Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Electroanalysis

Subclass of:

600 - Surgery

600300000 - DIAGNOSTIC TESTING

600309000 - Measuring or detecting nonradioactive constituent of body liquid by means placed against or in body throughout test

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
600347000 Blood glucose 228
600348000 Determining ion concentration/partial pressure 12
600346000 Sweat analysis 5
20100130843WIRELESS DEVICE FOR CONFIRMATORY DIAGNOSIS OF CYSTIC FIBROSIS THROUGH ANALYSIS OF SWEAT CHLORIDE - Wireless equipment for confirmatory diagnosis of cystic fibrosis through sweat testing, includes a module of analyzer/transmitter, with a box, built-in microprocessor for sweat induction analysis through chloride measurement device, radio antenna with a transmitter, battery, switch, and sensor card wiring connector with a single-use. The card has two iontophoresis electrodes, and ion-selective electrodes, built-in connector to the module, and a module terminal/receiver. The box (05-27-2010
20090270704PATCHES, SYSTEMS, AND METHODS FOR NON-INVASIVE GLUCOSE MEASUREMENT - Described here are patches, systems, and methods for measuring glucose. In general, the patches comprise a microfluidic collection layer and a detector, and the systems comprise a patch and a measurement device. Some methods for measuring glucose comprise cleaning the skin surface, collecting sweat from the skin surface using a microfluidic collection device, and measuring the collected glucose. Other methods comprise cleaning the skin surface, collecting sweat in a patch comprising a microfludic collection layer, and measuring glucose collected in the patch. Still other methods comprise cleaning the skin surface, collecting a first sweat sample from the skin surface in a patch comprising a microfludic collection layer and a detector layer, transferring the first sweat sample from the collection layer to the detector layer, measuring glucose in the first sweat sample, and repeating the collection, transferring, and measuring steps at least once.10-29-2009
20120184833Touch screen medical diagnostic device and methods - A capacitive touch screen device forms a capacitance between a body part of a user and a sensor layer. The sensor layer of the device includes capacitive sensors that allow a current to flow to the body part from the device when contact is made. The body part contacts the device through a bodily fluid. The current drawn is measured and a value for the bodily fluid is determined. This value is compared against known values to diagnose a possible medical condition or to infer characteristics of the bodily fluid.07-19-2012
20100179403METHOD AND KIT FOR SWEAT ACTIVITY MEASUREMENT - The invention relates to sweat activity measurement, e.g. for determining a physiological state of a subject, embodied by a method as well as a kit with an immittance measuring circuit and electrodes with contact electrolyte. Sweat activity is considered a transport phenomenon and can be defined as a flux, e.g. gram water per skin area per second. Prior art methods determining water absorbed per gram dry stratum corneum measures skin moisture and do not truly reflect sweat activity. A periodic signal with frequency of 60 Hz or lower is applied to reduce contribution from complex admittance of the skin, and skin conductance is measured as a degree of sweat activity. The contact electrolyte allows filling of sweat ducts with sweat from sweat glands, this may be characterized in that it does not substantially fill the sweat ducts when being positioned on the skin and/or in that it has a re-absorption time constant from the sweat ducts into the Epidermis of less than 15 min.07-15-2010
20100063372SWEAT COLLECTION DEVICES FOR GLUCOSE MEASUREMENT - Devices, methods, and kits for collecting sweat that has come to the surface of the skin are provided. The sweat may be collected for measuring sweat glucose levels. Because sweat glucose levels correlate to blood glucose levels, the provided devices, methods, and kits may be used by diabetic patients to non-invasively monitor blood glucose levels. Sweat collection devices may be attachable to the surface of the skin and may collect about one microliter or less of sweat. Because only a small, fixed volume of sweat may be collected, the sweat glucose level may be measured in a matter of minutes. Further, as a fixed volume of sweat is tested, inaccuracies due to estimates of the sweat volume being tested are less likely to cause an inaccurate glucose measurement.03-11-2010
Entries
DocumentTitleDate
20110208026Systems, devices, and methods including implantable devices with anti-microbial properties - Systems, devices, methods, and compositions are described for providing an actively controllable implant configured to, for example, monitor, treat, or prevent microbial growth or adherence to the implant.08-25-2011
20100010327A SENSOR MODULE FOR A CATHETER - A sensor module (01-14-2010
20090192379Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192378Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192377Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192376Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192375Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192374Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192373Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192372Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192370Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090192369Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20110196216ELECTRODE SYSTEM FOR MEASURING AN ANALYTE CONCENTRATION UNDER IN-VIVO CONDITIONS - An electrode system for measuring the concentration of an analyte under in-vivo conditions comprises a counter-electrode having an electrical conductor, a working electrode having an electrical conductor on which an enzyme layer containing immobilized enzyme molecules for catalytic conversion of the analyte is arranged, and a diffusion barrier that slows the diffusion of the analyte from body fluid surrounding the electrode system to enzyme molecules. The enzyme layer is in the form of multiple fields that are arranged on the conductor of the working electrode at a distance from each other.08-11-2011
20100094113HEMODYNAMIC MONITORING DURING AUTOMATED MEASUREMENT OF BLOOD CONSTITUENTS - The present invention provides methods and apparatuses that can provide measurement of analytes such as glucose with a variety of sensors in connection with hemodynamic monitoring. Some embodiments of the present invention enable the use of a single arterial access site for automated blood glucose measurement as well as hemodynamic monitoring. Some embodiments of the present invention can reduce or eliminate nuisance hemodynamic alarms. Some embodiments of the present invention can provide hemodynamic monitoring during an automated analyte measurement process. An example apparatus according to the present invention comprises a blood access system, adapted to remove blood from a body and infuse at least a portion of the blood back into the body. Such an apparatus also comprises an analyte sensor, mounted with or integrated into the blood access system such that the analyte sensor measures the analyte in the blood that has been removed from the body by the blood access system.04-15-2010
20100049021DEVICES, SYSTEMS, METHODS AND TOOLS FOR CONTINUOUS ANALYTE MONITORING - One aspect of the invention provides an analyte monitor including a sensing volume, an analyte extraction area in contact with the sensing volume adapted to extract an analyte into the sensing volume, and an analyte sensor adapted to detect a concentration of analyte in the sensing volume. The sensing volume is defined by a first face, a second face opposite to the first face, and a thickness equal to the distance between the two faces. The surface area of the first face is about equal to the surface area of the second face and the extraction area is about equal to the surface area of the first and second face of the sensing volume. The analyte sensor includes a working electrode in contact with the sensing volume, the working electrode having a surface area at least as large as the analyte extraction area, and a second electrode in fluid communication with the sensing volume.02-25-2010
20100076283PARTICLE-CONTAINING MEMBRANE AND PARTICULATE ELECTRODE FOR ANALYTE SENSORS - Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.03-25-2010
20100076284Health Management Devices and Methods - Methods and devices and systems including a data collection module for receiving and storing analyte data over a predetermined time period from a subject, a user interface unit coupled to the data collection module for providing one or more indication related to the analyte data, a control unit coupled to the data collection module and the user interface unit to control, at least in part the operation of the data collection module and the user interface unit, a communication module coupled to the control unit for communicating one or more signals associated with the analyte data to a remote location, where the user interface unit is configured to operate in a prospective analysis mode including substantially real time output of the analyte level received by the data collection module, and a retrospective analysis mode including limited output of information to the subject during the predetermined time period, and further where the communication module is configured to communicate with the remote location after the analyte data is received and stored in the data collection module over the predetermined time period, are provided.03-25-2010
20130035573BIOSENSOR, CARTRIDGE STORING BIOSENSOR, MEASUREMENT DEVICE USING BIOSENSOR - There are provided a biosensor, and a measurement device in which the biosensor is used, with which accurate puncture is enabled and reliability of measurement results are improved. The biosensor (02-07-2013
20100041971IMPLANTABLE ANALYTE SENSOR - An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.02-18-2010
20100324392ANALYTE SENSOR AND APPARATUS FOR INSERTION OF THE SENSOR - An apparatus for insertion of a medical device in the skin of a subject is provided.12-23-2010
20090156919TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.06-18-2009
20100030044Subcutaneous Glucose Electrode - A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.02-04-2010
20090124876NEEDLE INTEGRATED BIOSENSOR - There is a needle integrated biosensor, including: a biosensor including at least two electrodes, and a puncture needle to collect a body fluid by piercing a skin of a person to be tested, the biosensor and the puncture needle being integrated, wherein the puncture needle is able to be kept hygienic without the need of a protective cover or the like for the puncture needle.05-14-2009
20090299161MARKER OF WOUND INFECTION - An indicator device adapted give a detectable signal when the antioxidant capacity of a sample of a mammalian wound fluid exceeds a predetermined minimum level which is characteristic of an infected wound. Also provided system for use in the diagnosis and treatment of wounds comprising the inventive diagnostic device and a wound dressing comprising at least one antimicrobial agent for selective application to infected wounds. Also provided are methods of diagnosis and treatment by means of the inventive device and system.12-03-2009
20120116195METHOD AND DEVICE FOR DETECTION OF BIOAVAILABLE DRUG CONCENTRATION IN A FLUID SAMPLE - The invention relates to a method for the controlled delivery of a drug as a function of bioavailable drug concentration, a sensor device for detecting bioavailable drug concentration, and a delivery device that controls delivery of the drug based on the real-time detection of bioavailable drug concentration.05-10-2012
20100087721Method and Apparatus for Providing Analyte Sensor Insertion - Devices and methods for positioning a portion of a sensor at a first predetermined location, displacing the portion of the sensor from the first predetermined location to a second predetermined location, and detecting one or signals associated with an analyte level of a patient at the second predetermined location are disclosed. Also provided are systems and kits for use in analyte monitoring.04-08-2010
20090198116Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.08-06-2009
20080294026Electrochemical Device and Method for Measuring the Redox State of the Skin - The present inventor relates to an electrochemical device for measuring the redox state of the skin, comprising at least one working electrode, such as a microelectrode, a counter electrode, and a reference electrode, said electrodes all being fixed into a single support intended to allow each of said electrodes to be simultaneously brought into contact with the surface of the skin to be tested, the electrodes being connected, on the one hand, to a means for imposing a defined voltage between the working electrode and the reference electrode, such as a potentiostat, and, or the other hand, to a device for measuring the intensity of the current generated at the working electrode by the detection of redox species. The invention also related to a method of measuring the redox state of the skin.11-27-2008
20080214914ANALYTE MONITORING DEVICE AND METHODS OF USE - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.09-04-2008
20110144463DEVICE, SYSTEM AND METHOD FOR MODULAR ANALYTE MONITORING - The present invention relates to a device, system and a method for measuring an analyte and in particular, to such a device, system and method in which analyte from a bodily fluid is measured and/or monitored.06-16-2011
20110282171MICROELECTRONIC BIOSENSOR PLUG - A plug capable of providing information relating to a physical or chemical property of a body fluid, or the presence or amount of a molecular component therein in a living organism is disclosed. Specifically, one embodiment plug is capable of being inserted into a portion of a human eyelid in order to provide information relating to tear fluid is disclosed. This embodiment plug includes a body having a passage which allows for the natural flow of tear fluid therethrough. In addition, a sensing mechanism is provided which is capable of measuring, for example, glucose levels in the body of a patient through the analysis of the tear fluid. Such plug may further be designed so as to double as a punctal plug useful in preventing dry eye. Methods of utilizing and implanting such plugs are also disclosed.11-17-2011
20100160755Polyelectrolytes as Sublayers on Electrochemical Sensors - Disclosed herein is an electrochemical sensor for measuring an analyte in a subject. More particularly, sensors comprising a polyelectrolyte layer at least partially covering the electroactive surface of an electrode are disclosed.06-24-2010
20100268047Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20120238849INFUSION SET COMPONENT WITH INTEGRATED ANALYTE SENSOR CONDUCTORS - An infusion set component for a fluid infusion device that delivers fluid to a patient is presented here. The component includes a tube formed from tubing material having an interior fluid canal defined therein to provide a fluid pathway from the fluid infusion device to the patient, a plurality of sensor conductors incorporated with the tubing material to facilitate sensing of an analyte of the patient by the fluid infusion device, and a combined infusion-sensor unit coupled to the tube and to the plurality of sensor conductors. The infusion-sensor unit accommodates delivery of fluid from the tube, and it also accommodates sensing of the analyte. The component may also include a connector assembly coupled to the tube and to the plurality of sensor conductors, to fluidly couple the fluid canal to a fluid reservoir of the fluid infusion device and to electrically couple the sensor conductors to an electronics module of the fluid infusion device.09-20-2012
20120010486SENSOR CHIP, AND MEASUREMENT DEVICE AND BLOOD TEST DEVICE IN WHICH THIS SENSOR CHIP IS USED - This sensor chip (01-12-2012
20100249558Hypodermic Optical Monitoring of Bodily Analyte - Disclosed is a skin adherable device for monitoring analytes in interstitial fluid. The device includes an electromagnetic radiation emitting source and a transmitter for transmitting the electromagnetic radiation between the electromagnetic radiation emitting source and the interstitial fluid. The device further includes a detector, operating electronics and a power supply. The device may include a reusable part and a disposable part.09-30-2010
20090062633IMPLANTABLE ANALYTE SENSOR - An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.03-05-2009
20100036219Blood Sampler - A blood sampler is adapted for penetrating epidermis of skin in order to collect blood, and includes a plate, a thin-film electrode unit, and a plurality of spaced apart penetrating members. The plate has an upper surface that is indented to form a recess adapted for containing the blood. The thin-film electrode unit is provided in the plate and has a reactive section that is exposed at a bottom of the recess. The penetrating members are provided on the reactive section of the thin-film electrode unit. Each of the penetrating members has a bottom end that is wire-bonded to the reactive section of the thin-film electrode unit, and a top end that is not higher than the upper surface of the plate.02-11-2010
20090099433AMPEROMETRIC SENSOR AND METHOD FOR ITS MANUFACTURING - An in vivo amperometric sensor is provided for measuring the concentration of an analyte in a body fluid. The sensor comprises a counter electrode and a working electrode, and the working electrode comprises a sensing layer which is generally water permeable and arranged on a support member adjacent to a contact pad. The sensing layer comprises an immobilized enzyme capable of acting catalytically in the presence of the analyte to cause an electrical signal. The sensing layer has an upper surface facing the body fluid and a lower surface facing away from the body fluid, and the immobilized enzyme is distributed within the sensing layer in such a way that the enzyme concentration in the middle between the upper and lower surfaces is at least as high as on the upper surface of the sensing layer.04-16-2009
20090099432Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.04-16-2009
20090137886ANALYTE SENSOR - Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.05-28-2009
20100113907Tubular sensor for the detection of an analyte - An implantable sensor can be used for determining a concentration of at least one analyte in a medium, particularly in a body tissue and/or a body fluid. The implantable sensor can comprise a flexible, tubular sensor element. This sensor element has a tubular body on which at least two electrode rings are mounted for electrochemical determination of the concentration of the analyte.05-06-2010
20100268048Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20100268046Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20100268045Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20100268044Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20100268043Device and Method for Preventing Diabetic Complications - Methods, systems and devices for preventing diabetic complications are provided. In some embodiments, methods, systems and devices can be implemented using at least one subcutaneously insertable element, the element having a proximal portion and a distal portion, the proximal portion coupled to the housing, the distal portion configured for subcutaneous placement within a human body; a plurality of electrodes coupled to the distal portion of the at least one subcutaneously insertable element; and, a processor adapted to correlate a signal received from the plurality of electrodes to a concentration of ketone in the human body.10-21-2010
20110270061ELECTROCHEMICAL SENSOR MODULE - Certain embodiments of a sensor cartridge element include a sensor module, an electrode arrangement installed on the sensor module, and a delivery arrangement securely coupled to the sensor module. The sensor module includes an analysis cell and a skin piercing member. The electrode arrangement generates an electrical signal when exposed to a fluid sample collected in the analysis cell. The delivery arrangement includes a drug reservoir, a piston chamber, and a valve arrangement providing selective fluid communication between the drug reservoir and the piston chamber. Metering electronics and an actuator can manage collection of fluid samples and/or dispensing of drug doses.11-03-2011
20100087720Extraction Of Physiological Measurements From A Photoplethysmograph (PPG) Signal - The present disclosure relates to signal processing and, more particularly, to determining the value of a physiological parameter, such as the blood oxygen saturation (SpO04-08-2010
20100268049Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-21-2010
20090093694LANCET-INTEGRATED SENSOR, MEASURING DEVICE FOR LANCET-INTEGRATED SENSOR, AND CARTRIDGE - A sensor and a lancet are integrated with each other. A thin strip-shaped sensor and a lancet are integrated so that the lancet moves in parallel, along a longitudinal direction of the sensor. A measuring device to which an integrated lancet and sensor is attached is provided with a function of driving the attached lancet.04-09-2009
20080269581METHOD AND APPARATUS FOR MEASURING BLOOD VOLUME - In one aspect, a conductance catheter is provided for measuring the volume of a fluid. The conductance catheter comprises a series of electrodes and a circuit to compensate for variations in sensitivity of the electrodes in the catheter. In another aspect, a resistivity sensor is provided for determining the resistivity of a fluid. The sensor comprises a series of electrodes spaced such that the total distance between endmost electrodes does not exceed the diameter of the catheter deploying the sensor.10-30-2008
20100324394Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.12-23-2010
20100099968Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.04-22-2010
20100099967Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.04-22-2010
20090281404Appartus and Method for Continuous Real-Time Trace Biomolecular Sampling, Analysis, and Delivery - A system and method for transdermal sampling wherein at least one pair of sample electrodes is adapted to provide voltage pulses capable of creating capillary openings in a subject's stratum corneum. Methods for using a transdermal sampling system by creating capillary openings in a subject's stratum corneum via the application of a series of voltage pulses to the stratum corneum and contacting at least a portion of at least one of the sample electrodes with interstitial fluid from the capillary openings are also presented.11-12-2009
20090275815Temperature-compensated in-vivo sensor - An in-vivo sensor assembly includes an assembly body having a body proximal end and a body distal end, a plurality of sensor elements including at least an analyte sensor element containing an enzyme that is a substrate of the analyte to be measured, a reference sensor element and a temperature sensor element disposed at or near the body distal end wherein the at least an analyte sensor element and the reference sensor element are exposed to the sample fluid and the temperature sensor is capable of measuring the temperature of and adjacent to the analyte sensor element, and an electrical coupling means disposed at the body proximal end and configured to couple to the at least an analytical sensor element, the reference sensor element and the temperature sensor element.11-05-2009
20090292188Analyte Sensors and Methods of Use - An analyte sensor system including a substrate, a first electrode disposed on a first surface of the substrate, a second electrode disposed on a second surface of the substrate, a third electrode provided in electrical contact with at least one of the first or second electrodes, where at least a portion of the first electrode and the second electrode are subcutaneously positioned in a patient, and where the third electrode is substantially entirely positioned external to the patient, and corresponding methods are provided.11-26-2009
20080249383ANALYTE SENSING DEVICE HAVING ONE OR MORE SENSING ELECTRODES - Embodiments of the present invention provide an analyte sensing device having one or more sensing electrodes. In embodiments, each sensing electrode may serve as an anode, a cathode, or a combination of an anode and cathode. In embodiments, there may be any suitable number of electrodes. Related analyte sensor insertion aids and methods of using the disclosed embodiments are also provided.10-09-2008
20080275323METHOD OF MAKING AN ELECTROCHEMICAL SENSOR - A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.11-06-2008
20100099966Analyte Monitoring and Management System and Methods Therefor - Method and apparatus for providing multiple data receiver units in a data monitoring and management system such as analyte monitoring system where a first data receiver includes all of the functionalities for the data monitoring and management system receiver unit, and a second data receiver unit is configured with a limited functions to provide application specific convenience to the user or patient is disclosed.04-22-2010
20080312519Examination unit with an integrated mini-laboratory analysis unit - An examination unit, which can be used especially in the area of acute and intensive diagnostics in hospitals (e.g. in emergency rooms, intensive care units, operating theaters etc.) or in ambulances is provided. The examination unit which at least has an ultrasonic device, patient monitor, ECG, ventilator and/or resuscitation device for monitoring the vital functions and/or for the immediate medical treatment of emergency patients with symptoms of acute cardiovascular disease, myocardial infarction, angina, apoplectic stroke, etc. The device furthermore according to the invention includes an integrated mini-laboratory analysis unit for the biochemical and/or cell-biology investigation of blood samples or tissue biopsies.12-18-2008
20080242961TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.10-02-2008
20090318788DETECTION OF CANCER MARKERS - The present invention relates to combining surface molecular imprinting (SMI) with the production of self-assembled monolayers (SAM) of hydroxyl alkanethiolate molecules on gold coated chip surfaces. In this technique, the sensing element is placed on the transducer and the whole assembly can then be miniaturized and integrated into a smart chip. These sensors can detect, nanomolar quantities of complex biomolecules.12-24-2009
20080214915TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.09-04-2008
20090264724SERUM SAMPLING APPARATUS AND CATHETER - In a serum measurement device, an analyte concentration measurement apparatus facilitates sampling and analysis of analytes in body fluid and includes an implantable serum sampling catheter comprising a biocompatible tubing enclosing a vacuum release lumen and a serum lumen that are interconnected by a port. The serum lumen is separated from the sampling catheter exterior by a membrane barrier. The sampling catheter is configured for drawing a serum sample from a body fluid compartment by creation of suction in the serum lumen.10-22-2009
20100137696MEDICAL DEVICE WITH RESERVOIR-BASED SENSORS - A medical device is provided which may include a reservoir which has an opening and contains a sensor; a reservoir cap closing off the opening to isolate the sensor from an environmental component outside the reservoirs, the reservoir cap being impermeable to the environmental component and adapted to selectively undergo a phase change to disintegrate the reservoir cap and thereby expose the sensor to the environmental component. A method of use may include (i) selectively disintegrating a reservoir cap to expose a sensor which is disposed inside a reservoir of a device implanted in a patient, the disintegrating comprising inducing a phase change in the reservoir cap; and (ii) using the sensor to generate an output signal, wherein the output signal is recorded and stored in a writeable computer memory chips, directed to a microprocessor for immediate analysis and processing, or sent to a remote location away from the device.06-03-2010
20090192371Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090182214Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-16-2009
20090182213Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-16-2009
20100137695DEVICE FOR METHOD FACILITATING INFUSION OF THERAPEUTIC FLUIDS AND SENSING OF BODILY ANALYTES - Disclosed is an assembly for use with a portable therapeutic device. The assembly includes a mounting housing securable to skin of a patient, and a cannula subcutaneously insertable through a passageway provided within the housing. The cannula is configured to be inserted subsequent to securing of the housing to the skin of the patient.06-03-2010
20090137887ANALYTE SENSOR - Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.05-28-2009
20090177061Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177065Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177063Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177066Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177064Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177058Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177062Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177059Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177057Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177056Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177055Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090177054Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20090187095Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187094Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187093Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187091Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187090Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187089Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090187088Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20090143659ANALYTE SENSOR - Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.06-04-2009
20090259118Shallow Implantable Analyte Sensor with Rapid Physiological Response - Methods and devices to detect analyte in body fluid are provided. Embodiments include analyte sensors designed so that at least a portion of the sensor is positionable beneath a skin surface in the dermal layer.10-15-2009
20090198115Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.08-06-2009
20090192368Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-30-2009
20090182215Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-16-2009
20080262329Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.10-23-2008
20120078073Analyte Sensors and Methods of Use - In vitro analyte sensors and methods of analyte determination are provided. Embodiments include sensors that include a pair of electrodes to monitor filling of the sample chamber with sample.03-29-2012
20120078072CONTROLLABLE SENSOR INSERTION NEEDLE - An insertion device is proposed for at least partly inserting a subcutaneous device, more particularly a subcutaneous sensor for detecting at least one analyte, into body tissue. The insertion device has at least one insertion aid and at least one subcutaneous device. The insertion aid has at least one substantially rigidly designed base body, more particularly an insertion needle, for insertion into the body tissue. The insertion device is designed to generate an adjustable holding force between the base body and the subcutaneous device. The insertion device is designed to set the holding force during the insertion such that the subcutaneous device is held against the base body. The insertion device is furthermore designed to set the holding force after the insertion such that the subcutaneous device is detachable from the base body.03-29-2012
20120078071ADVANCED CONTINUOUS ANALYTE MONITORING SYSTEM - Systems and methods for processing, transmitting, and displaying data received from a continuous analyte (e.g., glucose) sensor are provided. A sensor system can comprise a sensor electronics module that includes power saving features, e.g., a low power measurement circuit that can be switched between a measurement mode and a low power mode, wherein charging circuitry continues to apply power to electrodes of a sensor during the low power mode. The sensor electronics module can be switched between a low power storage mode and a higher power operational mode via a switch, e.g., a reed switch or optical switch. A validation routine can be implemented to ensure an interrupt signal sent from the switch is valid. The sensor can be physically connected to the sensor electronics module in direct wireless communication with a plurality of different display devices.03-29-2012
20120078070Redox Polymer Based Reference Electrodes Having An Extended Lifetime For Use In Long Term Amperometric Sensors - The present application provides redox polymer based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.03-29-2012
20090209838Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.08-20-2009
20120197098Medical Device Inserters and Processes of Inserting and Using Medical Devices - An apparatus for insertion of a medical device in the skin of a subject is provided, as well as methods of inserting medical devices.08-02-2012
20090253972SYSTEM FOR COMBINED TRANSCUTANEOUS BLOOD GAS MONITORING AND NEGATIVE PRESSURE WOUND TREATMENT - A system for administering negative pressure therapy to a wound includes a screen adapted to be positioned at the wound. A reduced pressure source is in fluid communication with the screen, and a blood gas transducer is exposed to a reduced pressure provided by the reduced pressure source. The reduced pressure supplied by the reduced pressure source induces hyperperfusion of a blood gas at the wound.10-08-2009
20100160756Membrane Layer for Electrochemical Biosensor and Method of Accommodating Electromagnetic and Radiofrequency Fields - A method comprising providing an in vivo electrochemical biosensor, the biosensor comprising an electrode surface, a flux-limiting layer covering at least a portion of the electrode surface, covering at least a portion of the flux-limiting layer with a hydrophilic polymer membrane, and preventing or eliminating disruption of the output signal of the electrochemical biosensor by an external EMF or external RF source during in vivo use of the biosensor in a subject.06-24-2010
20110060203Analyzing Instrument - The present invention relates to an analyzing instrument (X03-10-2011
20110060202DEHYDRATION DETECTOR USING MICRO-NEEDLES - Examples are generally described that include an array of micro-needles. A capillary may be coupled to the array of micro-needles and configured to receive fluid from at least a portion of the array. A conductivity sensor may be arranged to measure conductivity of the fluid within the capillary, and a pump may be arranged to move fluid through the capillary. A processor may arranged to receive signals indicative of conductivity from the conductivity sensor and identify a dehydration condition based at least in part on a change in the signals indicative of conductivity.03-10-2011
20100240974Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.09-23-2010
20100222659Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.09-02-2010
20120143027FIELD EFFECT TRANSISTORS FOR DETECTION OF NOSOCOMIAL INFECTION - Disclosed herein are methods and devices for detection of hospital acquired infections. Disclosed methods may be utilized for continuous in vivo monitoring of a potential infection site and may be utilized to alert patients and/or health care providers to changes in the local environment due to the presence of a pathogen at an early stage of infection. Disclosed methods utilize ion sensitive field effect transistors (ISFETs) to detect changes in ionic concentration at the site due to the presence of a pathogen, for instance at a surgical site. When a pathogen is present, the local ionic concentration, and hence the electrical characteristics of an ISFET may change, causing a detectable signal from the ISFET. An ISFET may be associated with a biological material such as an enzyme or a specific binding partner for an expression product of a pathogen to improve detection. Upon interaction of the expression product with the enzyme or the probe, the electrical characteristics of the ISFET may change, detection of which may then provide information as to the existence a pathogen at the site.06-07-2012
20120245444WIRELESS POWERED CONTACT LENS WITH GLUCOSE SENSOR - A contact lens having an integrated glucose sensor is provided. The contact lens includes an electrochemical sensor configured to measure the level of glucose in the tear fluid of the eye of the user wearing the contact lens. The electrochemical sensor is powered by radiation off-lens, through an RF antenna or a photovoltaic device mounted on the periphery of the contact lens. The power provided to the contact lens also enables transmission of data from the electrochemical sensor, for example by backscatter communications or optically by an LED mounted to the lens.09-27-2012
20090177060Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-09-2009
20100305420FLEXIBLE CIRCUIT AND METHOD FOR FORMING THE SAME - A flexible circuit is provided herein that includes conductive material on the top and bottom planar surfaces of a dielectric substrate. The flexible circuit can be used in various applications, including use as a sensor. A via is used to provide electrical communication between the top and bottom surface of the flexible circuit. A method of preparing a flexible circuit and a medical instrument including the flexible circuit are also provided.12-02-2010
20090069654BIODEVICE, CONTACT PART STRUCTURE OF BIODEVICE, AND BIOSENSOR - A biodevice is in an elongated form and has a conductive layer and an insulating layer stacked on a side surface of a shaft member at the center. A cylindrical hollow section is formed through the device, being connected to the exterior at a front end and extending from this front end axially. An electrode section is formed on an inner surface. A sensing substance such as enzyme may be placed at the electrode section to detect a current value corresponding to the concentration or quantity of an object under test placed between a counter electrode and the biodevice.03-12-2009
20130137950METHOD AND STERILIZING DEVICE FOR STERILIZING AN IMPLANTABLE SENSOR - A method for sterilizing an implantable sensor for sensing an analyte in a body tissue. The implantable sensor has a sensor part which can be introduced into the body tissue, at least one sensor electrode for sensing the analyte, and at least one electronics part. The electronics part has at least one electronic component and is connected to the sensor part. The method includes (a) introducing the implantable sensor into a package, the package sealing the implantable sensor from bacteria and accommodating a radiation shield, (b) irradiating the implantable sensor in the package with sterilizing radiation from at least one irradiating direction, in particular with electron radiation, the radiation shield shielding the electronic component of the electronics part from the sterilizing radiation, the radiation shield being arranged in such a way that the sensor part is sterilized by the sterilizing radiation.05-30-2013
20090036763ANALYTE SENSOR - The present invention relates generally to biointerface membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel biointerface membranes, to devices and implantable devices including these membranes, methods for forming the biointerface membranes on or around the implantable devices, and to methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device.02-05-2009
20100331641Devices for continual monitoring and introduction of gastrointestinal microbes - Systems and methods described herein include those for the continual modification of intestinal microbes. Described herein are systems including sampling devices, analysis devices, computational devices and user interface devices as well as methods for the use of such devices in combination.12-30-2010
20100331642SYSTEM, METHOD AND APPARATUS FOR SENSOR INSERTION - Embodiments provide a sensor insertion tool (SIT) that provides a motive force for insertion of an analyte sensor into/through skin. A SIT may be releasably locked to one or more components of a sensor insertion system, such that components of the sensor insertion system remain securely coupled during sensor insertion. A SIT may include a release member that unlocks or uncouples the SIT and the other components after sensor insertion. In various embodiments, a SIT may be a component of a sensor insertion system configured for assembly by an end user, a health care professional, and/or a caretaker prior to sensor insertion, and may act in cooperation with other sensor insertion system components. Additional components and methods of assembly and use are also provided herein.12-30-2010
20100331643Extruded Analyte Sensors and Methods of Using Same - The present disclosure provides electrode structures and integrated electrode structures having one or more conductive materials coextruded with one or more dielectric materials. The disclosed electrode structures can be configured for use as analyte sensors. Also provided, are methods of making and using the electrode structures and integrated electrode structures described herein.12-30-2010
20100191082TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.07-29-2010
20110028816ANALYTE SENSORS AND METHODS OF MANUFACTURING SAME - Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 02-03-2011
20110028815ANALYTE SENSORS AND METHODS OF MANUFACTURING SAME - Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 02-03-2011
20110040162SYSTEMS AND METHODS FOR MAKING AND USING A CONDUCTIVE-FLUID DETECTOR FOR A CATHETER-BASED MEDICAL DEVICE - A catheter-based medical device includes a catheter that is configured and arranged for at least partial insertion into a patient and that defines at least one lumen that is configured and arranged to receive a first fluid. A conductive-fluid detector is coupled to the at least one lumen and is configured and arranged to detect when a second fluid is disposed within the at least one lumen that is more conductive than the first fluid. The conductive-fluid detector includes a plurality of axially-positioned bodies, each body defining a lumen. The lumens of the axially-positioned bodies are aligned to form a shared lumen in fluid communication with the at least one lumen of the catheter. Spaced apart electrodes are disposed within the shared lumen.02-17-2011
20120035445SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS - Membrane systems incorporating silicone polymers are described for use in implantable analyte sensors. Some layers of the membrane system may comprise a blend of a silicone polymer with a hydrophilic polymer, for example, a triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) polymer. Such polymeric blends provide for both high oxygen solubility and aqueous analyte solubility.02-09-2012
20110124992OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR - An implantable sensor for use in measuring a concentration of an analyte such as glucose in a bodily fluid, including a body with a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. The body is partially or entirely curved, partially or entirely covered with an anchoring material for supporting tissue ingrowth, and designed for subcutaneous tissue implantation. The geometric design, including curvature, shape, and other factors minimize chronic inflammatory response at the sensing region and contribute to improved performance of the sensor in vivo.05-26-2011
20100185069TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.07-22-2010
20090312617NEEDLE INJECTION CATHETER - The needle injection catheter includes a delivery tube and at least one hypotube that fits slidably within the delivery tube. The hypotube has at least three hollow needle portions extending outwardly at its distal end. The needle portions curve outwardly and have ends shaped to penetrate tissue. At least one reference electrode is located on the delivery tube, spaced from the second end. At least one proximal electrode is located adjacent and spaced from the end of the needle portion. The proximal electrode is electrically connected to a first notification device. A microcircuit is electrically connected to the proximal electrode, the reference electrode and to a power supply. A distal electrode is located adjacent the end of the needle portion and electrically connected to the microcircuit. A tip electrode is located adjacent the second end of the delivery tube and electrically connected to a second notification device and the microcircuit.12-17-2009
20090312618ENDOSCOPIC DEVICE WITH BIOCHIP SENSOR - A device for performing minimally invasive procedures in vivo has an endoscope body that carries at least one sensor or actuator and at least one magnetic element allowing the body to be freely navigated in the body of a patient by an extracorporeally applied magnetic field. the body carries at least one biochip sensor with capture molecules for detection of biological molecules in samples. A processing and analyzing unit in the body is connected to the biochip sensor for optical or electrical evaluation of the samples.12-17-2009
20100056891Analyte Monitoring Device And Methods Of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.03-04-2010
20090216099APPARATUS FOR ANALYZING COMPONENTS OF URINE BY USING ATR AND METHOD THEREOF - The present invention relates to an apparatus for analyzing concentration and the like of components of urine, and more particularly, to an apparatus for analyzing concentration and the like of components of urine by using ATR-IR (Attenuated Total Reflectance Infrared Spectroscopy) and a method thereof. The apparatus for analyzing components of urine comprises a toilet bowl which has a recessed or flat-shaped urine collecting part; a piping part for guiding the urine collected from the urine collecting part; and an analyzing part for analyzing the components of the urine collected at the urine collecting part, wherein the urine collecting part is formed at an inner front side of the toilet bowl, the analyzing part comprises ATR, and the analyzing part is directly attached to the toilet bowl.08-27-2009
20100056890Analyte Monitoring Device And Methods Of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.03-04-2010
20100056889Analyte Monitoring Device And Methods Of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.03-04-2010
20100056888IMPLANTABLE BIOSENSOR AND SENSOR ARRANGEMENT - An implantable biosensor, which comprises a measuring (or first) chamber filled with the test fluid, which is able to convert a change of the concentration of a predetermined analyte or ion type into a change of a physical variable. To this end, the measuring chamber is closed by at least one membrane, which is permeable to the analyte or ion type and impermeable to the test fluid. In addition, the biosensor is equipped with at least one microacoustic sensor, which is operatively connected to the test fluid such that it can detect the physical variable that changes with the concentration of the analyte or ion type. Further relates to a sensor arrangement comprising at least one such implantable biosensor, the arrangement including a polling system that is wirelessly coupled to the biosensor.03-04-2010
20090030297IMPLANTABLE SENSOR METHOD AND SYSTEM - Systems and methods for non-vascular sensor implantation and for measuring physiological parameters in areas of a body where the physiological parameters are heterogeneous. An implant unit is implanted in an area of a body and a foreign body capsule is allowed to form around the implant unit area. A sensor may be directed into a body cavity such as, for example, the peritoneal space, subcutaneous tissues, the foreign body capsule, or other area. A subcutaneous area of the body may be tunneled for sensor placement. Spatially separated sensing elements may be used for detecting individual amounts of the physiological parameter. An overall amount of the physiological parameter may be determined by calculating a statistical measurement of the individual sensed amounts in the area. Another embodiment of the invention, a multi-analyte measuring device, may include a substrate having an electrode array on one side and an integrated circuit on another side.01-29-2009
20100069729Analyte Monitoring Device And Methods Of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.03-18-2010
20100069728Sensor Inserter Assembly - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte, such as blood glucose. An inserter having a retractable introducer is provided for subcutaneously implanting the sensor in a predictable and reliable fashion.03-18-2010
20090287072POLYMER COMPOSITIONS, COATINGS AND DEVICES, AND METHODS OF MAKING AND USING THE SAME - The disclosure provides for a biocompatible, thromboresistant coating including a chalcogenide compound that induces nitric oxide formation; and a biocompatible matrix incorporating the chalcogenide compound. Devices incorporating such coatings, and methods of making and using such coatings are also disclosed herein.11-19-2009
20110034790APPARATUS AND METHODS FOR CORONARY SINUS ACCESS - Apparatus and methods for locating morphological features within a body cavity using a catheter including proximal and distal ends, a transparent balloon carried on the distal end, and an optical imaging assembly carried on the distal end for imaging through the balloon. The balloon includes a channel extending therethrough to a lumen extending through the catheter. A guidewire or other localization member is received in the lumen that is extendable through the channel. During use, the catheter is inserted into a right atrium of a heart, and the balloon is expanded and placed against the wall of the heart to locate the coronary sinus. Sufficient force is applied to clear blood between the surface and the wall and clear the field of view of the imaging assembly. The catheter is manipulated to locate the coronary sinus, whereupon the localization member is advanced into the coronary sinus.02-10-2011
20110213229ELECTRODE, ELECTROCHEMICAL SENSOR AND APPARATUS, AND METHODS FOR OPERATING THE SAME - A method for amperometric detection of proteins, especially haemoglobin in faeces, using an electrochemical sensor. The electrochemical sensor includes: a working electrode having an electrically conductive matrix holding a first reagent and/or a second reagent, the second reagent being an oxidising agent, or a precursor thereof, for the first reagent; a counter electrode and optionally a reference electrode; wherein a reaction between the first reagent and the oxidising agent is catalysed by the protein to provide a detectable signal at the working electrode. The electrically conductive matrix is an electrically conductive carbon- or graphite-containing matrix or an electrically conductive porous matrix.09-01-2011
20110178380PATCH FOR REVERSE IONTOPHORESIS - A patch for sampling one or more analytes through the skin of a patient comprises an electrode layer for positioning adjacent to the skin of a patient; and means for actuating the electrode layer to induce the withdrawal of analytes through the skin by reverse iontophoresis. A first reservoir in the patch contains an electrically conducting medium such as a liquid electrolyte, which can be controllably delivered onto a surface of the electrode layer adjacent to the skin to increase the conductivity between the electrode layer and the skin. Means are provided for transporting the analytes to a location where they are to be analysed. The patch may comprise a second reservoir containing a drug for transdermal delivery to the patient. An actuator may stretch and/or compress the reservoirs to expel their contents. The actuator may comprise a generally planar mesh formed from a shape memory alloy.07-21-2011
20100099969Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.04-22-2010
20090318789Analyte Monitoring System and Methods - Methods and systems for providing data communication in medical systems are disclosed.12-24-2009
20090143658ANALYTE SENSOR - Electrochemical sensors for measuring an analyte in a subject are described. More particularly, devices for measurement of an analyte are disclosed incorporating a sensor comprising an enzyme layer in contact with an interference layer and a membrane comprising vinyl ester monomeric units covering at least a portion of the enzyme layer and at least a portion of the interference layer, the devices providing rapid and accurate analyte levels upon deployment.06-04-2009
20080312518ON-DEMAND ANALYTE MONITOR AND METHOD OF USE - An analyte monitor is provided with a sensor unit body configured for mounting on tissue, a sensor configured to detect an analyte in a fluid in the sensing area, an output device configured to communicate a result from the sensor to a user; and a user input device coupled with the sensor and the output device, wherein the monitor is configured to communicate a result to the user through the output device only after the user input device is activated. Systems, sensors and methods associated with the monitor are also disclosed.12-18-2008
20090118604ANALYTE MONITORING SYSTEM HAVING BACK-UP POWER SOURCE FOR USE IN EITHER TRANSPORT OF THE SYSTEM OR PRIMARY POWER LOSS - An analyte monitoring system includes a biosensor for detecting an analyte concentration in blood. The monitoring system includes first and second power sources, each selectively couplable to the biosensor for providing power to the biosensors. A sensor may be associated with the first power source and senses the output thereof. A selector is coupled to both the first and second power sources and the biosensor, such that it may selectively couple an output or outputs of either the first or second power sources to the biosensor. In operation, the first power source is coupled to the biosensor to thereby bias the sensor. If the sensor indicates that the first power source is not providing power to the biosensor, the selector decouples the first power source from the biosensor and couples the second power source to the biosensor to thereby maintain the biosensor in a biased state.05-07-2009
20090099431BODILY FLUID SAMPLING SYSTEMS, METHODS, AND DEVICES - A fluid sampling system is disclosed comprising a fluid drawing device, a fluid sampling device, and an analysis device. The fluid drawing device can be used to draw bodily fluid into a sample port of an IV tube. The fluid sampling device can be used to access the sample port to obtain a fluid sample. The fluid sampling device can include a test strip housing for receiving a test strip therein. Extending from an end of the test strip housing is a blunt canula that can be inserted into the sample port to obtain the fluid sample and communicate the fluid sample to the test strip. The test strip housing is configured to allow the second end of the test strip to be received within an analysis device to facilitate analysis of the fluid sample.04-16-2009
20110178381SENSING APPARATUS AND PROCESS - A sensing apparatus with a connector, a sensor lead and a sensor module with a spacer placed over electrodes that have been deposited on a substrate. The spacer may have a space for receiving an enzyme. End portions of the sensor module may be encapsulated, such as with molded beads. A sensor lead may attach to the sensor module and may have an outer tubing that passes over the module and attaches to the beads at the end of the sensor module. The sensor lead may also attach to the connector such that the sensing apparatus may be electrically coupled to a pump, electronics or other devices. The sensing apparatus may be implanted into a vein or artery.07-21-2011
20100331644HOUSING FOR AN INTRAVASCULAR SENSOR - An apparatus houses an intravascular sensor and is configured to measure the analyte in a biological sample of a host. The apparatus includes a fluid coupler having a first end configured to mate with a connecting end of a catheter and a second end configured to mate with a tubing assembly including, for example, an infusion pump, and a housing connected to the fluid coupler. The housing is configured to receive a sensor disposed within the fluid coupler such that when the fluid coupler is mated to the catheter, the sensor can be exposed to a biological sample. The housing is also configured to electrically couple the sensor with an external device, such as a processor for receiving and analyzing the sensor output. The housing and the fluid coupler are connected such that a fluidic seal is formed thereby preventing fluid in the fluid coupler from entering the housing.12-30-2010
20110054281METHODS AND SYSTEMS FOR DETECTING THE HYDRATION OF SENSORS - A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.03-03-2011
20110021894GLUCOSE SENSOR EMPLOYING SEMICONDUCTOR NANOELECTRONIC DEVICE - A glucose sensor employs a programmable glucose sensor array of a relatively large number of nanoelectronic devices (e.g. semiconductor field-effect devices) having control surfaces functionalized with a glucose-reactive substance and generating sensing signals indicative of sensed glucose level of a bodily fluid. The devices are divided into sub-sets sequentially enabled over successive intervals to achieve overall sensor lifetime many times longer than the lifetime of any single device in operation.01-27-2011
20100292550IMPLANTABLE MEDICAL DEVICE - An analyte measuring system has an implantable medical device having a signal source arranged for generating a current signal and electrodes for applying the current signal to a surrounding tissue in a subject body. The device measures a resulting voltage signal with the electrodes and calculates an impedance signal therefrom. The system comprises a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectrum analysis of the determined impedance signal.11-18-2010
20100305419APPARATUS AND METHOD FOR MEASURING BIOMEDICAL DATA AND MEASUREMENT STRIP - Disclosed herein are an apparatus and method for measuring biomedical data and a measurement strip. The apparatus includes a plurality of detection units arranged within a strip reception area on a plane and spaced apart from each other, a measurement type determination unit for determining whether reactive portions are present in areas of the measurement strip corresponding to the plurality of detection units based on detection results obtained by the detection units and determining a type of measurement based on results of the determination, a biomedical data measurement unit for activating part or all of the detection units according to the type of measurement determined by the measurement type determination unit, and measuring the biomedical data using the activated detection units, and an output unit for outputting the measured biomedical data to an outside.12-02-2010
20100324395BLOOD SENSOR, BLOOD TESTING DEVICE AND BLOOD ANALYSIS METHOD - Provided are a blood sensor that is highly reliable and does not contaminate the interior of the main body of the device, a blood testing device and a blood analysis method. The blood sensor (12-23-2010
20100324393CIRCUIT BOARD FOR BODY FLUID COLLECTION, AND BIOSENSOR - A circuit board for body fluid collection includes a measurement unit including a puncture needle and an electrode for making contact with the body fluid collected by the puncturing with the puncture needle, wherein the measurement unit is provided in a plural number and disposed radially on a same plane.12-23-2010
20120209097SENSOR WITH INCREASED BIOCOMPATIBILITY - Sensors and methods for producing them are disclosed. A cavity is created and filled with a reagent that includes a conductive matrix, enzyme, catalyst, and binding agent, in a preferred embodiment. The cavity is substantially enclosed, leaving enough of an opening to allow the sample to enter. A portion of the material surrounding the cavity is preferably permeable to a substance useful for measuring reaction, but not to the reagent or the sample. Cavities that have the shape of a cone, conical frustum, pyramidal frustum, and right circular cylinder are given as examples. Other systems include a membrane that contains the sensor's active area and defines an internal volume of fluid, where the membrane or internal volume has a particular geometric relationship to the active area.08-16-2012
20090187092Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.07-23-2009
20110152653SYSTEMS AND METHODS FOR IMPLEMENTING RAPID RESPONSE MONITORING OF BLOOD CONCENTRATION OF A METABOLITE - Systems and methods for monitoring the concentration of glucose or other metabolites by way of a low-volume microdialysis-probe (06-23-2011
20100022862Analyte Sensor with Insertion Monitor, and Methods - A sensor, and methods of making, for determining the concentration of an analyte, such as glucose or lactate, in a biological fluid such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. The sensor includes a working electrode and a counter electrode, and can include an insertion monitoring trace to determine correct positioning of the sensor in a connector.01-28-2010
20110218414SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.09-08-2011
20090082652IMPLANTABLE BODY FLUID ANALYZER - An exemplary implantable microarray device includes an inlet for a body fluid, a plurality of individual reaction cell arrays where each reaction cell array includes a series of reaction cells configured to receive the body fluid, a sensor array to sense a reaction result for an individual reaction cell array where the reaction result corresponds to a reaction between the body fluid and at least one reagent in each of the reaction cells of the individual reaction cell array and a positioning mechanism to position an individual reaction cell array with respect to the sensor array. Various other exemplary technologies are also disclosed.03-26-2009
20110082356ANALYTE SENSOR APPARATUSES HAVING INTERFERENCE REJECTION MEMBRANES AND METHODS FOR MAKING AND USING THEM - Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes as well as methods for making and using such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.04-07-2011
20120004522BIOSENSOR COATED WITH ELECTROACTIVE POLYMER LAYER DEMONSTRATING BENDING BEHAVIOR - Disclosed is a biosensor coated with an electroactive polymer layer demonstrating a bending behavior, more specifically a biosensor including an electroactive polymer layer coated on the surface of a bioreceptor and an electrode connected to the electroactive polymer layer. When an electrical stimulation is applied to the electrode, the electroactive polymer layer shows a bending behavior and thus the surface of the bioreceptor can be exposed to an analyte to allow a concentration analysis of the analyte. When used as an implantable biosensor, the disclosed biosensor may have a substantially increased life span since the bioreceptor can be selectively exposed to the analyte.01-05-2012
20120004523System and methods for self-powered, contactless, self-communicating sensor devices - The innovation introduces a new kind of smart biological-sensing controller, based on silicon and/or flexible polymer printed electronics. The purpose of the device is to monitor and/or control biological signals of living organisms (for example, microbes, bacteria, insects, plants, animals, and people). Embedded in a system, the innovation can work contactless and battery-free since it is self-powered, wirelessly self-communicating without the use of electromagnetic waves like radio frequencies (RF), infrared or other electromagnetic technologies. Instead, the innovation uses alternating electric fields for powering, measuring and communicating, and introduces an innovative new method of mobile vital signs monitoring.01-05-2012
20110077490TRANSCUTANEOUS ANALYTE SENSOR - A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 03-31-2011
20120016220Self-Cleaning Sensor Surfaces for Implantable Sensor Systems - Implantable sensor system including a sensor which is situated in a housing, the housing having a measurement region which is permeable for the parameters to be detected by the sensor, wherein the measurement region has an erodible protective coating which is permeable for the parameters to be detected by the sensor.01-19-2012
20100280346Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.11-04-2010
20100280345Analyte Monitoring Device and Methods of Use - An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.11-04-2010
20110092786DEVICE FOR THE ANALYSIS OF URINE - A device for the analysis of urine designed to be connected in series to a catheter (04-21-2011
20120108930Subcutaneous Glucose Electrode - A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer can be overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited. An outer layer is preferably biocompatible.05-03-2012
20120108929Analyte Monitoring Device and Methods of Use - An analyte monitor including a sensor, a sensor control unit, and a display unit is disclosed. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.05-03-2012
20120157804High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics - Provided herein are biomedical devices and methods of making and using biomedical devices for sensing and actuation applications. For example, flexible and/or stretchable biomedical devices are provided including electronic devices useful for establishing in situ conformal contact with a tissue in a biological environment. The invention includes implantable electronic devices and devices administered to the surfaces(s) of a target tissue, for example, for obtaining electrophysiology data from a tissue such as cardiac, brain tissue or skin.06-21-2012
20110105870RUTHENIUM PURPLE BIOSENSOR - The invention relates to a biosensor comprising an electrically conductive substrate, with a first layer comprising Ruthenium Purple formed on the substrate, a second layer comprising polyaniline or a derivative thereof comprising one or more non-polar substituents formed on the first layer, and a third layer comprising one or more enzymes trapped within a matrix formed on the second layer. The biosensor is for use in the detection of analytes such as purines and derivatives thereof, particularly in the detection of hypoxanthine.05-05-2011
20100094112Analyte Monitoring Device and Methods of Use - In aspects of the present disclosure, an auto turn on blood glucose monitoring unit including a calibration unit integrated with one or more components of an analyte monitoring system is provided. Also disclosed are methods, systems, devices and kits for providing the same.04-15-2010
20100094111Analyte Monitoring Device and Methods of Use - In aspects of the present disclosure, a multi compatible or universal blood glucose monitoring unit including a calibration unit is integrated with one or more components of an analyte monitoring system to provide compatibility with in vitro test strip that require calibration code and test strips that do not require calibration code. Also disclosed are methods, systems, devices and kits for providing the same.04-15-2010
20100094110Analyte Monitoring Device and Methods of Use - In aspects of the present disclosure, a no coding blood glucose monitoring unit including a calibration unit is integrated with one or more components of an analyte monitoring system to provide compatibility with in vitro test strip that do not require a calibration code is provided. Also disclosed are methods, systems, devices and kits for providing the same.04-15-2010
20120123233DISPOSABLE USB CUP - The present invention provides a handheld USB Cup for use in collection of a fluidic body sample, comprising a receptacle comprising side surfaces, a bottom plate and a sensor assembly, the sensor assembly comprising at least one sensor and a slave circuitry; said sensor assembly is permanently affixed to said side surfaces or said bottom plate. The receptacle is capable of maintaining the fluidic body sample for a sufficient time period in the vicinity of the sensor thereby the sensor is operative to provide continuous measurement of an electric, chemical or physical property of the urine. The slave circuitry responds to the electric, chemical or physical property of the fluidic body sample received from the sensor and is configured and operable to electronically communicate the measurement of the electric, chemical or physical property of the fluidic body sample to an external processing master unit.05-17-2012
20120123232METHOD AND APPARATUS FOR DETERMINING HEART RATE VARIABILITY USING WAVELET TRANSFORMATION - The present invention relates to advanced signal processing methods including digital wavelet transformation to analyze heart-related electronic signals and extract features that can accurately identify various states of the cardiovascular system. The invention may be utilized to estimate the extent of blood volume loss, distinguish blood volume loss from physiological activities associated with exercise, and predict the presence and extent of cardiovascular disease in general.05-17-2012
20120165634DETECTING NEUROCHEMICAL OR ELECTRICAL SIGNALS WITHIN BRAIN TISSUE - This document relates to methods and materials involved in detecting neurochemical signals, electrophysiological signals, ions, or combinations thereof with brain tissue. For example, methods and materials for using probes to detect neurochemical signals (e.g., neurotransmitter concentrations), electrical signals, or combinations thereof during deep brain stimulation are provided.06-28-2012
20120165633LEADLESS WIRELESS ECG MEASUREMENT SYSTEM AND METHOD FOR MEASURING OF BIO-POTENTIAL ELECTRICAL ACTIVITY OF THE HEART - A leadless wireless ECG measurement system for measuring of bio-potential electrical activity of the heart in a patient's body includes at least one multi-contact bio-potential electrode assembly adapted for attachment to the patient's body. The electrode assembly is formed of an electronic patch layer and a disposable electrode layer. The disposable electrode layer has a plurality of contact points for engagement with the surface of the patient's body and is configured to measure short-lead ECG signals in response to electrical activity in the heart. A processing unit is provided and is configured to produce a transfer function which computes estimated long-lead ECG signals based on the measured short-lead ECG signals from the plurality of contact points.06-28-2012
20120130212NON-INVASIVE MONITORING OF BLOOD METABOLITE LEVELS - Solutions for non-invasively monitoring blood metabolite levels of a patient are disclosed. In one embodiment, the method includes: repeatedly measuring a plurality of electromagnetic impedance readings with a sensor array from: an epidermis layer of a patient and one of a dermis layer or a subcutaneous layer of the patient, until a difference between the readings exceeds a threshold; calculating an impedance value representing the difference using an equivalent circuit model and individual adjustment factor data representative of a physiological characteristic of the patient; and determining a blood metabolite level of the patient from the impedance value and a blood metabolite level algorithm, the blood metabolite level algorithm including blood metabolite level data versus electromagnetic impedance data value correspondence of the patient.05-24-2012
20100204554Electrochemical Analyte Sensor - An electrochemical analyte sensor formed using conductive traces on a substrate can be used for determining and/or monitoring a level of analyte in in vitro or in vivo analyte-containing fluids. For example, an implantable sensor may be used for the continuous or automatic monitoring of a level of an analyte, such as glucose, lactate, or oxygen, in a patient. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and/or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter/reference electrode and the resulting current is a function of the concentration of the analyte in the body fluid.08-12-2010
20100204553ARTERIAL FLASHBACK CONFIRMATION CHAMBER - The present invention relates to an arterial flashback confirmation chamber. Generally, the confirmation chamber is used with a vascular access device to allow an operator to see active arterial flashback confirmation for a period of time that is long enough to permit the operator to properly place the cannula of the vascular access device within a patient's artery. In some instances, the confirmation chamber comprises a flashback compartment, means for prolonging active arterial flashback confirmation, and a vent. Some examples of suitable prolonging means comprise a flashback compartment with a relatively large internal volume, circuitous tubing, an absorbent material, an orifice and/or tubing with a smaller inner diameter than the inner diameter of the cannula, and the like. Where the vascular access device comprises a catheter assembly, the catheter assembly and confirmation camber are optionally used with a guide wire and/or a blood sensor.08-12-2010
20110184263BIO-SENSING DEVICE CAPABLE OF AUTOMATICALLY DETECTING SENSING CODE AND SENSING METHOD THEREOF - The present invention relates to a bio-sensing device capable of automatically detecting a sensing code and a sensing method thereof. The bio-sensing device has a bio-sensing strip and a process-and-display unit. The bio-sensing strip has a passive component, wherein a physical value of the passive component is able to present a sensing code. When the bio-sensing strip is inserted into the process-and-display unit, the process-and-display unit reads the sensing code to produce an appropriate compensation value of a sample. Moreover, by the sensing method, the process-and-display unit is able to detect the sensing code of the bio-sensing strip, and automatically, to access, calculate, compensate, and display the sensing code of the sample.07-28-2011
20100174163TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.07-08-2010
20120179014DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS - Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.07-12-2012
20120190950ELECTRODE COMPOSITIONS FOR USE WITH ANALYTE SENSORS - Embodiments of the invention provide amperometric analyte sensors having optimized elements such as electrodes formed from sputtered platinum compositions as well as layers of material selected to optimize the characteristics of a wide variety of sensor elements and sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.07-26-2012
20120190952Flexible Patch for Fluid Delivery and Monitoring Body Analytes - A wearable, conductive textile patch is provided that may include any of a number of features for monitoring body analytes and/or delivering fluids to a body. In one embodiment of the invention, a single, patch-mounted system monitors glucose levels of a diabetic person and provides appropriate doses of insulin in response to the glucose measurements. A hand-held user interface can be provided for wirelessly controlling the system and/or receiving information from it. Conductive pathways can be formed in the fabric of the patch. Components that can be integrated into the flexible patch include a power source, controller, transmitter, antenna, temperature and other sensors, fluid pump, infusion set, electrical pathways, switches, controls, electrodes, connectors, resistors and other circuit elements. Such components can be embedded, interwoven or coated on to the flexible patch instead of or in addition to surface mounting. Methods associated with use of the flexible patch system are also covered.07-26-2012
20120190951Medical Device Inserters and Processes of Inserting and Using Medical Devices - An apparatus for insertion of a medical device in the skin of a subject is provided, as well as methods of inserting medical devices.07-26-2012
20120323099IMPLANTABLE MEDICAL DEVICE ELECTRODE ASSEMBLY - An implantable medical device (IMD) includes an electrode that forms a first snap-fit attachment area and an insulator that forms a through-hole, a second snap-fit attachment area and a third snap-fit attachment area. The second snap-fit attachment area mates with the first snap-fit attachment area of the electrode. The IMD further includes a body including an elongated conductive housing and a feedthrough wire extending therefrom. The body forms a fourth snap-fit attachment area on one end that mates with the third snap-fit attachment area of the insulator such that the feedthrough wire extends through the through-hole of the insulator. The housing encloses at least one of a battery, a sensor, and an electronic circuit. The insulator functions to electrically isolate the electrode from the housing of the body.12-20-2012
20110046465Analyte Sensors and Methods of Use - An analyte sensor system including a substrate, a first electrode disposed on a first surface of the substrate, a second electrode disposed on a second surface of the substrate, a third electrode provided in electrical contact with at least one of the first or second electrodes, where at least a portion of the first electrode and the second electrode are subcutaneously positioned in a patient, and where the third electrode is substantially entirely positioned external to the patient, and corresponding methods are provided.02-24-2011
20120323097PATCH FOR REVERSE IONTOPHORESIS - A patch for sampling one or more analytes through the skin of a patient comprises an electrode layer for positioning adjacent to the skin of a patient; and means for actuating the electrode layer to induce the withdrawal of analytes through the skin by reverse iontophoresis. A first reservoir in the patch contains an electrically conducting medium such as a liquid electrolyte, which can be controllably delivered onto a surface of the electrode layer adjacent to the skin to increase the conductivity between the electrode layer and the skin. Means are provided for transporting the analytes to a location where they are to be analysed. The patch may comprise a second reservoir containing a drug for transdermal delivery to the patient. An actuator may stretch and/or compress the reservoirs to expel their contents. The actuator may comprise a generally planar mesh formed from a shape memory alloy.12-20-2012
20120271132PORTABLE MEASURING SYSTEM HAVING AN OPTIMIZED ASSEMBLY SPACE - A portable measuring system which analyzes a liquid sample for at least one analyte. The portable measuring system has a substantially moisture-proof housing with an internal atmosphere. The housing prevents moisture from the air and water vapor from penetrating into the housing. The portable measuring system also has at least one test element support inserted into the internal atmosphere of the housing. The test element support is equipped with a retaining structure and a test element that is supported by the retaining structure. The test element support is designed such that, after insertion into the internal atmosphere, the test element is exposed to the internal atmosphere. A release mechanism is also provided which can convey at least one test element into an application position within the internal atmosphere of the housing. In this application position, the liquid sample can be applied to the test element.10-25-2012
20120323098Connectors for Making Connections Between Analyte Sensors and Other Devices - Analyte sensor connectors that connect analyte sensors, e.g., conductive members of analyte sensors, to other devices such as sensor electronics units, e.g., sensor control units, are provided. Also provided are systems that include analyte sensors, analyte sensor connectors, and analyte sensor electronics units, as well as methods of establishing and maintaining connections between analyte sensors and analyte sensor electronics units, and methods of analyte monitoring/detection. Also provided are methods of making analyte sensor connectors and systems that include analyte sensor connectors.12-20-2012
20100228109TRANSCUTANEOUS ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.09-09-2010
20120088996SYSTEM AND METHOD FOR DETERMINING THE POINT OF HYDRATION AND PROPER TIME TO APPLY POTENTIAL TO A GLUCOSE SENSOR - According to an embodiment of the invention, a method of determining hydration of a sensor having a plurality of electrodes is disclosed. In particular embodiments, the method couples a sensor electronics device to the sensor and measures the open circuit potential between at least two of the plurality of electrodes. Then, the open circuit potential measurement is compared to a predetermined value. In some embodiments, the plurality of electrodes includes a working electrode, a reference electrode, and a counter electrode. In still further embodiments, the open circuit potential between the working electrode and the reference electrode is measured. In other embodiments, the open circuit potential between the working electrode and the counter electrode is measured. In still other embodiments, the open circuit potential between the counter electrode and the reference electrode is measured.04-12-2012
20120088994MEDICAL SENSOR SYSTEM FOR DETECTING A FEATURE IN A BODY - The invention relates to a medical sensor system (04-12-2012
20120088993ELECTROCHEMICAL SENSOR HAVING SYMMETRICALLY DISTRIBUTED ANALYTE SENSITIVE AREAS - The present invention provides an electrochemical sensor that employs multiple electrode areas that are exposed for contact with a body fluid, e.g., when the sensor is inserted subcutaneously into a patient's skin. The exposed electrode areas are arranged symmetrically, such that a symmetrical potential distribution is produced when an AC signal is applied to the sensor. The sensors in accordance with these teachings can advantageously be used with AC signals to determine characteristics of the sensor and thus improve sensor performance. These teachings also provide a biocompatible sensor with multiple reference electrode areas that are exposed for contact with body fluid.04-12-2012
20110319733Devices, Systems and Methods for On-Skin or On-Body Mounting of Medical Devices - Devices, systems, methods and kits for releasably mounting a medical device on the body or skin of a user are provided.12-29-2011
20130018243THREE DIMENSIONAL MICROFLUIDIC MULTIPLEXED DIAGNOSTIC SYSTEM - A biosensor includes a microfluidics layer, a transduction layer and a transceiver layer. The transduction layer further includes a functionalized layer that reacts with a biomarker, and a plurality of carbon nanotubes adjacent the functionalized layer. The conductivity of the carbon nanotubes changes in response to a biomarker reacting with at least a portion of the functionalized layer. The functionalized layer can include dendrimers, such as a tadpole dendrimer scaffolding that includes a plurality of sites for receiving receptors for biomarkers.01-17-2013
20130023745DIFFERENTIATING ANALYTES DETECTED USING FAST SCAN CYCLIC VOLTAMMETRY - This document provides methods and materials involved in differentiating analytes detected using a FSCV method. For example, methods and materials for using paired pulse voltammetry to discriminate analytes based on their adsorption characteristics to an electrode (e.g., a carbon fiber electrode) are provided.01-24-2013
20080234561System for in-vivo measurement of an analyte concentration - Human or animal body fluids can be measured in-vivo to determine analyte concentrations, such as glucose. The measurement system comprises an exchangeable sensor for in-vivo placement, a data carrier with calibration data for the sensor, a housing having a first chamber for receiving a sterile sensor and a second chamber for receiving a data carrier, and a base station that couples to the housing for transmitting measurement signals to an evaluation unit. Replacement sterile sensors can be packaged in a sterile package and the data carrier associated with the replacement sensor can be packaged in a non-sterile package.09-25-2008
20130096406System for In Vivo Biosensing Based on the Optical Response of Electronic Polymers - A system for continuous in vivo biosensing of specific analyte molecule concentrations based on the dynamic optical properties of electronic polymers is disclosed. The biosensor system includes at least one implant member subcutaneously exposed to the interstitial fluid of the subject, and a reader member at least temporarily positioned over the implant member to probe it with light of specific wavelengths through the skin. The system has many potential applications, including the real-time monitoring of blood glucose levels in diabetics as a method to supplement or replace conventional capillary blood testing.04-18-2013
20080200788ANALYTE SENSOR - Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.08-21-2008
20080200787Device for Monitoring Blood Flow to Brain - A method of estimating blood flow in a brain, comprising: a) causing currents to flow inside the head by producing electric fields inside the head; b) measuring at least changes in the electric fields and the currents; c) estimating changes in the blood volume of the head, using the measurements of the electric fields and the currents, where the current are produced in children or using electrodes at or near holes in the skull. Optionally, the configuration is selected to focus the flow of current to be inside the brain to a significant degree.08-21-2008
20110224520ELECTROMEDICAL IMPLANT AND MONITORING SYSTEM - An electromedical implant for monitoring a thoracic property of a living being is provided that includes a detector arrangement including an impedance measuring unit and an electrode arrangement, which are equipped to capture a measurement signal associated with the thoracic property in the form of an impedance signal; a monitoring arrangement, which is connected to the detector arrangement and equipped to generate a parameter from the measurement signal that is indicative of the thoracic property, and an evaluation unit, which is connected to the monitoring arrangement and equipped to determine an evaluation result regarding the thoracic property based on the parameter. According to the invention, the electrode arrangement comprises at least a plurality of mutually isolated electrodes, which are disposed on the housing and operatively connected by way of the impedance measuring unit and which can be separately controlled, wherein an electrode body has a strip shape.09-15-2011
20110275917ELECTRORESPONSIVE DEVICE FOR EXTENDING THE LIFE OF BIOSENSORS, AND A BIOSENSOR EMPLOYING THE SAME - Disclosed is a biosensor to which an electroactive polymer layer is attached, more specifically, a biosensor including an electroactive polymer layer attached to the surface of a bioreceptor and electrodes connected to the electroactive polymer layer, which allows reversible deformation of the electroactive polymer layer when an electrical stimulation is applied to the electrode and can thereby analyze the concentration of an analyte when the surface of the bioreceptor is exposed to the analyte. When used as an implantable biosensor, the disclosed biosensor is advantageous in that the time period for which and the frequency with which the bioreceptor is exposed to the analyte can be adjusted, and thus the lifespan of the biosensor is considerably extended.11-10-2011
20110275918BODY FLUID COLLECTING DEVICE FOR EFFICIENTLY COLLECTING BODY FLUID AND BODY FLUID ANALYZER FOR ACCURATE ANALYSIS - In a body fluid analyzer, a body fluid extracting unit for holding medicine to promote discharge of body fluid and collecting body fluid is arranged at a lower surface of a body fluid collecting chip. A body fluid discharge promoting medicine storage unit is connected to a medicine injecting hole formed in the body fluid collecting chip. A test unit is arranged in the body fluid collecting chip, and the body fluid extracting unit and the test unit are connected by a body fluid feeding path. A discarding body fluid storage unit is connected to the exit of the body fluid feeding path. A medicine supplying mechanism including a pump is operatively connected.11-10-2011
20130150689DEVICE FOR SENSING A TARGET CHEMICAL AND METHOD OF ITS MAKING - The present invention relates to a device for sensing a target chemical. The device includes a flexible, non-planar substrate; a printed, solid-state sensing element comprising a chemical sensing material which produces an electrical signal upon interaction with the target chemical; a first printed electrode comprising a first conductive composition; and a second electrode comprising a second conductive composition. The first and second electrodes are electrically isolated from one another, and one or both of the first and second electrodes is in electrical contact with said sensing element. The first and second electrodes and the sensing element collectively form an electrochemical sensor which is coupled to the flexible, non-planar substrate. Medical devices comprising the device of the present invention and methods of making a device for sensing a target chemical are also disclosed.06-13-2013
20100298679SEMICONDUCTOR BASED ANALYTE SENSORS AND METHODS - An analyte sensor is provided that comprises a substrate which includes a semiconductor material. Embodiments may include a core of a conductive material, and a cladding of a semiconductor material, in which the cladding may form at least a portion of a conducting path for a working electrode of the analyte sensor. Method of manufacturing and using the analyte sensor are described, as are numerous other aspects.11-25-2010
20120283537ANALYTE SENSOR LAYERS AND METHODS RELATED THERETO - Sensors for measuring an analyte in a subject comprising at least one electrode having an electroactive surface, at least one interferent-reducing layer comprising vinyl ester monomeric units disposed distally from the electroactive surface, an enzyme layer disposed distally from the electroactive surface and a flux-limiting membrane disposed over the at least one interferent-reducing layer and the enzyme layer. Methods of measuring an analyte in a subject comprising providing the electrochemical analyte sensor, contacting a sample comprising an analyte and an interferent with the at least one interferent-reducing layer comprising vinyl ester monomeric units, and measuring the analyte, where the amount of interferent reaching the electroactive surface is reduced.11-08-2012
20110313266ENDOSCOPIC CAPSULE - An endoscopic capsule has a biocompatible capsule housing that contains at least one sensor device for acquiring medical data. The sensor is arranged on an outer surface of the housing, and has a first electrode produced of an acid-resistant noble metal, and a second electrode produced of silver. An electrical voltage is applied between the first and second electrodes, and a change in an electrical variable is measured between the first and second electrodes when ammonia is present. The endoscopic capsule allows screening of gastric acid and the tissue of the stomach lining for 12-22-2011
20110313265GASTROSCOPE - A gastroscope has an insertion tube with a distal end, at which a sensor is located. The sensor has a first electrode produced of an acid-resistant noble metal, and a second electrode produced of silver. An electrical voltage is applied between the first and second electrodes, and a change in an electrical variable is measured between the first and second electrodes, when ammonia is present. The gastroscope allows screening of gastric acid and the tissue of the stomach lining for 12-22-2011
20120029332Method of Continuously Measuring Substrate Concentration - Analysis equipment is provided, which is capable of fulfilling a demand for miniaturization and ensuring high sensitivity, and which can be produced easily. The present invention relates to a method of continuously measuring a substrate concentration based on a response when a voltage is applied to a sensor. The present invention includes a response voltage application step of applying a response voltage E2 at which a response attributed to a substrate is obtained and a non-response voltage application step of applying a non-response voltage E1 at which the response attributed to the substrate is not obtained or is not substantially obtained. Preferably, the response voltage application step and the non-response voltage application step are repeated alternately.02-02-2012
20120029331IDENTIFICATION, DIAGNOSIS, AND TREATMENT OF NEUROPATHOLOGIES, NEUROTOXICITIES, TUMORS, AND BRAIN AND SPINAL CORD INJURIES USING ELECTRODES WITH MICROVOLTAMMETRY - The present invention relates to devices and methods of use thereof for detection of biomolecules, in vitro, in vivo, or in situ. The invention relates to methods of diagnosing and/or treating a subject as having or being at risk of developing a disease or condition that is associated with abnormal levels of one or more biomolecules including, but not limited to, inter alia, epilepsy, diseases of the basal ganglia, athetoid, dystonic diseases, neoplasms, Parkinson's disease, brain injuries, spinal cord injuries, and cancer. The invention also provides methods of differentiating white matter from gray matter. In some embodiments, regions of the brain to be resected or targeted for pharmaceutical therapy are identified using sensors. The invention further provides methods of measuring the neurotoxicity of a material by comparing microvoltammograms of a neural tissue in the presence and absence of the material using the inventive sensors.02-02-2012
20130197332TISSUE IMPLANTABLE SENSOR WITH HERMETICALLY SEALED HOUSING - A tissue-implantable sensor for measurement of solutes in fluids and gases, such as oxygen and glucose, is provided. The sensor includes: i) a detector array including at least one detector; ii) a telemetry transmission portal; iii) an electrical power source; and iv) circuitry electrically connected to the detector array including signal processing means for determining an analyte level, such as glucose level, in a body fluid contacting the detectors. The sensor components are disposed in a hermetically sealed housing having a size and shape suitable for comfortable, safe, and unobtrusive subcutaneous implantation allowing for in vivo detection and long term monitoring of tissue glucose concentrations by wireless telemetry.08-01-2013
20130204107DEVICES AND METHODS FOR THE RAPID AND ACCURATE DETECTION OF ANALYTES - Disclosed are field effect transistor-based (FET-based) sensors for the rapid and accurate detection of analytes both in vivo and in vitro. The FET-based sensors can include a substrate, a channel disposed on the substrate, a source electrode and a drain electrode electrically connected to the channel, and a recognition element for an analyte of interest immobilized on the surface of the channel via a linking group. The distance between the recognition element and the channel can be configured such that association of the analyte of interest with the recognition element induces a change in the electrical properties of the channel. In this way, an analyte of interest can be detected by measuring a change in an electrical property of the channel. Also provided are devices, including probes and multi-well plates, incorporating the FET-based sensors.08-08-2013
20120088995Analyte Monitoring Devices and Methods - Methods and devices for providing application specific integrated circuit architecture for a two electrode analyte sensor or a three electrode analyte sensor are provided. Systems and kits employing the same are also provided.04-12-2012

Patent applications in class Electroanalysis

Patent applications in all subclasses Electroanalysis