and apparatuses for implementing the common notebook, laptop computer, tablet PC, common cell phone and the common personal digital assistant (PDA) as an automated external defibrillator (AED).02-24-2011
20110230923FEEDTHROUGH SYSTEM FOR IMPLANTABLE DEVICE COMPONENTS - The present subject matter provides feedthrough or interconnect systems for components of an implantable medical device and methods for their manufacture. A feedthrough system includes a wire or nailhead having a protruded tip. The wire or nailhead extends from an aperture in an encasement of a first component and is connected to a terminal conductor adapted to electrically connect to circuitry within the encasement. A ribbon wire has a distal end adapted to electrically connect to a second component and a proximal end having a pattern adapted to fit to the protruded tip of the wire or nailhead to provide for subsequent attachment of the ribbon wire to the nailhead.09-22-2011
20110238127ARRHYTHMIA DISPLAY - Systems, devices, structures, and methods are provided to present a visual display based on data from an implantable medical device. The display includes a chart showing the frequency of a detected type of arrhythmia over a predetermined period of time.09-29-2011
20100234910Corrective Voice Prompts for Caregiving Device - A medical device such as a defibrillator that incorporates corrective voice prompts that navigate users around operator errors. The voice prompts may, for example, address errors of readiness (e.g., failing to connect the defibrillator to an AC power source, failing to pre-connect electrodes, etc.), errors of omission (i.e., forgetting to do something, such as attempting to deliver a shock before the defibrillator is charged), and errors of commission (i.e., doing the wrong thing, such as attempting to shock VF when in the synchronization mode). The voice prompts may address errors in the delivery of therapy (e.g., attempting to shock VF when in the synchronization mode) or they may address errors other than in the delivery of therapy (e.g., failing to connect to an AC power source).09-16-2010
20100234908Defibrillator, Rescue Kit of Parts and Process for Controlling the Quality of Chest Compression - The invention relates to a defibrillator with integrated means for chest compression feedback. The defibrillator is shaped and sized such as to be directly placeable on the patient's chest.09-16-2010
20110319948INTRACARDIAC DEFIBRILLATION CATHETER SYSTEM - An intracardiac defibrillation catheter system equipped with a defibrillation catheter, a power source device and an electrocardiograph. The defibrillation catheter is equipped with a first DC electrode group and a second DC electrode group. The power source device is equipped with a DC power source unit, a catheter-connected connector, an electrocardiograph-connected connector, an arithmetic processing unit, which controls the DC power source unit and has an output circuit for outputting a direct current voltage from the DC power source unit, and a changeover unit, in which the catheter-connected connector is connected to a common contact. The electrocardiograph-connected connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact. In the intracardiac defibrillation catheter system, electric energy necessary and sufficient for defibrillation can be surely supplied. The defibrillation catheter can be used as an electrode catheter for cardiac potential measurement when a defibrillation treatment is not performed.12-29-2011
20100168811Identifying the Usage Status of a Defibrillation Pad Assembly - The connector between the patient electrode pads and the base unit of an automatic external defibrillator (AED) system can be formed by capturing a printed circuit board (PCB) within a connector housing. The PCB can have conductive metal traces that serve as the contact points between the wires from the patient electrodes and the electronics within the AED base unit. The PCB in combination with the conductive metal traces can be shaped similar to a conventional two-prong or two-blade connector. Employing such a PCB-based connector may result in AED pads which are less complex and less costly to manufacture. The PCB can also support a configuration circuit that is positioned between the conductive metal traces and that allows the AED to read and store information about the attached pads. For example, the AED can use this data storage feature to check the expiration date of the pads.07-01-2010
20100168810METHOD AND SYSTEM FOR DETECTING CARDIAC ARRHYTHMIAS DURING OVERDRIVE PACING - A method and apparatus are provided for detecting cardiac arrhythmias during overdrive pacing. A maximum paced rate and a reduced paced rate for a heart are determined, the maximum paced rate being higher than the reduced paced rate. The heart is paced at the maximum paced rate. After the heart is paced at the maximum paced rate for a predetermined amount of time, the heart is paced at the reduced paced rate.07-01-2010
20100168809AUTOMATED CAREGIVING DEVICE WITH PROMPTING BASED ON CAREGIVER PROCESS - A device for assisting a caregiver in delivering therapy to a patient, the device comprising a user interface configured to deliver prompts to a caregiver to assist the caregiver in delivering therapy to a patient; at least one sensor configured to detect the caregiver's progress in delivering the therapy, wherein the sensor is other than an electrode in an electrical contact with the body; a memory in which a plurality of different prompts are stored; a processor configured to determine which of the different prompts should be selected for delivery based on the progress detected by the sensor.07-01-2010
20130013011IMPLANTABLE MEDICAL DEVICE FOR PULSE GENERATION AND WITH MEANS FOR COLLECTING AND STORING ENERGY DURING A RECHARGE PHASE - A pulse generating implantable medical device comprises a power source , a control unit, a plurality of switching units, a timing unit, a pulse generating unit adapted to generate one or more stimulation pulses to be applied to human or animal tissue via one or more stimulation electrodes, and a coupling capacitor in series with each stimulation electrode. A stimulation pulse is adapted to be applied during a stimulation pulse timing cycle that includes a stimulation phase and a recharge phase, and that the timing of a stimulation pulse timing cycle is controlled by the control unit via the timing unit and the switching units. The implantable medical device further comprises an energy storage unit and that, during the recharge phase, one or more of the switching units is adapted to establish electrical connection between the one or many stimulation electrodes and the energy storage unit in order to collect and store energy from applied stimulation pulses.01-10-2013
20090292332METHOD AND APPARATUS FOR MORPHOLOGY-BASED ARRHYTHMIA CLASSIFICATION USING CARDIAC AND OTHER PHYSIOLOGICAL SIGNALS - A tachyarrhythmia detection and classification system classifies tachyarrhythmias based on an analysis of morphological features of a cardiac signal enhanced by using one or more physiological parameters indicative of hemodynamic stability and/or activity level. The tachyarrhythmia detection and classification system computes a measure of similarity between an arrhythmic waveform of the cardiac signal a template waveform for that cardiac signal, such as a correlation coefficient representative of the correlation between morphological features of the arrhythmic waveform and morphological features of the template waveform. A detected tachyarrhythmia episode is classified by comparing the measure of similarity to a threshold that is dynamically adjusted using the one or more physiological parameters.11-26-2009
20120150249ELECTRICAL CORD FOLDING ENHANCEMENT - Enhancements may be implemented with respect to an electrical cord or other cable to facilitate folding, storage and deployment thereof. Local enhancement of select regions may predispose the electrical cord to be folded in accordance with a predictable folding assembly. Local enhancement may be accomplished in various ways including, but not limited to, over-molding, co-extrusion, as well as the application of internal or attachable stiffening members.06-14-2012
20120150248Battery pack for an electronic device - A removable battery pack is disclosed for a portable medical device, such as an automated external defibrillator. The removable battery pack interacts with the portable medical device using an electrical connector that creates a watertight connection. The connection is created by a gasket that is not compressed in the direction of movement of the removable battery pack. As a result, the gasket does not increase the force necessary to engage the removable battery pack in the portable medical device.06-14-2012
20120150246AED with alternate shock switch - A semi-automated AED with a second shock switch. In an illustrative embodiment, programming running on the AED after prompting a user of the AED to push a shock switch looks to see if an event associated with pushing the shock switch, such as the delivery of a shock, has occurred. If the event being monitored for has not occurred within a given time, the user is prompted to push another button to initiate the event.06-14-2012
20110160785DEFIBRILLATION CATHETER - An intracardiac defibrillation catheter capable of supplying electric energy necessary and sufficient for defibrillation and conducting a defibrillation treatment without causing a burn on the body surface of a patient. The intracardiac defibrillation catheter is equipped with an insulated tube member having a multi-lumen structure, a handle connected to a proximal end of the tube member, a DC electrode group installed in a distal region of the tube member, a second DC electrode group installed on the tube member towards proximal direction from the first DC electrode group, a first lead wire group composed of lead wires connected to the respective electrodes making up the first DC electrode group, and a second lead wire group composed of lead wires connected to the respective electrodes making up the second DC electrode group, wherein the first lead wire group and the second lead wire group respectively extend into different lumens of the tube member.06-30-2011
20110160784DIVERSE CAPACITOR PACKAGING FOR MAXIMIZING VOLUMETRIC EFFICIENCY FOR MEDICAL DEVICES - Capacitor packaging according to the disclosure provides advantages particularly in connection to compact and/or complex-shaped medical devices (e.g., having limited interior volume defined by domed and/or irregular exterior surfaces). In addition, capacitors of the type shown and described herein can be utilized in relatively compact external defibrillators, such as automatic external defibrillators or clinician-grade, automated or manually-operated external defibrillators. In one form a plurality of capacitors having substantially flat exterior surfaces are placed in an abutting relationship between at least a pair of major surfaces and the major surfaces are spaced from an opposing or adjacent surface in a non-parallel configuration. In other forms, one or more exterior surface portions have a common and/or complex radius dimension (i.e., the surfaces are curved).06-30-2011
20110160783MRI CARDIAC OPTIMIZATION - An implantable or other ambulatory device, such as a pacer, defibrillator, or other cardiac function management device, can use imaging information, such as one or more of cardiac functional magnetic resonance imaging (fMRI) information or cardiac magnetic resonance imaging (MRI) information, such as for helping optimize one or more parameters of the implantable or other ambulatory device.06-30-2011
20080221633LONG-TERM MONITORING FOR DISCRIMINATION OF DIFFERENT HEART RHYTHMS - A method and a system for detection of an arrhythmia and discrimination between different types of arrhythmia to determine whether to administer an electric shock to the heart, the method comprising monitoring the electrical activity of a beating heart, selecting a number of heart beat intervals that will comprise an analysis segment; determining an instantaneous heart rate for each of the heart beat intervals with the segment; calculating the mean instantaneous heart rate for the segment; determining the variability of the instantaneous heart rates compared to a mean; using a linear combination of the mean and the non-linear value for comparison with a predetermined threshold to discriminate the type of arrhythmia to automatically decide if intervention is indicated.09-11-2008
20080221632Apparatus and Method of Arrhythmia Detection in a Subcutaneous Implantable Cardioverter/Defibrillator - In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.09-11-2008
20080221631 External Defibrillators,Transcutaneous Electrodes for Same, and Methods of Use - An external defibrillator is provided including (a) a pair of disposable electrodes configured to be adhered to the skin of a patient, each electrode including an electrically conductive layer comprising a metal that is polarized during a defibrillating pulse, and (b) a control unit configured to deliver a defibrillating pulse to the patient through the electrodes. The waveform is configured to substantially depolarize the metal, and may be, for example, a biphasic waveform. Method of defibrillation and defibrillation electrodes are also provided.09-11-2008
20130172951DEFIBRILLATOR WITH UTILITY LIGHT - Embodiments of the present concept are directed to external defibrillators that include a utility light for use by one or more rescuers using the defibrillator. In one implementation, an external defibrillator has a housing, an energy storage module for storing an electrical charge, a defibrillation port for guiding the stored electrical charge to a person, and a processor for determining when to guide the electrical charge. The defibrillator also includes a user interface that includes a screen showing indications by light, and a separate utility light coupled to the housing via a light-coupling structure. The utility light is structured to generate and cast a beam of light with a beam divergence angle of no more than 160 degrees in order to illuminate a certain point of the local environment. This illumination capability may help rescuers reach a person in need of medical attention and apply medical assistance to the person.07-04-2013
20130123870APPARATUS FOR DETECTING AND TREATING VENTRICULAR ARRHYTHMIA - A system and method for long-term monitoring of cardiac conditions such as arrhythmias is disclosed. The invention includes a pulse generator including means for sensing an arrhythmia. The pulse generator is coupled to at least one subcutaneous electrode or electrode array for providing electrical stimulation such as cardioversion/defibrillation shocks and/or pacing pulses. The electrical stimulation may be provided between multiple subcutaneous electrodes, or between one or more such electrodes and the housing of the pulse generator. In one embodiment, the pulse generator includes one or more electrodes that are isolated from the can. These electrodes may be used to sense cardiac signals.05-16-2013
20130131744ELECTROCHEMICAL CELL WITH ADJACENT CATHODES - The disclosure includes an electrochemical cell comprising a first cathode and a second cathodes are adjacent one another in a stacked arrangement to form a cathode stack in the electrochemical cell. The first cathode includes a first current collector and a first cathode form of active material covering the first current collector, and the second cathode includes a second current collector and a second cathode form of active material covering the second current collector. The second current collector is in electrical contact with the first current collector. The electrochemical cell further comprises an anode adjacent to the cathode stack, and a separator located between the cathode stack and the anode.05-23-2013
20080208270HIGH VOLTAGE CAPACITOR ROUTE WITH INTEGRATED FAILURE POINT - An implantable medical device may have a circuit failure mode. The disclosed circuit may have an integrated failure point designed to fail prior to those portions of the circuit. The integrated failure point may include a narrowed portion of a high voltage lead and a grounded lead having a narrow gap separating the grounded lead from the narrowed portion of the high voltage lead. During a high stress fault condition the narrowed portion of the high voltage lead acts as a fuse, forming a vaporized cloud of metal, which shorts current in the high voltage lead across the narrow gap to the grounded lead, thus protecting the remaining portion of the circuit from the high stress condition.08-28-2008
20110224747IMPLANTABLE DEFIBRILLATION OUTPUT CIRCUIT - An implantable defibrillation circuit can include an output circuit. The output circuit can include a first switch configured to controllably connect a first supply node to a first output node, a second switch configured to controllably connect a second supply node to the first output node through a first rectifier, and the second switch can be configured to inhibit the first switch from connecting the first supply node to the first output node when the second supply node is connected to the first output node through the second switch. In an example, the first and second switches can include insulated gate bipolar transistors.09-15-2011
20100286737ARTIFICIAL CONDUCTION PATHWAYS IN TACHYARRHYTHMIA - An implantable medical device can establish one or more artificial conduction pathways during tachyarrhythmia. Withdrawal of the artificial conduction pathway may help self-terminate the tachyarrhythmia, or may pre-condition the tachyarrhythmia to be more favorable for receiving an anti-tachyarrhythmia therapy, such as anti-tachyarrhythmia pacing, defibrillation shock therapy, or cardioversion. This can help provide enhanced anti-tachyarrhythmia therapy.11-11-2010
20090054938Method for Discriminating Between Ventricular and Supraventricular Arrhythmias - The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.02-26-2009
20100318144DEFIBRILLATORS CUSTOMIZED FOR ANTICIPATED PATIENTS - An external defibrillator is customized for at least one person, i.e., an anticipated patient, through creation of a profile for the anticipated patient that allows the defibrillator and users of the defibrillator to provide customized treatment to the patient. The profile may include treatment parameters for the anticipated patient, such as defibrillation therapy parameters selected for the patient. The profile may also include a baseline recording of a physiological parameter of the patient, and medical history and personal information regarding the patient. In some embodiments, the external defibrillator stores a profile for each of one or more anticipated patients within a memory. In other embodiments, a profile for an anticipated patient is stored within a medium associated with that anticipated patient. The medium may, for example, be a removable medium for external defibrillators.12-16-2010
20100318143DEFIBRILLATORS CUSTOMIZED FOR ANTICIPATED PATIENTS - An external defibrillator is customized for at least one person, i.e., an anticipated patient, through creation of a profile for the anticipated patient that allows the defibrillator and users of the defibrillator to provide customized treatment to the patient. The profile may include treatment parameters for the anticipated patient, such as defibrillation therapy parameters selected for the patient. The profile may also include a baseline recording of a physiological parameter of the patient, and medical history and personal information regarding the patient. In some embodiments, the external defibrillator stores a profile for each of one or more anticipated patients within a memory. In other embodiments, a profile for an anticipated patient is stored within a medium associated with that anticipated patient. The medium may, for example, be a removable medium for external defibrillators.12-16-2010
20100318142METHOD OF PRODUCING AN ALUMINUM SLUG ANODE - An aluminum slug anode usable in capacitors is produced from multiple-stacked layers of aluminum foils. The foils are stacked (possibly after cutting them to have an area similar to the area desired for the anode), hot-pressed, sintered, and anodized to generate the anode. A contact in electrical communication with the foils is formed, as by welding a contact across at least some of the foils. A capacitor casing be formed by situating the anode within a casing which serves as a cathode, with the anode being wrapped in a dielectric such as separator paper.12-16-2010
20100318141Method and apparatus for detecting imminent structural failure of an electrical lead in an implanted cardiac therapy medical device - A method and apparatus implementing the method, which is not dependent on monitoring the electrical impedance of the lead, detects imminent structural failure of an electrical lead in an implanted medical device, such as an implantable cardioverter-defibrillator (ICD) or a pacemaker. The approach is to monitor directly the mechanical load loss of the lead (a measure of the loss of structural integrity of the lead) rather than, as in the prior art, to infer it from the electrical impedance.12-16-2010
20100318140VOLUMETRIC ENERGY DENSITY ELECTRODES - The present teachings provide methods of preparing an anode for use in a high volumetric energy density electrolytic capacitor. A lead wire is de-oxidized and sintered in a valve metal powder compact to form the anode. The de-oxidizing and sintering are conducted in the presence of a reactive metal having a stronger affinity for oxygen than the valve metal powder. A residual reactive metal and at least one reactive metal reaction product are removed from the anode surface with a leaching process. Remaining residual reactive metal and reactive metal reaction products are redistributed by thermal processing. A capacitor containing the anode has an operating voltage greater than 90% of the forming voltage.12-16-2010
20120283794PATIENT-WORN ENERGY DELIVERY APPARATUS AND TECHNIQUES FOR SIZING SAME - A support garment for a patient-worn energy delivery apparatus. A vest-type garment holds an electrode belt in contact with a wearer's ribcage. A removable electrode harness may be attachable to the support garment to accurately position sensing electrodes on the body of the wearer and energy delivery electrodes for transfer of an electrode therapy pulse to the wearer of the garment. The chest garment includes adjustable shoulder straps and a band to accommodate any body size or shape. One-sided assembly and coding of components facilitates use by a patient. A technique for sizing the support garment is also disclosed.11-08-2012
20130158613CARDIOVERTERS FOR ELMINATING ATRIAL FIBRILLATION - The invention relates to two independently operating electrical cardioverters, each having an integrated stimulator for heart therapy. The cardioverters and stimulators have two separate final stages, which can deliver shock pulses or stimulation pulses at a time offset from each other, but can also be controlled by the ventricular ECG and synchronized accordingly.06-20-2013
20130190833Use of Electric Fields for Reducing Patient Discomfort During Defibrillation - Devices, systems and methods for reducing patent discomfort during defibrillation by delivering pulses to electrode configurations that create electric fields confined to and/or concentrated in an area of fibrillation are described. Embodiments provide for an implantable defibrillator having an electrode lead system having at least one electrode lead and at least one three electrodes, a controller for determining whether fibrillation exists and a voltage generator for discharging one or more defibrillation pulses to the at least three electrodes to create electric fields having different directions and high electric field concentrations in areas of the heart needing defibrillation and low electric field concentrations outside those areas.07-25-2013
20090254136Automatic External Defibrillator for Adult and Pediatric Patients - An AED unit which is operable to selectively execute either an adult rescue protocol or a pediatric rescue protocol is causes to execute the pediatric rescue protocol by inserting a key-like device into a slot of the AED unit. A sensor inside the case of the AED unit senses the presence of the device in the slot and responds by executing the pediatric rescue protocol. In an illustrated embodiment the AED unit includes a lighting mechanism which is used to light an illustration showing the proper placement of electrode pads on an adult patient. The key-like device includes an illustration showing the proper placement of electrode pads on a pediatric patient which obscures the adult illustration when the device is inserted in the AED unit. The key-like device is configured to make use of the same AED unit lighting mechanism to light the pediatric pad placement illustration.10-08-2009
20120029585Implantable Electrode - An implantable electrode, for an implantable tissue stimulator, has an electrically conductive porous material comprising metal carbide, metal nitride, metal carbonitride, metal oxide or metal oxynitride and one or more coating layers on a surface thereof. The coating layer or at least one of the coating layers, is for contact with body tissue when the electrode is implanted. Each coating layer is an electrically conductive layer of polymer having a polypyrrole polymeric backbone or polythiophene polymeric backbone. The coating layer or layers are formed in situ by electropolymerisation. The polypyrrole or polythiophene may be substituted. The coating layer or layers can provide high charge storage capacitance and a fast discharging profile, as well as biocompatibility.02-02-2012
20130197594CLOSED LOOP NEURAL STIMULATION SYNCHRONIZED TO CARDIAC CYCLES - Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.08-01-2013
20130197595MODE KNOB WITH TIME CIRTICALITY ORDERING OF MODES - A multi-function defibrillator having an improved mode selection switch (08-01-2013
20130211470IMPLANTABLE MEDICAL DEVICE WITH COMMUNICATION BY WAY OF PHYSICAL CONNECTOR, SYSTEM AND METHOD THEREFORE - System, implantable medical device and method for communicating between an implantable medical device and an external communication device. The implantable medical device has a physical connector, a medical module and a communication module. The medical module is configured to at least one of deliver a therapeutic output by way of the physical connector and/or sense data indicative of a physiologic condition of a patient by way of the physical connector. The external communication device is configured to communicate with the communication module by way of the physical connector. In an embodiment, electronic communication may be by way of a differential pair of connectors.08-15-2013

Patent applications in class Cardioverting/defibrillating

Patent applications in all subclasses Cardioverting/defibrillating