Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


And other cardiovascular parameters

Subclass of:

600 - Surgery

600300000 - DIAGNOSTIC TESTING

600309000 - Measuring or detecting nonradioactive constituent of body liquid by means placed against or in body throughout test

600310000 - Infrared, visible light, or ultraviolet radiation directed on or through body or constituent released therefrom

600322000 - Determining blood constituent

600323000 - Oxygen saturation, e.g., oximeter

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
600325000 Inserted in body 8
Entries
DocumentTitleDate
20080275322Optical sensor biosignal measurement apparatus and method of controlling optical sensor of the apparatus - An optical sensor biosignal measurement apparatus including an optical sensor having a luminous element to emit light towards the skin of a user and a photo detector to detect light from the skin of the user; a light quantity adjustment member to adjust an optical transmission area of the photo detector; and a light quantity controller to detect the quantity of light detected by the photo detector, and control the light quantity adjustment member to adjust the optical transmission area of the photo detector according to the quantity of light is provided.11-06-2008
20130030267MULTI-PURPOSE SENSOR SYSTEM - Embodiments of the present disclosure relate to multi-purpose sensors for monitoring a plurality of physiological parameters. According to certain embodiments, the multi-purpose sensors may include optical elements for determining oxygen saturation and regional saturation. In additional embodiments, such sensor may include multiple electrodes that are configured for bispectral index monitoring. In particular embodiments, portions of the multi-purpose sensors may be removed and discarded when no longer needed.01-31-2013
20090221888WEARABLE SENSOR SYSTEM FOR ENVIRONMENTAL AND PHYSIOLOGICAL INFORMATION MONITORING AND INFORMATION FEEDBACK SYSTEM - An ear wearable or head wearable environmental information and physiological information monitoring device is introduced. This system is capable of transmitting and receiving information wirelessly. This system also comprises of a wireless display unit that can be attached to a hand band.09-03-2009
20130085355MONITORING SYSTEM - A system and method for non-invasive monitoring of cardiac activity in a human or animal is disclosed. A radiation source directs radiation through a patient site, and a detector detects radiation after passing through a patient tissue. A processor processes data derived from the detected radiation, determining pulse peaks and troughs and calculating area under a pulse peak to provide a real time cardiac output indicator. The radiation wavelength is on a haemoglobin spectral isosbestic point, not influenced by changes in SpO2 concentration. The processor performs numerical integration of pulse data between troughs, and wherein said integration is performed per pulse. Preferably, the processor monitors trends, thus providing very useful information and reducing need for calibration.04-04-2013
20130079610PERFUSION INDEX SMOOTHER - An embodiment of the present disclosure seeks to smooth a perfusion index measurement through use of a baseline perfusion index measurement and/or through the use of multiple PI calculations. The combination of the baseline perfusion index measurement reduces an error between a calculated measurement of PI and actual conditions.03-28-2013
20130079609SHIELDED CABLE FOR MEDICAL SENSOR - Present embodiments include a cable configured to transmit signals between a pulse oximetry sensor and a patient monitor. The cable includes a first set of conductors adapted to connect to an emitter of the pulse oximetry sensor, a second set of conductors adapted to connect to a photodetector of the pulse oximetry sensor, and a conductive jacketing surrounding only the second set of conductors and adapted to shield the second set of conductors from electromagnetic interference (EMI). The conductive jacketing includes a conductive filler disposed within a polymeric matrix. The cable also includes a nonconductive jacketing surrounding the conductive jacketing, the nonconductive jacketing being configured to electrically insulate the conductive jacketing.03-28-2013
20100145171APPARATUS FOR MEASURING MOTION NOISE ROBUST PULSE WAVE AND METHOD THEREOF - Provided are a method of measuring the pulse wave at the back of a wrist, etc. where measurement of the pulse wave is difficult so as to prevent a user to feel inconvenience in a mobile environment and a method of detecting the pulse wave at a write portion or at the back of the wrist which has comparatively weak restraint force in a human body by recovering an original signal with comparatively minimum errors so as to be robust to motion noise according to motion of the wrist.06-10-2010
20100145170Small Animal Pulse Oximeter User Interface - A user interface for a pulse oximetry device that calculates physiologic parameters of a subject including at least a subject's heart rate and S06-10-2010
20090171172METHOD AND SYSTEM FOR PULSE GATING - The present disclosure relates to the acquisition and use of an arterial pulse signal that may be used to synchronize the measurement of other physiological characteristics. In one embodiment, a sensor is provided that emits light toward a pulsing artery and detects the transmitted light to generate a signal representative of the amount of light detected. In another embodiment, a sensor is provided that acquires physiological data from a first emitter and first detector placed proximate to a perfused tissue site and acquires arterial pulse data from a second emitter and second detector placed proximate to an artery. Embodiments related to systems, tangible media, and methods of operation are also provided.07-02-2009
20130041240Methods and Systems for Discriminating Bands in Scalograms - The present disclosure is directed towards embodiments of systems and methods for discriminating (e.g., masking out) scale bands that are determined to be not of interest from a scalogram derived from a continuous wavelet transform of a signal. Techniques for determining whether a scale band is not of interest include, for example, determining whether a scale band's amplitude is being modulated by one or more other bands in the scalogram. Another technique involves determining whether a scale band is located between two other bands and has energy less than that of its neighboring bands. Another technique involves determining whether a scale band is located at about half the scale of another, more dominant (i.e., higher energy) band.02-14-2013
20100324386BODY-WORN PULSE OXIMETER - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.12-23-2010
20120184831SYSTEMS, DEVICES AND METHODS FOR MONITORING HEMODYNAMICS - Systems, devices and methods for monitoring hemodynamics are described. The systems and methods generally involve directing light toward an area of the body and detecting the resulting scattered light. The scattered light is detected and an electrical signal representative of the scattered light intensity is generated from the detected light. The electrical signal is analyzed by measuring temporal fluctuations of such signals to monitor pathological states over time including hemorrhagic shock, hypoxia, and tissue graft vascularization. Such monitoring can have significant benefits to patients.07-19-2012
20130046159OPTICAL SENSOR FOR MEASURING PHYSIOLOGICAL PROPERTIES - The invention provides a physiological probe that comfortably attaches to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe, which comprises a separate cradle module and sensor module, secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. The cradle module, which contains elements subject to wear, is preferably provided as a disposable unit.02-21-2013
20130046158INTELLIGENT ALARMS - A patient in intensive care is monitored by connecting the outputs of a plurality of sensors to a computer, where the sensors all relate to one mode of functioning such as heart beating, respiration, infusion of a liquid into the patient, etc. The sensor outputs are delivered to a computer that sounds an alarm, only if all sensors that indicate one function (e.g. heart beating) indicate dangerously low operation of that function. This avoids many false alarms caused by one sensor having a low output such as due to accidental disconnection of a wire.02-21-2013
20130046162SYSTEM AND METHOD FOR HIGH RESOLUTION WIRELESS FULL DISCLOSURE ECG EPISODE MONITORING AND ANALYSIS - High resolution full disclosure ECG data is transferred from a body sensor device to a handheld device via a wireless protocol. The handheld device transfers the full disclosure ECG data via a network to a center for analysis.02-21-2013
20130046161METHOD OF ANALYZING AND PROCESSING SIGNALS - A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system comprises a pulse oximeter which includes a light emitting device and a photodetector attachable to a subject to obtain a pulse oximetry signal; analogue to digital converter means arranged to convert said pulse oximetry signal into a digital pulse oximetry signal; signal processing means suitable to receive said digital pulse oximetry signal and arranged to decompose that signal by wavelet transform means; feature extraction means arranged to derive physiological information from the decomposed signal; an analyser component arranged to collect information from the feature extraction means; and data output means arranged in communication with the analyser component.02-21-2013
20130046160METHOD OF ANALYZING AND PROCESSING SIGNALS - A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system comprises a pulse oximeter which includes a light emitting device and a photodetector attachable to a subject to obtain a pulse oximetry signal; analogue to digital converter means arranged to convert said pulse oximetry signal into a digital pulse oximetry signal; signal processing means suitable to receive said digital pulse oximetry signal and arranged to decompose that signal by wavelet transform means; feature extraction means arranged to derive physiological information from the decomposed signal; an analyser component arranged to collect information from the feature extraction means; and data output means arranged in communication with the analyser component.02-21-2013
20090306488PORTABLE PATIENT MONITOR - Embodiments of the present disclosure includes a portable pulse oximeter, such as a handheld pulse oximeter, that provides a user with intuitive key navigation for device operation, which reduces an amount of visual concentration needed to handle and operate the oximeter. In various embodiments, the portable pulse oximeter includes one or more of user input keys disposed along curve, an alignment edge providing guidance by feel of a user's digits to the input keys, raised convex keys also providing navigation by feel, a protective boot disposed around various portions of the oximeter housing to protect against impacts, a table-top stand, combinations of the same, or the like.12-10-2009
20130072771OPTICAL FINGER MOUSE, ELECTRONIC DEVICE AND PHYSIOLOGICAL CHARACTERISTICS DETECTION DEVICE - There is provided an optical finger mouse including two light sources, an image sensor and a processing unit. The two light sources emit light of different wavelengths to illuminate a finger surface. The image sensor receives reflected light from the finger surface to generate a plurality of image frames. The processing unit detects a displacement and a contact status of the finger surface and a physiological characteristic of a user according to the plurality of image frames. There is further provided an electronic device and a physiological characteristic detection device.03-21-2013
20110015507SYSTEM AND METHOD FOR MEMORY SWITCHING FOR MULTIPLE CONFIGURATION MEDICAL SENSOR - A system is provided that includes a monitor, a multiple configuration sensor having a first configuration and a second configuration, and a sensor connector. The sensor connector includes a first memory device and a second memory device, such that the first memory device is accessible by the monitor in the first sensor configuration and the second memory device is accessible by the monitor in the second sensor configuration. Another system is provided that includes a sensor adaptor having a processing circuit that reads a memory of a multiple configuration sensor and provides a first set of calibration data of a first sensor configuration and a second set of calibration data for a second sensor configuration.01-20-2011
20130066174VENOUS OXYGEN SATURATION SYSTEMS AND METHODS - Methods and systems are discussed for determining venous oxygen saturation by calculating a ratio of ratios from respiration-induced baseline modulations. A calculated venous ratio of ratios may be compared with a look-up table value to estimate venous oxygen saturation. A calculated venous ratio of ratios is compared with an arterial ratio of ratios to determine whether baseline modulations are the result of a subject's respiration or movement. Such a determination is also made by deriving a venous ratio of ratios using a transform technique, such as a continuous wavelet transform. Derived venous and arterial saturation values are used to non-invasively determine a cardiac output of the subject.03-14-2013
20130066175VENOUS OXYGEN SATURATION SYSTEMS AND METHODS - Methods and systems are discussed for determining venous oxygen saturation by calculating a ratio of ratios from respiration-induced baseline modulations. A calculated venous ratio of ratios may be compared with a look-up table value to estimate venous oxygen saturation. A calculated venous ratio of ratios is compared with an arterial ratio of ratios to determine whether baseline modulations are the result of a subject's respiration or movement. Such a determination is also made by deriving a venous ratio of ratios using a transform technique, such as a continuous wavelet transform. Derived venous and arterial saturation values are used to non-invasively determine a cardiac output of the subject.03-14-2013
20130066177BIOLOGICAL SIGNAL MEASURING APPARATUS - The calculation amount of the whole can be reduced. A biological signal measuring apparatus includes a biological signal measuring unit which measures a biological signal; and a calculation processing unit which performs calculation processes on the measured biological signal, wherein the calculation processing unit has: a first calculation processing unit which performs calculation processes required for calculating the biological signal, and which is independently controllable; and a second calculation processing unit which performs a specific calculation process, and which is independently controllable, and, when the first calculation processing unit satisfies given conditions, the second calculation processing unit is caused to perform the specific calculation process.03-14-2013
20130066176VENOUS OXYGEN SATURATION SYSTEMS AND METHODS - Methods and systems are discussed for determining venous oxygen saturation by calculating a ratio of ratios from respiration-induced baseline modulations. A calculated venous ratio of ratios may be compared with a look-up table value to estimate venous oxygen saturation. A calculated venous ratio of ratios is compared with an arterial ratio of ratios to determine whether baseline modulations are the result of a subject's respiration or movement. Such a determination is also made by deriving a venous ratio of ratios using a transform technique, such as a continuous wavelet transform. Derived venous and arterial saturation values are used to non-invasively determine a cardiac output of the subject.03-14-2013
20120116194METHOD FOR AUTOMATIC SETTING TIME VARYING PARAMETER ALERT AND ALARM LIMITS - When monitoring physiological parameters (e.g., blood pressure, heart rate, etc.) of a patient, a threshold limit (05-10-2012
20120116193System for Adjusting Power Employed by a Medical Device - A system for adjusting power employed by a medical device incorporating light emitting devices and being used for measuring patient medical parameters, includes a plurality of light emitting devices. A power unit is coupled to the light emitting devices and powers the light emitting devices responsive to respective control signals which determine power to be applied to the light emitting devices. A control unit for provides the control signals and is coupled to the power unit. The control signals intermittently turn off at least one of the plurality of light emitting devices in a power save mode in response to a determination that a patient medical parameter value measured by the medical device, using an active light emitting device of the plurality of light emitting devices, is at a safe level.05-10-2012
20100081902Medical Sensor and Technique for Using the Same - According to embodiments, a medical sensor may be configured for use on mucosal tissue. Such a sensor may include a portion that facilitate the application of the sensor to the tissue and a portion that includes the optical components of the sensor. The two portions of the sensor may be reversibly coupled to one another. In embodiments, such sensors may be used to determine patient hematocrit.04-01-2010
20100081901Medical Sensor And Technique For Using The Same - According to embodiments, sensors and systems for medical spectroscopy may include adaptive optical components, such as digital light processing components. Adaptive light emitting elements may allow such sensors to alter the intensity profile of emitted light photons to change the distribution of photons through the tissue or to scan areas of tissue to determine if certain areas may be associated with improved measurements. In addition, sensors with adaptive light detecting elements as provided may adapt to selectively detect light of certain wavelengths or from certain regions of the tissue.04-01-2010
20100081900Medical Sensor - The present disclosure generally relates to a medical sensor configured to attach to a patient's finger. According to embodiments, a sensor body is attached to a ring such that the sensor body is limited to contact with the patient's finger. The ring may have a fixed diameter or be adjustable. The ring may also include an indicator that facilitates the determination of whether the ring applies appropriate tension to the patient's finger. The sensor body may comprise a strip attached to the ring at two points or a hood that covers the distal end of the patient's finger. The sensor body may be coupled to the patient's finger with adhesives or securing flaps.04-01-2010
20100081899System and Method for Photon Density Wave Pulse Oximetry and Pulse Hemometry - Present embodiments are directed to a system and method capable of modulating light at a modulation frequency, wherein the modulation frequency is somewhere above about 50 MHz and below about 3 GHz, to generate photon density waves in a medium, detecting relative amplitude changes and phase shifts in the photon density waves, and detecting and graphically indicating a physiologic value related to scattering particles in the medium based on the phase shifts.04-01-2010
20120238847PROBE - A probe includes: light emitting and receiving sections; an attachment band including a first surface facing the living tissue and a second surface opposite to the first surface, a part of the first surface in which one of a hook portion and a loop portion is provided, a part of the second surface in which the other is provided, the attachment band to be wrapped around the living tissue to engage the hook and loop portions with each other; and a compressible member attached to the first surface, being in contact with the living tissue when the attachment band is attached to the living tissue, the compressible member which is larger in width than the attachment band and ends of which extend beyond ends of the attachment band.09-20-2012
20120238846VASCULAR OCCLUSION TEST APPARATUS, SYSTEMS, AND METHODS FOR ANALYZING TISSUE OXYGENATION - A vascular occlusion test apparatus, systems, and methods for analyzing tissue oxygen saturation levels in patients are disclosed. A system for analyzing data related to tissue oxygenation in a patient includes a blood pressure device, a tissue oxygen sensor, and a control module in communication with the blood pressure device and tissue oxygen sensor. The control module includes a processor that computes various tissue characteristics associated with tissue oxygenation, including ischemia slope and recovery slope. During a vascular occlusion test, the control module can be configured to control an inflatable cuff based on tissue oxygen measurements obtained from the tissue oxygen sensor.09-20-2012
20120101349PULSE OXIMETER - A pulse oximeter includes a housing defined by at least a first housing portion and a second housing portion wherein the second portion includes a passage. A sensor module disposed in the housing and proximate the passage includes at least one light emitting diode and at least one photodetector. A processing module also disposed in the housing and configured to communicate with the sensor module includes at least a processor, a network interface, and a power supply. The pulse oximeter further includes a pad having at least a bottom surface and a pad passage, as well as an adhesive configured to be disposed on at least a portion of the bottom surface of the pad. The housing is configured to releasably engage the pad wherein the housing passage and the pad passage are substantially aligned with one another.04-26-2012
20120253155METHOD AND APPARATUS FOR DEMODULATING SIGNALS IN A PULSE OXIMETRY SYSTEM - A method and an apparatus measure blood oxygenation in a subject. A light source is activated to cause a first emission at a first wavelength and a second emission at a second wavelength. A detector detects a composite signal indicative of an attenuation of the first and second wavelengths by tissue of a patient. The composite signal is demodulated into a first intensity signal and a second intensity signal. Blood oxygenation in the subject is determined from the first and second intensity signals.10-04-2012
20110144460PULSE FREQUENCY MEASURING METHOD AND APPARATUS - A method and an apparatus are provided for measuring a pulse frequency in a bio-signal measurement device. A bio-signal collected by a sensor is applied as an input signal of a notch filter. A filter coefficient of the notch filter is adaptively changed according to a result of tracking the bio-signal in the notch filter and calculating a pulse frequency corresponding to the filter coefficient of the notch filter.06-16-2011
20110282169Long Term Active Learning from Large Continually Changing Data Sets - Methods and systems are disclosed for autonomously building a predictive model of outcomes. A most-predictive set of signals S11-17-2011
20110009723FOREHEAD SENSOR PLACEMENT - Forehead oximetry sensor devices and methods for determining physiological parameters using forehead oximetry sensors. One method includes placing an oximetry sensor on the forehead of a patient, such that the sensor is placed on the lower forehead region, above the eyebrow with the sensor optics placed lateral of the iris and proximal the temple; and operating the pulse oximeter to obtain the physiological parameter. In one aspect, the method also includes providing and placing a headband over the oximetry sensor, or alternately, the sensor is a headband-integrated sensor. The headband has an elastic segment sized to fit around the patient's head. The headband also includes a non-elastic segment that is smaller than and attached with the elastic segment. The non-elastic segment is sized to span a portion of the elastic segment when the elastic segment is stretched. In addition, the non-elastic segment is larger than the portion of the elastic segment it spans when the elastic segment is not stretched. When the headband or the headband-integrated sensor is sufficiently tight, it delivers a pressure in the range higher than the venous pressure and lower than the capillary pressure to the forehead of the patient.01-13-2011
20130035571MOBILE EMERGENCY RESPONSE SYSTEM - Disclosed embodiments include a the portable medical apparatus that comprises (a) a patient monitor comprising a plurality of wireless biomedical sensors including an electrocardiogram sensor, a non-invasive blood pressure sensor, and a pulse oximetry sensor; and (b) a communications module configured to wirelessly transmit jointly compressed signals. The communication module is configured to transmit signals as a block of coherent data. Additionally, the communication module includes fast-joint coding and decoding, transmission error correction, information exchange between different layers to optimize network throughput, and adapts the Quality of Service (QoS) guarantees for each type of traffic offered.02-07-2013
20110301443ELECTRONIC ENDOSCOPE SYSTEM, PROCESSOR FOR ELECTRONIC ENDOSCOPE, AND TARGET TRACING METHOD - In a tracing mode of an electronic endoscope system, a target designating frame is displayed on a monitor to enable designating a tracing target in an endoscopic image captured from an interior of a body cavity illuminated with a broadband light. After the tracing target is designated, narrowband rays of different wavelength ranges from each other are sequentially projected into the body cavity, to acquire biological information on the designated tracing target from image signals obtained under these narrowband rays. On the basis of the biological information on the tracing target, an area corresponding to the tracing target is detected from endoscopic images newly captured after the designation of the tracing target.12-08-2011
20120022349DIAGNOSIS OF ACUTE STROKES - A method of evaluating patients suspected of suffering from an acute stroke, the method comprising: 01-26-2012
20100249555SYSTEMS AND METHODS FOR MONITORING PAIN MANAGEMENT - The present disclosure relates to systems and methods for monitoring pain management using measurements of physiological parameters based on a PPG signal. A reference physiological parameter may be compared against a later measurement to identify a change in condition that may indicate a pain management problem.09-30-2010
20100249554MEDICAL SENSOR WITH COMPRESSIBLE LIGHT BARRIER AND TECHNIQUE FOR USING THE SAME - According to various embodiments, a medical sensor assembly may include compressible light barriers configured to prevent undesired light from being detected. The compressible light barriers may protrude from the surface of the sensor. However, when applied to the tissue, the compressible light barriers may be compressed to the point of being substantially flush with the tissue.09-30-2010
20100249553Electroadhesive Medical Devices - A method and system for attaching medical devices to a patient are provided. In accordance with an embodiment, a medical device is formed with or is coupled to an attachment structure including a plurality of electrodes capable of generating differential voltages at adjacent electrodes, to thereby provide electrostatic adhesion with the tissue of a patient. In an embodiment, the attachment structure includes an insulative material between the respective electrodes of the plurality of electrodes.09-30-2010
20100249552System And Method For Wirelessly Powering Medical Devices - A system and method for the wirelessly charging of a power source of a pulse oximeter. The pulse oximeter may include an inductively coupled conductor. The inductively coupled conductor may be coupled to the power source and the inductively coupled conductor may wirelessly receive an electromagnetic charging signal. Based on the received signal, the inductively coupled conductor may at least partially recharge the power source.09-30-2010
20110098545METHOD FOR USING PHOTOPLETHYSMOGRAPHY TO OPTIMIZE FLUID REMOVAL DURING RENAL REPLACEMENT THERAPY BY HEMODIALYSIS OR HEMOFILTRATION - Disclosed herein are methods, systems and devices to monitor vascular volume status during renal replacement therapy utilizing at least one oximetry/photoplethysmography sensor. The methods, systems and devices provide an alternative to conventional vascular volume monitoring methods during renal replacement therapy while enabling reliable, non-invasive, and automatic monitoring of vascular volume to avert patient hypotension. The methods, systems and devices may be employed in the context of both inpatient and outpatient dialysis facilities and may also be incorporated into conventional hemodialysis and hemofiltration techniques and equipment.04-28-2011
20090137885PULSE OXIMETER ACCESS APPARATUS AND METHOD - Access is provided to certain pulse oximetry systems utilizing a keyed sensor and a corresponding locked sensor port of a restricted access monitor. In such systems, the keyed sensor has a key comprising a memory element, and the monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port, and the memory reader is able to retrieve predetermined data from the memory element. The monitor is accessed by providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.05-28-2009
20100113904System And Method For Facilitating Observation Of Monitored Physiologic Data - Present embodiments are directed to a system and method capable of detecting and graphically indicating physiologic patterns in patient data. For example, present embodiments may include a monitoring system that includes a monitor capable of receiving input relating to patient physiological parameters and providing indications or alarms related to oxygen saturation declines and oxygen desaturation patterns associated with sleep apnea. Present embodiments may include methods and systems for mediating between alarms and other indicators associated with oxygen desaturation and ventilatory instability.05-06-2010
20120035443MEDICAL SENSOR FOR REDUCING MOTION ARTIFACTS AND TECHNIQUE FOR USING THE SAME - A sensor for pulse oximetry or other applications utilizing spectrophotometry may be adapted to reduce motion artifacts by fixing the optical distance between an emitter and detector. A flexible sensor is provided with a stiffening member to hold the emitter and detector of the sensor in a relatively fixed position when applied to a patient. Further, an annular or partially annular sensor is adapted to hold an emitter and detector of the sensor in a relatively fixed position when applied to a patient. A clip-style sensor is provided with a spacer that controls the distance between the emitter and detector.02-09-2012
20090306489APPARATUS AND METHOD FOR MEASURING A CHARACTERISTIC OF A COMPOSITION REACTIVE TO A MAGNETIC FIELD - A system that incorporates teachings of the present disclosure may include, for example, a sensor having a pulse oximeter sensor to measure an oxygen saturation level in a liquid, a magnetic source coupled to the pulse oximeter sensor, and a controller to control the pulse oximeter sensor and the magnetic source, and to measure a mechanical effect on the liquid responsive to the magnetic source applying a magnetic field to the liquid. Additional embodiments are disclosed.12-10-2009
20130060110SYSTEM AND METHOD FOR AUTOMATIC DETECTION OF A PLURALITY OF SPO2 TIME SERIES PATTERN TYPES - The disclosed embodiments relate to pulse oximetry. An exemplary pulse oximeter comprises a probe that is adapted to be attached to a body part of a patient to create a signal indicative of an oxygen saturation of blood of the patient, and a processor that is adapted to receive the signal produced by the probe, to calculate an SPO2 value based on the signal, to detect a plurality of pattern types of SPO2 indicative of pathophysiologic events, and to produce an output indicative of a detected one of the plurality of pattern types.03-07-2013
20120296183DEVICE CONFIGURATION FOR SUPPORTING A PATIENT OXYGENATION TEST - A method for performing a patient oxygenation test using one or more computing devices is provided. The patient oxygenation test comprises a plurality of instructions for implementing a workflow for determining an oxygenation status for a patient. An entry or selection is received of one or more physiological parameters for the patient to be monitored during the patient oxygenation test. An entry or selection is received of one or more thresholds for at least one of the physiological parameters to be monitored during the patient oxygenation test. A determination is made as to whether any of the physiological parameters exceed limits set by the one or more thresholds. One or more actions are taken when one or more of the physiological parameters exceed the limits set by the one or more thresholds. A summary and analysis are provided of the test results.11-22-2012
20110270058Method For Respiration Rate And Blood Pressure Alarm Management - Embodiments of the present disclosure relate to display features that facilitate observation of monitored physiological data. According to certain embodiments, a monitoring system may include a monitor capable of receiving data related to the physiological parameters and storing data related to the parameters. The monitor may include a microprocessor capable of determining a respiration rate baseline from the data and establishing an alarm sensitivity for respiration rate based on the respiration rate baseline. The alarm sensitivity may comprise a first tier, a second tier, and a third tier. Each tier may correspond to a specific respiratory rate range and the alarm sensitivity may be selected based on which specific respiratory rate range encompasses the respiration rate baseline. Further, in certain embodiments a blood pressure baseline may be determined and an alarm sensitivity established based on the blood pressure baseline.11-03-2011
20090287070Estimation Of A Physiological Parameter Using A Neural Network - A neural network is used to combine one or more estimates of a physiologic parameter with one or more associated signal quality metrics, creating a more accurate estimate of said physiologic parameter, as well as a second estimate of the accuracy of said physiologic parameter estimate.11-19-2009
20100292549METHOD AND SYSTEM FOR MONITORING OXYGENATION LEVELS OF COMPARTMENTS AND TISSUE - A method and system for continually monitoring oxygenation levels in real-time in compartments of an animal limb, such as in a human leg or a human thigh or a forearm, can be used to assist in the diagnosis of a compartment syndrome. The method and system can include one or more near infrared compartment sensors in which each sensor can be provided with a compartment alignment mechanism and a central scan depth marker so that each sensor may be precisely positioned over a compartment of a living organism. The method and system may comprise hardware or software (or both) may adjust one or more algorithms based on whether tissue being monitored was traumatized or is healthy. The method and system can also monitor the relationship between blood pressure and oxygenation levels and activate alarms based on predetermined conditions relating to the oxygenation levels or blood pressure or both.11-18-2010
20090054752METHOD AND APPARATUS FOR PHOTOPLETHYSMOGRAPHIC SENSING - A photoplethysmographic sensing system for determining a user's pulse rate includes a light emitting device (02-26-2009
20080208021IMPLANTABLE TISSUE PERFUSION SENSING SYSTEM AND METHOD - A medical device for sensing cardiac events that includes a plurality of electrodes sensing cardiac signals utilized to identify a cardiac event, a plurality of light sources capable of emitting light at a plurality of wavelengths, and a detector to detect the emitted light. A processor determines a plurality of light measurements in response to the emitted light detected by the detector, an isobestic blood volume index in response to determined light measurements of the plurality of light measurements from a first light source of the plurality of light sources emitting light at an isobestic wavelength, determines an oxygen index associated with light measurements of the plurality of light measurements from a light source of the plurality of light sources other than the first light source, and verifies the identifying of the cardiac event in response to the determined isobestic blood volume index and the determined oxygen index.08-28-2008
20080249382BLOOD PRESSURE MONITORING APPARATUS AND METHOD - The blood pressure monitoring apparatus and method are disclosed that can monitor a blood pressure of a subject using an electrocardiogram signal, a pulse wave signal and a body characteristic information of the subject, wherein the electrocardiogram signal and the pulse wave signal of the subject are monitored to remove a noise signal generated from monitoring of the pulse wave signal, allowing monitoring a precise blood pressure of the subject, and calculating the pulse wave analysis information using the monitored pulse wave signal, and using the electrocardiogram signal and the pulse wave signal to calculate a pulse transit time (PPT), and plugging a calculated pulse wave propagation time, pulse wave analysis information and body characteristic information of the subject into a predetermined regression equation to monitor the blood pressure.10-09-2008
20120296184NONINVASIVE PHYSIOLOGICAL ANALYSIS USING EXCITATION-SENSOR MODULES AND RELATED DEVICES AND METHODS - Methods and apparatus for qualifying and quantifying excitation-dependent physiological information extracted from wearable sensors in the midst of interference from unwanted sources are provided. An organism is interrogated with at least one excitation energy, energy response signals from two or more distinct physiological regions are sensed, and these signals are processed to generate an extracted signal. The extracted signal is compared with a physiological model to qualify and/or quantify a physiological property. Additionally, important physiological information can be qualified and quantified by comparing the excitation wavelength-dependent response, measured via wearable sensors, with a physiological model.11-22-2012
20080287757Sensor with signature of data relating to sensor - A sensor has codes useful for a monitor which can be authenticated as accurate. The sensor produces a signal corresponding to a measured physiological characteristic and provides codes which can be assured of being accurate and authentic when used by a monitor. A memory associated with the sensor stores both data relating to the sensor and a digital signature. The digital signature authenticates the quality of the code by ensuring it was generated by an entity having predetermined quality controls, and ensure the code is accurate.11-20-2008
20130217987METHOD FOR ENHANCING PULSE OXIMETRY CALCULATIONS IN THE PRESENCE OF CORRELATED ARTIFACTS - Methods and systems for determining a physiological parameter in the presence of correlated artifact are provided. One method includes receiving two waveforms corresponding to two different wavelengths of light from a patient. Each of the two waveforms includes a correlated artifact. The method also includes combining the two waveforms to form a plurality of weighted difference waveforms, wherein the plurality of weighted difference waveforms vary from one another by a value of a multiplier. The method further includes identifying one of the weighted difference waveforms from the plurality of weighted difference waveforms using a characteristic of one or more of the plurality of weighted difference waveforms and determining a characteristic of the correlated artifact based at least in part on the identified weighted difference waveform.08-22-2013
20090264722SYSTEM AND METHOD FOR NON-INVASIVELY MONITORING CONDITIONS OF A OBJECT - A method and system are presented for use in determining one or more parameters of a subject. A region of interest of the subject is irradiated with acoustic tagging radiation, which comprises at least one acoustic tagging beam. At least a portion of the region of interest is irradiated with at least one electromagnetic beam of a predetermined frequency range. Electromagnetic radiation response of the at least portion of the region of interest is detected and measured data indicative thereof is generated. The detected response comprises electromagnetic radiation tagged by the acoustic radiation. This enables processing of the measured data indicative of the detected electromagnetic radiation response to determine at least one parameter of the subject in a region corresponding to the locations in the medium at which the electromagnetic radiation has been tagged by the acoustic radiation, and outputting data indicative of the at least one determined parameter.10-22-2009
20090264721SIGNAL PROCESSING METHOD, SIGNAL PROCESSING APPARATUS, AND PULSE PHOTOMETER USING THE SAME - A method of processing first and second signals obtained by measuring a medium, to obtain a pulse wave signal and an artifact signal which are separated, includes: separating vectors of the first and second signals by using a separation matrix into a vector of the pulse wave signal and a vector of the artifact signal, the separation matrix including a norm ratio of a stable zone of the pulse wave signal and a compensated norm ratio of an artifact zone.10-22-2009
20110270059SIGNAL PROCESSING FOR PULSE OXIMETRY - A signal processing technique for estimating the frequency of a pulsatile signal (including but not limited to pulse oximetry signals) is disclosed. Each of the functions contained within a pre-selected set of functions is compared to the input signal at many different time-shifts, and the function/time-shift combination that best matches the input signal is selected. The frequency of the best-matching function is then used as the best estimate of the frequency of the input signal. Optionally, once a function has been selected, the rising portion of the selected function can be correlated in time to the rising portion of the input signal. Improved results can then be obtained by basing the oxygen saturation level calculations on samples taken from the rising portion of the input signal.11-03-2011
20120143026SYSTEM AND METHOD FOR PROBABILITY BASED DETERMINATION OF ESTIMATED OXYGEN SATURATION - Present embodiments include providing an initial estimate of a value representative of a blood flow characteristic at a current timestep, and determining a probability distribution of transition, wherein the probability distribution of transition includes potential values of the blood flow characteristic at the current timestep with associated probabilities of occurrence based solely on the initial estimate. Present embodiments further include obtaining an initial measurement of the blood flow characteristic, and determining a probability distribution of measured values, wherein the probability distribution of measured values includes potential values of the blood flow characteristic at the current timestep with associated probabilities of occurrence based on the initial measurement. Further, present embodiments include combining the probability of distribution of transition with the probability of distribution of measured values to determine a meaningful blood flow characteristic value, and posting the meaningful blood flow characteristic value.06-07-2012
20110144461PULSE FREQUENCY MEASURING METHOD AND APPARATUS - A method and an apparatus are provided for measuring a pulse frequency in a bio-signal measurement device. A bio-signal collected by a sensor is applied as an input signal of a notch filter. A filter coefficient of the notch filter is adaptively changed according to a result of tracking the bio-signal in the notch filter and calculating a pulse frequency corresponding to the filter coefficient of the notch filter.06-16-2011
20090143656SYSTEM FOR DETERMINATION OF BRAIN COMPLIANCE AND ASSOCIATED METHODS - Systems and methods for measuring intracranial pressure and brain compliance are provided. In one aspect, for example, a method for noninvasive measurement of brain compliance in a subject may include calculating a phase shift between an intracranial pulsatile perfusion flow measured from the subject and an extracranial pulsatile perfusion flow measured from the subject, and determining brain compliance of the subject from the phase shift between the intracranial pulsatile perfusion flow and an extracranial pulsatile perfusion flow. Though various methods of calculating phase shift are contemplated, in one aspect such a calculation may include calculating an intracranial frequency waveform corresponding to the intracranial pulsatile perfusion flow, calculating an extracranial frequency waveform corresponding to the extracranial pulsatile perfusion flow, and calculating a phase difference between the intracranial frequency waveform and the extracranial frequency waveform.06-04-2009
20090326351Signal Processing Mirroring Technique - Embodiments may include systems and methods capable of processing an original signal by selecting and mirroring portions of the signal to create a new signal for further analysis. In an embodiment, the signal may be a photoplethysmograph (PPG) signal and the new signal may be further analyzed using continuous wavelet transforms. Any suitable number of reconstructed new signals may be created from the original signal and scalograms may be derived at least in part from the new signals. Ridges may be extracted from the scalograms of the new signals and secondary scalograms may be further derived from the ridges. A sum along amplitudes technique may be applied to a selected scalogram and may be plotted as a function of the scale of the scalogram. Desired information, such as respiration information within the original signal, may be identified from the plot.12-31-2009
20090326352METHOD AND DEVICE FOR MEASURING PARAMETERS OF CARDIAC FUNCTION - A device for non-invasively measuring at least one parameter of a cardiac blood vessel in a patient is provided. The device comprises at least one light source that emits light in the 400 nm to 1000 nm wavelength range; at least one photodetector adapted to receive light emitted by the light source and generate an output based on the received light, wherein said light is reflected from or transmitted through tissue of the patient, the output of said photodetector being correlated with a parameter of the blood vessel; and at least one probe for facilitating delivery of light from the light source to an external tissue site on the patient in the proximity of the cardiac blood vessel and receipt of light by the photodetector. A system and methods of monitoring/measuring cardiac parameters utilizing the device and/or system are also provided.12-31-2009
20090326350TISSUE PERFUSION SENSOR CONTROL - An optical perfusion sensor may monitor blood oxygen saturation of blood-perfused tissue, which may be referred to as tissue perfusion, until a tissue perfusion value is within a threshold range of a reference value, and, in some examples, for at least a minimum period of time. The tissue perfusion value may indicate an absolute blood oxygen saturation level or a relative change in blood oxygen saturation level. The reference value may be, for example, determined by an oxygen (O2) variation index that indicates a change in blood oxygen saturation of tissue. In some examples, the optical perfusion sensor may be activated upon detecting a cardiac event, such as a cardiac arrhythmia. In addition, in some examples, cardiac signal monitoring may be activated upon detecting a threshold change in tissue perfusion.12-31-2009
20090209836Optical Measuring Apparatus, Optical Measuring Method, and Storage Medium that Stores Optical Measuring Program - The present invention provides an optical measuring apparatus and an optical measuring method for being able to correct the influence of a superficial tissue to be able to accurately measure a degree of light absorption of a deep layer tissue such as a human body and fruits, and a storage medium that stores an optical measuring program. The optical measuring apparatus includes a probe, and the probe includes one light emitting diode and two photodiodes. In a configuration of the optical measuring apparatus, one of the photodiodes receives light which is emitted from the light emitting diode and transmitted through a superficial layer and a deep layer of a tissue, and the other photodiode receives light having a deep layer transmission distance different from that of the light received by one of the photodiodes. The light received by the other photodiode is also transmitted through the superficial layer and deep layer of the tissue. Based on intensity of the light received by each photodiode, a control unit computes a propagation constant in a medium through which the light propagates. An arithmetic expression is selected in accordance with an input fat thickness of the tissue, and an absorption coefficient of the light from a muscle tissue using the arithmetic expression based on the fat thickness and a spatial slope. A hemoglobin concentration and an oxygen saturation are obtained based on the obtained absorption coefficient of the light.08-20-2009
20090024014Method and Apparatus for Measuring Pulse Rate and Oxygen Saturation Achieved During Exercise - In order to measure a pulse rate and an oxygen saturation of a subject who is in an exercised state, each of two pulse wave signals obtained from the subject is separated into a signal component and a noise component. A frequency spectrum of the signal component and a frequency spectrum of the noise component are obtained. It is judged whether a body motion of the subject is occurred based on the frequency spectrum of the signal component and the frequency spectrum of the noise component. A pulsation frequency is determined based on the judgment as to the body motion. The pulse rate is calculated based on the pulsation frequency. The oxygen saturation is calculated based on a ratio of spectra of the two pulse wave signals corresponding to the pulsation frequency.01-22-2009
20090024013Physical Performance Monitoring and Monitors - Methods and systems are disclosed for determining an anaerobic threshold and/or an oxygen consumption rate in a human or animal subject. The methods include exposing a tissue of the subject to illumination radiation, collecting emitted radiation from the tissue, the emitted radiation including a portion of the illumination radiation reflected or transmitted from the tissue, processing the emitted radiation to form a spectrum of the tissue, and determining, based on the spectrum of the tissue, the anaerobic threshold and/or the oxygen consumption rate of the subject.01-22-2009
20090082651Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics - A method and a system for ensemble averaging signals in a pulse oximeter, including receiving first and second electromagnetic radiation signals from a blood perfused tissue portion corresponding to two different wavelengths of light, obtaining an assessment of the signal quality of the electromagnetic signals, selecting weights for an ensemble averager using the assessment of signal quality, and ensemble averaging the electromagnetic signals using the ensemble averager.03-26-2009
20090247852SYSTEM AND METHOD FOR FACILITATING SENSOR AND MONITOR COMMUNICATION - Embodiments disclosed herein may include an adapter which is capable of converting signals from an oximeter sensor such that the signals are readable by an oximeter monitor. In an embodiment, the adapter is capable of converting signals relating to calibration information from the oximeter sensor. The calibration information may relate to wavelengths of light emitting diodes within the oximeter sensor. In a specific embodiment, the adapter will convert wavelength calibration information in a first form relating to data values stored in a digital memory chip to a second form relating to a resistance value of an expected resistor within the oximeter sensor.10-01-2009
20090054751Touchless Sensor for Physiological Monitor Device - A device for monitoring heart rate and blood oxygen levels using improved pulse oximetry sensors. Pulse oximetry sensors function in either transmission mode or reflectance mode. The device of the present invention provides improved sensors functioning in transmission mode to be useful on anatomical structures with dense tissue, such as the wrist. Additionally, a combination of sensors are used to enhance the performance of monitoring devices using pulse oximetry technology. By combining sensors that function in transmission mode and reflectance mode, quality and accuracy of the monitoring device is enhanced. The data from the sensors are communicated with a microcontroller for analyzing the data. More accurate data collection translates to more accurate analysis using formulas or algorithms. The resulting analysis is conveyed to the user through a display, either digitally or in color.02-26-2009
20090221887PATIENT MONITORING ALARM ESCALATION SYSTEM AND METHOD - Embodiments of the present invention relate to a patient monitoring alarm escalation system and method. Specifically, embodiments of the present invention include an alarm detection device configured to measure physiological data received via a patient monitor, the alarm detection device configured to initiate an alarm in response to predefined measurements of the physiological data, and an alarm device configured to emit a first signal with a first property and a second signal with a second property, the first signal being emitted when the alarm is initiated, the second signal being emitted if an alarm acknowledgement mechanism is not activated prior to a designated event.09-03-2009
20100160753WRIST BLOOD PRESSURE MONITOR WITH AN OXIMETER - A wrist blood pressure monitor with an oximeter, characterized in that the wrist blood pressure monitor and the oximeter are arranged on the same base; the length direction of the wrist blood pressure monitor is parallel to the width direction of an armband; and a finger hole of the oximeter is oriented to be vertical to the width direction of the armband. The wrist blood pressure monitor with the oximeter according to the present invention can measure the blood pressure and the blood oxygen at the same time, so that the user can not only operate conveniently, but also acquire more accurate measuring results; or the blood pressure and the blood oxygen are measured independently, so that the user can operate in great convenience.06-24-2010
20110060201Integrated Pulse Oximeter-Pulse Flowmeter - This device uses electrical impedance and signal processing to measure the small change in volume (“Pulse Volume”) of a limb-segment that occurs with each heartbeat. “Pulsatile Flow” is defined as the pulse volume multiplied by the heart rate and is an index of tissue perfusion. This information can be combined with measured blood oxygen saturation to determine how much oxygen is reaching the tissues. The combination of knowing oxygen saturation and tissue perfusion is far more useful than knowing just one or the other of these parameters.03-10-2011
20100234705System and Method for Automatic Detection of a Plurality of SP02 Time Series Pattern Types - The disclosed embodiments relate to a patient monitor for evaluating a patient. The patient monitor may comprise a sensor that is adapted to detect a sound associated with breathing of the patient and to produce a first output indicative of the sound, an oximeter that is adapted to receive an input from the patient and to produce a second output indicative of oxygen saturation of blood of the patient, and a processor adapted to receive at least the first output and the second output and to correlate the first output with the second output.09-16-2010
20100113905Ultrasound Image Display With Additional Information Using PPG and ECG Signals - An embodiment for displaying an ultrasound image with additional information using a photoplenthysmography (PPG) signal and an electrocardiogram (ECG) signal in an ultrasound system is disclosed. The ultrasound system includes a photoplenthysmography (PPG) signal generating unit and an electrocardiogram (ECG) signal generating unit. The PPF signal generating unit and the ECG signal generating unit generate a PPG signal for the target object and an ECG signal for the target object, respectively. An additional information forming unit forms additional information by using the PPG signal and the ECG signal. A display unit displays ultrasound images of the target object together with the additional information.05-06-2010
20110028813Systems And Methods For Estimating Values Of A Continuous Wavelet Transform - According to embodiments, techniques for estimating scalogram energy values in a wedge region of a scalogram are disclosed. A pulse oximetry system including a sensor or probe may be used to receive a photoplethysmograph (PPG) signal from a patient or subject. A scalogram, corresponding to the obtained PPG signal, may be determined. In an arrangement, energy values in the wedge region of the scalogram may be estimated by calculating a set of estimation locations in the wedge region and estimating scalogram energy values at each location. In an arrangement, scalogram energy values may be estimated based on an estimation scheme and by combining scalogram values in a vicinity region. In an arrangement, the vicinity region may include energy values in a resolved region of the scalogram and previously estimated energy values in the wedge region of the scalogram. In an arrangement, one or more signal parameters may be determined based on the resolved and estimated values of the scalogram.02-03-2011
20120245442CARDIOPULMONARY RESUSCITATION MONITORING APPARATUS - A cardiopulmonary resuscitation monitoring apparatus includes: a detecting unit configured to obtain a detection signal of a timing of chest compression during execution of cardiopulmonary resuscitation; a pulse oximeter configured to detect a change of a blood volume at the timing of the chest compression based on the detection signal, and configured to obtain an oxygen saturation from the change of the blood volume; an evaluating unit configured to perform evaluation related to the cardiopulmonary resuscitation based on the oxygen saturation; and an outputting unit configured to perform an outputting operation in accordance with a result of the evaluation.09-27-2012
20090221889Pulse Oximeter With Alternate Heart-Rate Determination - A pulse oximeter which determines multiple heart rates, and selects between them based on the metrics of only one of the heart rate calculations. A primary heart rate calculation method is selected, and is used unless its metrics indicate questionable accuracy, in which case an alternative rate calculation is available and is used instead.09-03-2009
20100222658SYSTEM AND METHOD FOR NON-INVASIVE MONITORING OF CEREBRAL TISSUE HEMODYNAMICS - A method and system are provided which are useful for the non-invasive determination and monitoring of cerebral tissue oxygenation. The method comprises the steps of generating at least first and second jugular venous output signals against time based on the reflection of at least first and second wavelengths of light, respectively, from an external tissue site on the patient in the proximity of the internal jugular vein; obtaining corresponding first and second cardiac arterial output signals for the first and second wavelengths of light, respectively, from the patient, and separating the first and second cardiac arterial output signals from the first and second jugular venous output signals, respectively, to generate first and second cerebral venous output signals; and determining cerebral tissue oxygenation based on the first and second cerebral venous output signals. A system useful to monitor cerebral tissue oxygenation may comprise a first module for optically generating at least first and second jugular venous output signals against time at at least first and second wavelengths of light, respectively, from the patient; a second module for generating first and second cardiac arterial output signals at the first and second wavelengths of light, respectively, from the patient; and a signal processing means adapted to separate the first and second cardiac arterial output signals from the first and second jugular venous output signals, respectively, to yield first and second cerebral venous output signals, for the determination of cerebral tissue oxygenation.09-02-2010
20110112387SIMULTANEOUS MEASUREMENT OF PULSE AND REGIONAL BLOOD OXYGEN SATURATION - Methods and systems are provided that allow for the simultaneous calculation of pulse and regional blood oxygen saturation. An oximeter system that includes a sensor with a plurality of emitters and detectors may be used to calculate a pulse and/or regional blood oxygen saturation. A plurality of light signals may be emitted from light emitters. A first light signal may be received at a first light detector and a second light signal may be received at a second light detector. A pulse and/or regional blood oxygen saturation value may be calculated based on the received first and/or second light signals. The pulse and regional blood oxygen saturation values may be calculated substantially simultaneously. The calculated pulse and regional blood oxygen saturation values as well as other blood oxygen saturation values may be displayed simultaneously in a preconfigured portion of a display.05-12-2011
20130137946MEDICAL DEVICE WITH CONDITIONAL POWER CONSUMPTION - Embodiments of the present disclosure relate to a system and method for reducing power consumption of a medical device based on one or more physiological parameters. For example, the medical device may be operated in a low power mode if a physiological parameter trend is above a certain threshold. In the low power mode, the processing power may be reduced relative to a high power mode. The low power mode may be associated with reduced processing and output rate.05-30-2013
20130137947LED DRIVE CIRCUIT AND METHOD FOR USING SAME - In various embodiments, there is provided an LED drive circuit and a method for using the same. Specifically, the present disclosure is directed to an LED drive circuit for pulse oximeters. In an embodiment, the LED drive circuit includes a current mirror configured to provide drive current to an LED of a sensor. Additionally, the method includes providing current to first and second current mirrors, wherein the first and second current mirrors are configured to control first and second light sources.05-30-2013
20130137948Signal Processing Method, Signal Processing Apparatus, and Pulse Photometer Using the Same - A method of processing first and second signals obtained by measuring a medium, to obtain a pulse wave signal and an artifact signal which are separated, includes: separating vectors of the first and second signals by using a separation matrix into a vector of the pulse wave signal and a vector of the artifact signal, the separation matrix including a norm ratio of a stable zone of the pulse wave signal and a compensated norm ratio of an artifact zone.05-30-2013
20100331640USE OF PHOTODETECTOR ARRAY TO IMPROVE EFFICIENCY AND ACCURACY OF AN OPTICAL MEDICAL SENSOR - A system and method for determining physiological parameters of a patient based on light transmitted through the patient. The light may be transmitted via an emitter and received by a detector array that includes a plurality of detector elements. The emitter and the detector may both be located on a flexible substrate.12-30-2010
20110009722Historical Trend Icons For Physiological Parameters - Embodiments relate to systems and methods for displaying graphical icons representing a detected medical condition or a sensor fault. Specifically, embodiments of relate to a monitoring system that includes a sensor configured to obtain a physiologic signal from a patient, and a monitor communicatively coupled to the sensor and configured to receive the signal. In an embodiment, the monitor includes a processor adapted to compute physiological data based on the signal and identify a pattern in the physiological data, wherein the pattern relates to a condition of the patient, the sensor, or the monitor. In an embodiment, the processor also selects a graphical icon indicative of the pattern and provides the selected icon to a display.01-13-2011
20110028814Medical Monitoring Patch Device And Methods - Embodiments described herein may include systems and methods for monitoring physiological parameters of a patient. Specifically, embodiments disclose the use of a generally self-contained pulse oximeter that is small and lightweight, such that it may be comfortably affixed to a patient to provide physiological data pertaining to the patient. Embodiments also provide methods of using and manufacturing a pulse oximetry patch.02-03-2011
20110034789DIGITAL SWITCHING IN MULTI-SITE SENSOR - A system includes a flexible sensor configured to be placed into a first configuration and a second configuration, wherein the sensor is configured to measure a physiological characteristic. The sensor may include a first memory device configured to store a first set of calibration data and a second memory device configured to store a second set of calibration data. The system may further include a monitor coupled to the sensor, wherein the first memory device is accessible by the monitor in the first configuration and the second memory device is accessible by the monitor in the second configuration.02-10-2011
20110130638MEDICAL SENSOR AND TECHNIQUE FOR USING THE SAME - A medical sensor may be adapted to account for factors that cause irregularities in pulse oximetry measurements or other spectrophotemetric measurements. Sensors are provided with surface features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.06-02-2011
20110124991SYSTEM AND METHOD FOR MITIGATING INTERFERENCE IN PULSE OXIMETRY - A pulse oximetry sensor adapted to emit light from an emitter proximate to a patient's tissue and detect a portion of the emitted light on a detector proximate to the tissue. The pulse oximetry system is adapted to acquire position data for the emitter and for the detector with one or more position indicators. The pulse oximetry system is adapted to process the position data to obtain a change in position of the emitter and the detector; and to process pulse oximetry measurements using the change in position to obtain a motion-corrected pulse oximetry data.05-26-2011
20110245640Films For Touchscreen Displays Of Medical Device Monitors - According to various embodiments, a medical device monitor includes a touchscreen and a film disposed on an external surface of the touchscreen. The film resists formation of visible fingerprints and resists growth of microorganisms. In various embodiments, one layer or more than one layer of the film may be disposed on the touchscreen.10-06-2011
20100261986MOTION COMPATIBLE SENSOR FOR NON-INVASIVE OPTICAL BLOOD ANALYSIS - A non-invasive optical sensor which uses the motion signal to calculate the physiological characteristic being measured. For pulse oximetry, a least squares or a ratio-of-ratios technique can be applied to the motion signal itself. This is made possible by selecting a site on the patient where variations in motion produce signals of two wavelengths which are sufficiently correlated. In particular, it has been determined that a sensor placed on a nail, in particular a thumbnail, exhibits the characteristics of having the red and infrared signals correlated when used for pulse oximetry, and the resulting signals correlate to arterial oxygen saturation.10-14-2010
20100249556SYSTEMS AND METHODS FOR MONITORING PAIN MANAGEMENT - The present disclosure relates to systems and methods for monitoring pain management using measurements of physiological parameters based on a PPG signal. A reference physiological parameter may be compared against a later measurement to identify a change in condition that may indicate a pain management problem.09-30-2010
20100056886VITAL SIGN MONITOR SYSTEM AND METHOD - A portable vital sign monitor is provided which has a palm vital sign monitor unit carried by the patient, the unit comprising an optical probe positioned in the palm of the patient which measures at least one vital sign including SpO03-04-2010
20120172689WIRELESS, ULTRASONIC PERSONAL HEALTH MONITORING SYSTEM - A personal monitoring device has a sensor assembly configured to sense physiological signals upon contact with a user's skin. The sensor assembly produces electrical signals representing the sensed physiological signals. A converter assembly, integrated with, and electrically connected to the sensor assembly, converts the electrical signals generated by the sensor assembly to a frequency modulated inaudible ultrasonic sound signal. The ultrasonic signal is demodulated from an aliased signal produced by undersampling.07-05-2012
20100056887EMISSION SENSOR DEVICE AND BIOINFORMATION DETECTING METHOD - An emission sensor device includes a base (03-04-2010
20110077484Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters - According to embodiments, non-corrupted signal segments are detected by a data modeling processor implementing an artificial neural network. The neural network may be trained to detect artifact in the signal (e.g., a PPG signal or some wavelet representation of a PPG signal) and gate valid signal segments for use in determining physiological parameters, such as, for example, pulse rate, oxygen saturation, pulse rate, respiration rate, and respiratory effort. When an artifact is detected, previously received known-good signal segments may be buffered and replace the signal segment or segments containing artifact. A regression analysis may also be performed in order to extrapolate new data from previously received known-good signal segments. In this way, more accurate and reliable physiological parameters may be determined.03-31-2011
20110077486SYSTEMS AND METHODS FOR NORMALIZING A PLETHYSMOGRAPH SIGNAL FOR IMPROVED FEATURE ANALYSIS - The present disclosure relates to systems and methods for analyzing and normalizing signals, such as PPG signals, for use in patent monitoring. The PPG signal may be detected using a continuous non-invasive blood pressure monitoring system and the normalized signals may be used to determine whether a recalibration of the system should be performed.03-31-2011
20100240972Slider Spot Check Pulse Oximeter - A slider spot check pulse oximeter may include a first portion and a second portion. The first portion may include a sensor configured to monitor physiological parameters of a patient. The second portion may include a display configured to display the monitored physiological parameters. The second portion may be configured to slide relative to the first portion such that the second portion substantially exposes the sensor when in an open position and substantially covers the sensor when in a closed position.09-23-2010
20110071373Time-Division Multiplexing In A Multi-Wavelength Photon Density Wave System - Multi-wavelength photon density wave medical systems, methods, and devices are provided. In one embodiment, a multi-wavelength system may include a sensor, a sensor cable, and a patient monitor. The sensor may have an emitter output and a detector input configured to pass a multi-wavelength photon density wave input signal into a patient and receive a resulting multi-wavelength photon density wave output signal. The sensor cable may couple to the sensor using two optical cables for transmitting and receiving the multi-wavelength photon density wave signals. The patient monitor may couple to the sensor cable and generate several time-division multiplexed single-wavelength input signals by modulating one or more light sources at a frequency sufficient to produce resolvable photon density waves. By combining the several time-division multiplexed single-wavelength input signals into one of the optical cables of the sensor cable, the patient monitor may generate the multi-wavelength photon density wave input signal.03-24-2011
20110071375METHOD AND APPARATUS FOR ESTIMATING PHYSIOLOGICAL PARAMETERS USING MODEL-BASED ADAPTIVE FILTERING - A method and apparatus for reducing the effects of noise on a system for measuring physiological parameters, such as, for example, a pulse oximeter. The method and apparatus of the invention take into account the physical limitations on various physiological parameters being monitored when weighting and averaging a series of measurements. Varying weights are assigned different measurements, measurements are rejected, and the averaging period is adjusted according to the reliability of the measurements. Similarly, calculated values derived from analyzing the measurements are also assigned varying weights and averaged over adjustable periods. More specifically, a general class of filters such as, for example, Kalman filters, is employed in processing the measurements and calculated values. The filters use mathematical models which describe how the physiological parameters change in time, and how these parameters relate to measurement in a noisy environment. The filters adaptively modify a set of averaging weights to optimally estimate the physiological parameters.03-24-2011
20110152650ADAPTIVE PUMP CONTROL DURING NON-INVASIVE BLOOD PRESSURE MEASUREMENT - A method of operating a non-invasive blood pressure (NIBP) monitor having a blood pressure cuff. During operation of the NIBP monitor, the blood pressure cuff is initially inflated at a rapid inflation rate. Once the blood pressure cuff reaches a first pressure, the inflation rate of the blood pressure cuff is reduced from the rapid inflation rate to a measurement inflation rate. The blood pressure cuff continues to inflate at the measurement inflation rate while the NIBP monitor receives signals from the patient. Based upon the signals received from the patient, the controller of the NIBP monitor calculates an initial inflation pressure. The blood pressure cuff is inflated to the calculated initial inflation pressure and inflation is terminated. In this manner, signals received from the patient during inflation are used to calculate the initial inflation pressure to reduce the amount of time required to make a blood pressure measurement.06-23-2011
20110077488Evaluation Board For A Medical Monitoring Module System And Method - An evaluation board for a medical monitoring module is provided. The evaluation board includes a socket configured to receive a medical monitoring module and a plurality of connections for connection to a host or host simulator and a second device. The evaluation board may include a non-isolated power supply to provide power to the medical monitoring module. The evaluation board may also provide communication in a protocol between the host or host simulator and the medical monitoring module.03-31-2011
20110077487Evaluation Kit For Medical Monitoring Module System and Method - An evaluation kit for monitoring, testing, and debugging a medical monitoring module is provided. The kit includes a hardware and software to provide for monitoring of communication between the medical monitoring module and a host or host simulator. The kit may provide for various system configurations having a sensor device, a computer having a protocol analyzer and a host simulator, a medical monitoring module, a software host, a medical monitor, or any combination thereof.03-31-2011
20110077485Method Of Analyzing Photon Density Waves In A Medical Monitor - A monitoring system that may include an emission feature capable of emitting light into tissue, a modulator capable of modulating the emitter at a modulation frequency generally in a range of about 50 MHz to 3.0 GHz to generate resolvable photon density waves, a detection feature capable of detecting photons of the photon density waves after passage through the tissue and capable of providing a distribution of detected photons over a time period for the photon density waves, and a processor capable of calculating a skewness of the distribution and making determinations relating to a value of a physiologic parameter of the tissue based at least in part on the skewness of the distribution.03-31-2011
20110071374Minimax Filtering For Pulse Oximetry - Methods and systems are provided for filtering a pulse oximetry signal without making assumptions on the noise statistics of the signal. A pulse oximeter may receive an energy signal proportional to an amount of light detected at the sensor. The energy signal may be converted and digitally processed to estimate physiological data. The pulse oximeter may include a processor configured to execute H03-24-2011
20110152652SYSTEM AND METHOD FOR PULSE RATE CALCULATION USING A SCHEME FOR ALTERNATE WEIGHTING - Embodiments of the present invention relate to a method for analyzing pulse data. In one embodiment, the method comprises receiving a signal containing data representing a plurality of pulses, the signal generated in response to detecting light scattered from blood perfused tissue. Further, one embodiment includes performing a pulse identification or qualification algorithm on at least a portion of the data, the pulse identification or qualification algorithm comprising at least one constant, and modifying the at least one constant based on results obtained from performing the pulse identification or qualification algorithm, wherein the results indicate that a designated number of rejected pulses has been reached.06-23-2011
20110152651 Device And System That Identifies Cardiovascular Insufficiency - A system and method for identifying volume status of a patient are disclosed. A pulse density signal is recorded from the patient. The pulse density signal is filtered to capture a respiration sampling period and a plurality of cardiac cycles occurring during the respiration sampling period. Mean pulse pressure and peak blood flow velocity for the respiration sampling period are calculated and are used as indices of volume status of the patient.06-23-2011
20120302846METHOD AND MEASURING INSTRUMENT FOR MEASURING THE OXYGEN SATURATION IN THE BLOOD - The invention relates inter alia to a method for measuring the oxygen saturation of the blood flowing in a peripheral human or animal body part (11-29-2012
20110054280Finger Type Pulse and Blood Oxygen Measuring Device - The invention discloses a finger type pulse and blood oxygen measuring device, including an upper shell suite and a lower shell suite that are installed with silica gel soft finger pad, and a semi-closed holding cavity shaped by the coordination of the silica gel soft finger pad that installed within the upper shell suite and lower shell suite; herein its feature it is that the foresaid silica gel soft finger pad that installed within the upper shell suite and lower shell suite has optical windows which are corresponding to each other, while the optical window and silica gel soft finger pad become integrated; and a removable power supply module is installed in the lower shell suite. The beneficial effects of the invention is that because of the adoption of the removable type power supply module which is able to load the battery, by the comparison with the current technology, it is easier to assemble and disassemble the battery, and it enforces the anti-damage function of the measuring device; the device also adopts the integrated technology for the mould of the transparent silica gel optical window and the silica gel soft finger pad, which makes the craft simpler, and enhances the consistency of the products, and also increases the comfort of the fingers for placement in measuring.03-03-2011
20100292548Method And Apparatus For Detecting And Analyzing Variations In A Physiologic Parameter - The present disclosure is generally directed to identifying and/or analyzing high resolution variations in a measured physiologic parameter, such as blood oxygen saturation (SpO11-18-2010
20110118574PHYSIOLOGICAL SIGNAL SENSING DEVICE - A physiological signal sensing device for examination of human is provided. The physiological signal sensing device includes a light emitting fiber and a light receiving fiber. The light emitting fiber includes a plurality of light emitting portions, wherein the light emitting fiber provides a plurality of sensing beams, and the sensing beams are respectively emitted through the light emitting portions. The light receiving fiber includes a plurality of light receiving portions. The light receiving fiber corresponds to the light emitting fiber. The sensing beams are emitted through the light emitting portions, reflected or refracted by the human. And then the sensing beams are received by the light receiving portions.05-19-2011
20110077483SENSOR WITH AN OPTICAL COUPLING MATERIAL TO IMPROVE PLETHYSMOGRAPHIC MEASUREMENTS AND METHOD OF USING THE SAME - According to various embodiments, a medical sensor assembly may include an optical coupling material configured to prevent undesired light from being detected and to enhance the amount of light received at the detector. The optical coupling material may be a gel, liquid, oil, or other non-solid material with appropriate optical properties.03-31-2011
20100305418MULTIUSE OPTICAL SENSOR - One or more electromagnetic radiation sources, such as a light emitting diode, may emit electromagnetic waves into a volume of space. When an object enters the volume of space, the electromagnetic waves may reflect off the object and strike one or more position sensitive detectors after passing through an imaging optical system such as glass, plastic lens, or a pinhole located at known distances from the sources. Mixed signal electronics may process detected signals at the position sensitive detectors to calculate position information as well as total reflected light intensity, which may be used in medical and other applications. A transparent barrier may separate the sources and detectors from the objects entering the volume of space and reflecting emitted waves. Methods and devices are provided.12-02-2010
20100324387BODY-WORN PULSE OXIMETER - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.12-23-2010
20100324390MEASUREMENT OF OXYGEN SATURATION OF BLOOD HAEMOGLOBIN - The invention provides a chest-based oximeter (12-23-2010
20100324389BODY-WORN PULSE OXIMETER - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.12-23-2010
20090171174SYSTEM AND METHOD FOR MAINTAINING BATTERY LIFE - Embodiments of the present disclosure relate to a patient monitoring system and method. Embodiments may include a patient monitoring device with a battery, one or more charge drawing components, and an operator interface. The operator interface may provide an option to place the patient monitor in a storage mode in which the one or more charge-drawing components draw no or substantially no charge from the battery.07-02-2009
20090171175Personalized Medical Monitoring: Auto-Configuration Using Patient Record Information - According to various embodiments, methods and systems are provided for configuring a medical device connected to a network based on an identification. In one embodiment, a method is provided that includes receiving an identification, retrieving configuration parameters from a network based at least in part upon the identification, and selecting one or more configuration parameters based at least in part upon the identification. In various embodiments, a system is provided that includes a medical device configured to communicate over a network, wherein the medical device may receive information from the network and the monitor is configured to select one or more configuration parameters based at least in part upon the information received from the network.07-02-2009
20090171173SYSTEM AND METHOD FOR REDUCING MOTION ARTIFACTS IN A SENSOR - Embodiments disclosed herein may include a patient sensor which has a low-friction exterior coating. In an embodiment, the exterior surface of the sensor may come into contact with external items, such as, for example, bed linens, clothing, unintended parts of the patient's body, or other people. The low-friction coating disposed on the exterior of the sensor may include a material having a relatively low coefficient of friction with respect to these external items. In an embodiment, the low-friction material may include, for example, a fluoropolymer, a polypropylene, or a polyethylene. Additionally, in an embodiment, an internal surface of the sensor that is in contact with the patient may have a relatively high-friction coating, such as an adhesive. In an embodiment, a stack of adhesive layers may be disposed on the internal surface around one or more light emitting and/or detecting optics.07-02-2009
20090247851Graphical User Interface For Monitor Alarm Management - The present disclosure provides a system and method for facilitating user input of alarm settings for a patient monitor. In various embodiments, a pulse oximetry monitor may include a graphical user interface (GUI) which is capable of displaying a graph of blood oxygen saturation percentage over time. The system may be capable of allowing a user to enter an alarm threshold value and/or an alarm integration threshold value. The alarm threshold value may be displayed as a line on the graph, and the alarm integration threshold value may be displayed as a shaded area on the graph. The GUI may include an indicator of where an alarm would be initiated given the graph, the input alarm threshold value, and/or the alarm integration threshold value. The disclosed GUI may provide the user with a clear illustration of how the alarm threshold value and alarm integration threshold value may affect the alarm.10-01-2009
20110218413Method and Apparatus for Non-invasive Fetal Oximetry - Method and apparatus to non-invasively measure fetal blood oxygen saturation levels. Optical sensors capable of producing and detecting multiple wavelengths of tissue penetrating light are placed on the surface of the maternal abdomen, and the light beams directed to pass through at least a portion of the uterus containing the fetus. The fetal heart rate is monitored by Doppler ultrasound, and pure maternal optical signal related to maternal arterial blood flow are also measured. The optical sensors collect composite signals containing both maternal and fetal hemoglobin absorption spectral data and modulated by their respective pulsatile blood flows. The composite signals processed in the time domain and frequency domain, the pure maternal pulsatile optical signal used to extract the maternal contribution to the composite signal, and the fetal pulsatile signal is used to lock onto and extract the fetal contribution to the composite signal, and a fetal blood oxygen level deduced.09-08-2011
20100016693Systems And Methods For Identifying Pulse Rates - According to embodiments, techniques for using continuous wavelet transforms and spectral transforms to identify pulse rates from a photoplethysmographic (PPG) signal are disclosed. According to embodiments, candidate pulse rates of the PPG signal may be identified from a wavelet transformed PPG signal and a spectral transformed PPG signal. A pulse rate may be determined from the candidate pulse rates by selecting one of the candidate pulse rates or by combining the candidate pulse rates. According to embodiments, a spectral transform of a PPG signal may be performed to identify a frequency region associated with a pulse rate of the PPG signal. A continuous wavelet transform of the PPG signal at a scale corresponding to the identified frequency region may be performed to determine a pulse rate from the wavelet transformed signal.01-21-2010
20100016692SYSTEMS AND METHODS FOR COMPUTING A PHYSIOLOGICAL PARAMETER USING CONTINUOUS WAVELET TRANSFORMS - According to embodiments, systems and methods for computing a physiological parameter are provided. The physiological parameter may be calculated using a continuous wavelet transform technique as well as using a non-continuous wavelet transform technique. More than one value for the physiological parameter may be calculated using various techniques. The values may be evaluated to select a desired value, or an average or weighted average of the values may be computed to generate a desired value.01-21-2010
20100185068NON-CONTACT PHOTOPLETHYSMOGRAPHIC PULSE MEASUREMENT DEVICE AND OXYGEN SATURATION AND BLOOD PRESSURE MEASUREMENT DEVICES USING THE SAME - The present invention provides a non-contact photoplethysmographic (PPG) pulse measurement device, and oxygen saturation and blood pressure measurement devices using the PPG pulse measurement device. The PPG pulse measurement device includes a sensing unit including at least two light emitting units for emitting light into a human body without making direct contact with skin, and a light receiving unit for sensing reflected light. A signal separation unit separates output of the sensing unit into a ripple component and a ripple-free component. A microprocessor unit monitors the ripple-free component and compares the ripple-free component with a DC signal value. A luminance adjustment unit adjusts luminance of the light emitting units. A filter and amplification unit eliminates noise from the ripple component. An A/D conversion unit converts output of the filter and amplification unit into a digital signal. A signal transmission unit transmits output of the A/D conversion unit.07-22-2010
20100016694Systems, Methods, and/or Apparatuses for Non-Invasive Monitoring of Respiratory Parameters in Sleep Disordered Breathing - In certain example embodiments, an air delivery system includes a controllable flow generator operable to generate a supply of pressurized breathable gas to be provided to a patient for treatment and a pulse oximeter. In certain example embodiments, the pulse oximeter is configured to determine, for example, a measure of patient effort during a treatment period and provide a patient effort signal for input to control operation of the flow generator. Oximeter plethysmogram data may be used, for example, to determine estimated breath phase; sleep structure information; autonomic improvement in response to therapy; information relating to relative breathing effort, breathing frequency, and/or breathing phase; vasoconstrictive response, etc. Such data may be useful in diagnostic systems.01-21-2010
20120046532FOOT PULSE OXIMETER FOR SCREENING CONGENITAL HEART DISEASE BEFORE NEWBORN DISCHARGE - A method including placing a portion of a foot of a newborn in a device, the device including a light emitter and a corresponding receiver coupled on opposite sides of the device, the device further including a processor for processing data from the light emitter and receiver; and determining a presence of congenital heart disease. An apparatus including a body including a chamber of a size to accommodate a portion of a newborn's foot; at least one light emitter and a corresponding detector coupled on opposite sides of the body, the emitter configured to emit light of a prescribed wavelength into the chamber; and a processor coupled to the body and configured to receive a signal from the at least one detector.02-23-2012
20100324388BODY-WORN PULSE OXIMETER - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.12-23-2010
20110082355PHOTOPLETHYSMOGRAPHY DEVICE AND METHOD - A system and method for measuring one or more light-absorption related blood analyte concentration parameters of a mammalian subject, is disclosed. In some embodiments, the system comprises: a) a photoplethysmography (PPG) device configured to effect a PPG measurement by illuminating skin of the subject with at least two distinct wavelengths of light and determining relative absorbance at each of the wavelengths; b) a dynamic light scattering measurement (DLS) device configured to effect a DLS measurement of the subject to rheologically measure a pulse parameter of the subject; and c) electronic circuitry configured to: i) temporally correlating the results of the PPG and DLS measurements; and ii) accordance with the temporal correlation between the PPG and DLS measurements, assessing value(s) of the one or more light-absorption related blood analyte concentration parameter(s).04-07-2011
20120310061NONINVASIVE OXIMETRY OPTICAL SENSOR INCLUDING DISPOSABLE AND REUSABLE ELEMENTS - A pulse oximetry sensor includes reusable and disposable elements. To assemble the sensor, members of the reusable element are mated with assembly mechanisms of the disposable element. The assembled sensor provides independent movement between the reusable and disposable elements.12-06-2012
20120310060METHOD OF ANALYZING PHOTON DENSITY WAVES IN A MEDICAL MONITOR - A monitoring system may include an emission feature capable of emitting light into tissue, a modulator capable of modulating the emitter at a modulation frequency, e.g., in a range of about 10 MHz to 3.0 GHz, to generate resolvable photon density waves, a detection feature capable of detecting photons of the photon density waves after passage through the tissue, and a processor capable of using phase and amplitude differences of the photon density wave signal relative to a reference to determine one or more physiological parameters. The phase and amplitude differences may be much lower frequency that the modulation rate. Accordingly, these differences may be masked by signal artifacts. Provided herein are signal conditioning techniques that may improve the signal to noise ratio of photon density wave signals and yield a more robust phase and amplitude signal.12-06-2012
20120022350SENSOR FUSION AND PROBABILISTIC PARAMETER ESTIMATION METHOD AND APPARATUS - A probabilistic digital signal processor using data from multiple instruments is described. Initial probability distribution functions are input to a dynamic state-space model, which operates on state and/or model probability distribution functions to generate a prior probability distribution function, which is input to a probabilistic updater. The probabilistic updater integrates sensor data from multiple instruments with the prior to generate a posterior probability distribution function passed (1) to a probabilistic sampler, which estimates one or more parameters using the posterior, which is output or re-sampled in an iterative algorithm or (2) iteratively to the dynamic state-space model. For example, the probabilistic processor operates on fused data using a physical model, where the data originates from a mechanical system or a medical meter or instrument, such as an electrocardiogram or pulse oximeter to generate new parameter information and/or enhanced parameter information.01-26-2012
20120157802ELECTROCARDIOGRAPHIC DATA ACQUISITION DEVICE - An ECG data acquisition device (06-21-2012
20120108928System and Method for Measurement of Vital Signs of a Human - A method and system for optical measuring one or more vital signs of a human is described. The method includes generating an optical Pulse Width Modulated (PWM) signal modulated in accordance with a predetermined Pulse Width Modulation scheme. The PWM scheme includes one or more Pulse Width Modulations having different modulation frequencies. The method also includes applying the PWM optical signal to a measurement location in a blood perfused body tissue of the human and receiving light originated back from the measurement location. A photo current signal of a time response of the blood perfused body tissue to the PWM optical signal is indicative of the vital signs. The method includes generating a voltage signal from the photo current signal and processing the voltage signal for determining the vital signs.05-03-2012
20110066016OPAQUE, ELECTRICALLY NONCONDUCTIVE REGION ON A MEDICAL SENSOR - A medical sensor may be adapted to prevent unwanted light and electrical interference from corrupting physiological measurements. Sensors are provided with features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce crosstalk between electrical signals, increasing the accuracy of measurements. The sensor is also adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.03-17-2011
20120232365CARDIOPULMONARY RESUSCITATION MONITORING APPARATUS - A cardiopulmonary resuscitation monitoring apparatus includes: a light source section configured to cause light, which includes at least infrared light, to be incident on a living body; a light receiving unit configured to receive at least one of transmitted light that is transmitted through the living body and reflected light that is reflected from the living body; a calculating unit, based on DC components of received light intensities of the received light, configured to calculate a ratio of the DC components of the received light intensities of the received light during execution of cardiopulmonary resuscitation; an evaluating unit configured to perform evaluation related to the cardiopulmonary resuscitation based on the ratio calculated by the calculating unit; and an outputting unit configured to perform an output in accordance with a result of the evaluation performed by the evaluating unit.09-13-2012
20090171176Snapshot Sensor - According to embodiments, there is provided a non-invasive medical device and method for using the same. Specifically, there is provided a pulse oximetry system that includes a sensor configured to detect electromagnetic radiation which has passed through living tissue and a monitor coupled to the sensor for processing information collected by the sensor. An actuation device is provided that is remotely located from the monitor and communicatively coupled to the monitor, wherein the monitor is configured to take a snapshot of physiological parameters and relay the physiological parameters to an electronic medical record (EMR) in response to receiving an actuation signal from the actuation device.07-02-2009
20120130211Biological Signal Measuring Apparatus and Biological Signal Measuring Method - A biological signal measuring apparatus includes: a light emitter which emits at least two light beams having different wavelengths to living tissue of a subject; a light receiver which receives the light beams that are emitted from the light emitter, and which converts at least one of the light beams to at least one electric signal that corresponds to a reception light intensity of the at least one of the light beams; a detector which detects temporal variation of the reception light intensity from the electric signal; a selector which selects a pulse oximeter mode in which at least one of an oxygen saturation and a pulse rate is calculated and a capillary refilling time measurement mode in which a capillary refilling time is calculated; and a calculator which, based on the temporal variation of the reception light intensity, performs a calculation in the mode that is selected by the selector.05-24-2012
20120136227ORGANIC LIGHT EMITTING DIODES AND PHOTODETECTORS - A system and method for determining physiological parameters of a patient based on light transmitted through the patient. The light may be transmitted via a broadband light source and received by a detector. The light may be selectively detected at a detector. Based on material characteristic of the detector, specific wavelengths of light are detected by the detector for use in monitoring the physiological parameters of the patient.05-31-2012
20120136228METHOD OF INFORMING SENSOR MOUNTING TIME PERIOD AND APPARATUS FOR INFORMING SENSOR MOUNTING TIME PERIOD - The sensor mounting time period informing apparatus is provided with the detecting part, the timer part, the discriminating part, and the informing part. The detecting part detects whether or not the sensor is mounted on the living body for measuring biological information. The timer part counts the elapsed time period during which the sensor is continuously mounted on the living body based on the detection results of the detecting part. The discriminating part discriminates whether or not the elapsed time has reached the specified standard time. The informing part issues a notification when the elapsed time has reached the standard time based on the discrimination result of the discriminating part.05-31-2012
20120136226Pulse Oximetry For Determining Heart Rate Variability As A Measure Of Susceptibility To Stress - Embodiments of the present disclosure relate to systems and methods for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include methods and systems for determining or predicting the presence and/or severity of stress in a patient based on heart rate variability. The information relating to stress may be used as part of a broader physiological assessment.05-31-2012
20090240126Method And System For Classification of Photo-Plethysmographically Detected Respiratory Effort - Embodiments disclosed herein may include systems and methods for determining a patient's respiratory effort and blood oxygen saturation based on data acquired from a pulse oximetry sensor and analyzing the parameters in conjunction with each other. For example, the respiratory effort may be determined based on a photo-plethysmographic waveform generated from light attenuation detected by the sensor, and the blood oxygen saturation may be a pulse-based estimate of arterial blood oxygen saturation determined from the detected attenuation. Analysis of the parameters may enable detection and classification of apnea (e.g., obstructive or central) or another underlying cause for respiratory instability. Furthermore, the measured respiratory effort may be compared to respiratory effort supplied by a ventilator to ensure proper sensor placement before enabling automatic adjustment of ventilator settings.09-24-2009
20100298677WIRELESS RING-TYPE PHYSICAL DETECTOR - A wireless ring-type physical detector includes a ring, a sensor unit, an amplifier unit, a demultiplexer unit, a processor unit and a wireless transmission unit. The sensor unit uses a light signal to detect the blood oxygen saturation, the heartbeat and continuous blood pressure. The detected light signal is processed by each unit to get a physical parameter which is valuable for a clinic test.11-25-2010
20120179012Data Analytics System - The invention includes a system and processes to gather and analyze data to monitor, track, and provide care. The major subsystems of the invention include the Medical Digital Assistant (“MDA”), Server, Monitoring Devices, Dispensing Devices, Server, Dashboard, and Application Software. The invention includes the method for conducting data acquisition, monitoring, analysis, and reporting to diagnose and treat medical conditions such as diagnosing and treating specific medical conditions such as fertility and congestive heart failure.07-12-2012
20120179011OPTICAL SENSORS FOR USE IN VITAL SIGN MONITORING - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.07-12-2012
20080262327Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory - The apparatus for evaluating biological function of the present invention has living body probes 10-23-2008
20120253154BIOMETRIC IDENTIFICATION SYSTEM USING PULSE WAVEFORM - A method and system for biometric identity confirmation is based on the pulse wave of a subject. During an initial enrollment mode, pulse wave data for a known subject are used to generate subject characterization data for the known subject. During a subsequent operational mode, pulse wave data for a test subject are analyzed using the subject characterization data to confirm whether the identity of the test subject matches the known subject. The subject characterization data can be a probability density in a phase space in which at least two quasi-periodic variables based on the pulse wave (e.g., blood pressure and volume time-series data) are correlated.10-04-2012
20120253153MULTIPLEXED PHOTODETECTOR ARRAY FOR OPTICAL MEDICAL SENSORS - The present disclosure relates generally to medical devices and, more particularly, to optical medical sensors used for sensing physiological characteristics of a patient. In one embodiment, a system includes a physiological sensor having a photodetector array with a plurality of photodetectors configured to receive light from patient tissue. The physiological sensor also includes a multiplexor configured select and output a signal from the photodetector array. The physiological sensor may also include a signal analyzer configured to determine the signal quality for each of the output signals of the photodetector array and select an output signal, based on the signal quality determination, for the calculation of a physiological parameter of the patient. In another embodiment, a system includes a pulse oximetry sensor having a multiplexed array of photodetectors configured to receive light from patient tissue. The system also includes a pulse oximetry monitor having a multiplexor driver to control the multiplexed array of photodetectors as well as a processor configured to control the multiplexor driver and receive the output signals from the array of photodetectors. The processor is also configured to determine the signal quality of each of the output signals from the array of photodetectors, select an output signal based on the signal quality determination, and use the selected signal to calculate a physiological parameter of a patient.10-04-2012
20120220843SIGNAL PROCESSING APPARATUS - The present invention involves a method and an apparatus for analyzing measured signals, including the determination of a measurement of oxygen saturation and respiration rate in the measured signals during a calculation of a physiological parameter of a monitored patient. Use of this invention is described in particular detail with respect to oximetry-based measurements but extends to other types of measurements.08-30-2012
20120190949ALARM SYSTEM THAT PROCESSES BOTH MOTION AND VITAL SIGNS USING SPECIFIC HEURISTIC RULES AND THRESHOLDS - The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms/alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.07-26-2012
20120190948MONITORING DEVICE AND METHOD FOR ESTIMATING BLOOD CONSTITUENT CONCENTRATION FOR TISSUES WITH LOW PERFUSION - The present disclosure relates to a method for estimating blood constituent concentration of a user under low perfusion conditions using a spectrophotometry-based monitoring device; the method comprising: measuring a plurality of photoplethysmographic (PPG) signals; measuring a cardio-synchronous (CV) signal; detecting an instantaneous heart rate and determining a heart rate variability from the CV signal; selecting reliable projected PPG signals; estimating a value of said blood constituent concentration from the magnitude of said reliable projected PPG signals. The disclosed method requires diminished computational load compared to conventional methods based on frequency domain approach as FFT or DCT. The disclosure also pertains to a monitoring device for estimating blood constituent concentration in tissue under low perfusion of a user.07-26-2012
20120259190DETECTION OF OXIMETRY SENSOR SITES BASED ON WAVEFORM CHARACTERISTICS - In accordance with an embodiment of the present technique, there is provided methods and systems for detecting the location of a sensor and determining calibration algorithms and/or coefficients for calculation of physiological parameters based on the detected location. An exemplary embodiment includes receiving a signal corresponding to absorption of at least one wavelength of light by a patient's tissue, generating a plethysmographic waveform from the signal, determining an identifying characteristic of the plethysmographic waveform, and determining a location of the sensor based on a comparison of the identifying characteristic with at least one defined criterion.10-11-2012
20120259189CARDIOVASCULAR INDEX ESTIMATION METHODS - New algorithms to estimate cardiovascular indices by analysis of the arterial blood pressure (ABP) signal. The invention comprises recording and identification of cardiovascular descriptors (including ABP signal, diastolic pressure, systolic pressure, pulse pressure, and end systole), calculation of cardiovascular system parameters, and calculation of aortic blood flow, stroke volume, cardiac output, total peripheral resistance, and characteristic time constant.10-11-2012
20090018422VITAL SIGN MONITOR FOR CUFFLESSLY MEASURING BLOOD PRESSURE USING A PULSE TRANSIT TIME CORRECTED FOR VASCULAR INDEX - A method and apparatus for measuring a patient's blood pressure featuring the following steps: 1) measuring a time-dependent optical waveform with an optical sensor; 2) measuring a time-dependent electrical signal with an electrical sensor; 3) estimating the patient's arterial properties using the optical waveform; 4) determining a pulse transit time (PTT) from the time-dependent electrical signal and the time-dependent optical waveform; and 5) calculating a blood pressure value using a mathematical model that includes the PTT and the patient's arterial properties.01-15-2009
20090018421PHYSIOLOGICAL STRESS DETECTOR DEVICE AND SYSTEM - A non-invasive device and a system for monitoring and measuring blood saturation and heart pulse rate of a baby or infant is provided. The device includes a housing unit configured to be integrated within apparatus, which is attachable proximate to a limb being measured. The housing unit includes at least one light source, providing light directed toward the surface of the limb, a light detector spaced apart from the light source and sensitive to intensity levels of the light reflected from the limb and a processing unit for processing the intensity signals received from the light detector for producing output signals. The device may determine the level of the blood constituent and may also use this level for monitoring and/or to activate an alarm when the level falls outside a predetermined range.01-15-2009
20120232366ALARM SUSPEND SYSTEM - An alarm suspend system utilizes an alarm trigger responsive to physiological parameters and corresponding limits on those parameters. The parameters are associated with both fast and slow treatment times corresponding to length of time it takes for a person to respond to medical treatment for out-of-limit parameter measurements. Audible and visual alarms respond to the alarm trigger. An alarm silence button is pressed to silence the audible alarm for a predetermined suspend time. The audible alarm is activated after the suspend time has lapsed. Longer suspend times are associated with slow treatment parameters and shorter suspend times are associated with fast treatment parameters.09-13-2012
20100324385BODY-WORN PULSE OXIMETER - The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.12-23-2010
20120323095METHOD FOR DETECTION OF ABERRANT TISSUE SPECTRA - A method is provided for determining contact of a sensor with a patient's tissue. The method comprises comparing the intensity of detected light at a first wavelength to a threshold, wherein the first wavelength is not used to determine a physiological characteristic of the patient, and determining if the sensor is in contact with the patient's tissue based on the comparison. In addition, a method is provided for determining the amount of light shunting during operation of the sensor. The method comprises comparing the intensity of detected light at a first wavelength to a threshold, wherein the first wavelength is not used to determine a physiological characteristic of the patient, and determining the amount of light shunting based on the comparison.12-20-2012
20120271131MUCOSAL SENSOR FOR THE ASSESSMENT OF TISSUE AND BLOOD CONSTITUENTS AND TECHNIQUE FOR USING THE SAME - A sensor for physiological constituent detection may be adapted to include a mucoadhesive. A sensor is provided that is appropriate for use on mucosal tissue. The mucoadhesive provides a mechanism for holding the sensor on the mucous membrane in order to measure physiological constituent levels in the tissue and blood.10-25-2012
20120271130METHOD AND APPARATUS FOR DETERMINING AN OXYGEN DESATURATION EVENT - A method and apparatus for determining an index indicative of a subject's response to an oxygen desaturation condition is provided. The method includes the steps of: a) providing a NIRS tissue sensor, a pulse oximetry sensor, and a processor in communication with the NIRS tissue sensor and the pulse oximetry sensor; b) sensing the subject's tissue using the NIRS tissue sensor and producing first signals; c) sensing the subject's tissue using the pulse oximetry sensor and producing second signals; d) processing the first signals to determine a change in tissue oxygen saturation values, processing the second signals to determine a change in arterial oxygen saturation values; and e) determining the index indicative of the subject's response to the oxygen desaturation condition using the change in tissue oxygen saturation values and the change in arterial oxygen saturation values.10-25-2012
20110237913METHOD AND APPARATUS FOR DETERMINING AT LEAST ONE EVALUATION PARAMETER OF A BLOOD SAMPLE - The present invention provides a method for determining at least one evaluation parameter of a blood sample, comprising the following steps: providing (S09-29-2011
20120277561SYSTEM AND METHOD FOR DETECTION OF VENOUS PULSATION - In accordance with an embodiment of the present technique, there is provided methods and systems for detecting the presence of venous pulsation by adjusting the sensitivity of a detection algorithm based on a sensor characteristic and/or notifying a caregiver of the presence of venous pulsation by ceasing display of physiological parameters. An exemplary embodiment includes receiving one or more signals from a sensor, the one or more signals corresponding to absorption of light in a patient's tissue; calculating one or more physiological parameters of the patient based on the one or more signals; displaying the patient's physiological parameters; enabling detection of venous pulsation with variable sensitivity based on a location of the sensor; and suspending or terminating the display of the one or more of the patient's physiological parameters when venous pulsation is detected.11-01-2012
20120277560MEDICAL SENSOR FOR REDUCING MOTION ARTIFACTS AND TECHNIQUE FOR USING THE SAME - A sensor may be adapted to reduce motion artifacts by damping the effects of outside forces and sensor motion. A sensor is provided with a motion damping structure adapted to reduce the effect of motion of a sensor emitter and/or detector. Further, a method of damping outside forces and sensor motion is also provided.11-01-2012
20120277559Apparatus for Measuring Blood Parameters - Apparatus for measuring blood parameters such as chromophore, for example haemoglobin, concentration and blood flow detects light scattered from tissue surface (11-01-2012
20120277558Apparatus and Method for Orthogonalizing Signals Detecting Blood Oxygenation and Blood Volume - A filter for detecting changes in skin color. The filter includes a filter material capable of filtering a frequency range and configured to orthogonalize an overall red response and an overall blue response in response to a spectral power distribution of a given light condition. The overall red response is based on a first plurality of spectral responses for a first human perceived chromatic channel used primarily for detecting blood oxygenation in a human. The overall blue response is based on a second plurality of spectral responses for a second human perceived chromatic channel used primarily for detecting blood volume.11-01-2012
20110245642ELECTRONIC ENDOSCOPE SYSTEM - An electronic endoscope system includes a light source device, an electronic endoscope for sequentially illuminating a subject tissue containing a blood vessel inside a body cavity with the light, and sequentially outputting image data of wavelength bands of the subject tissue corresponding to the different wavelength bands of received reflected light, a calculator for calculating a blood vessel characteristics amount in a subject tissue from the image data, a calculator for calculating an oxygen saturation level in the blood vessel from the image data, an image producer for producing a reference image of the subject tissue from the image data, an extractor for extracting a region of interest from the reference image, a producer for producing an enhanced image, and a display for displaying the enhanced image.10-06-2011
20120330117Hemodynamic Reserve Monitor and Hemodialysis Control - Tools and techniques for estimating a probability that a patient is bleeding or has sustained intravascular volume loss (e.g., due to hemodialysis or dehydration) and/or to estimate a patient's current hemodynamic reserve index, track the patient's hemodynamic reserve index over time, and/or predict a patient's hemodynamic reserve index in the future. Tools and techniques for estimating and/or predicting a patient's dehydration state. Tools and techniques for controlling a hemodialysis machine based on the patient's estimated and/or predicted hemodynamic reserve index.12-27-2012
20120330118CENTRALIZED HOSPITAL MONITORING SYSTEM FOR AUTOMATICALLY DETECTING UPPER AIRWAY INSTABILITY AND FOR PREVENTING AND ABORTING ADVERSE DRUG REACTIONS - A system and method for the automatic diagnosis of obstructive sleep apnea in a centralized hospital critical care monitoring system for the monitoring of a plurality of patients in at least one of a critical care, step down, and cardiac ward by telemetry. The system includes a central processor having a display, and a plurality of telemetry units for mounting with patients, each of the telemetry units has a plurality of sensors for connection with each patient, the telemetry unit is capable of the transmission of multiple signals derived from the sensors to the central processor, in one preferred embodiment the method comprising steps of programming the system to analyze the signals and to automatically identify the presence and severity of obstructive sleep apnea and to provide an indication of the identification.12-27-2012
20120101350Personal Health Monitoring Device - The present invention provides a system and method for monitoring personal health of the user. The method includes detecting a plurality of physiological parameters. The plurality of physiological parameters are collected and analyzed. Afterwards, the plurality of analyzed physiological parameters are transferred at pre defined time interval to at least one computing device for monitoring the personal health of the user.04-26-2012
20130012792SYSTEMS AND METHODS FOR IDENTIFYING PULSE RATES - According to embodiments, techniques for using continuous wavelet transforms and spectral transforms to identify pulse rates from a photoplethysmographic (PPG) signal are disclosed. According to embodiments, candidate pulse rates of the PPG signal may be identified from a wavelet transformed PPG signal and a spectral transformed PPG signal. A pulse rate may be determined from the candidate pulse rates by selecting one of the candidate pulse rates or by combining the candidate pulse rates. According to embodiments, a spectral transform of a PPG signal may be performed to identify a frequency region associated with a pulse rate of the PPG signal. A continuous wavelet transform of the PPG signal at a scale corresponding to the identified frequency region may be performed to determine a pulse rate from the wavelet transformed signal.01-10-2013
20120150003System Non-invasive Cardiac Output Determination - A system determines cardiac output and stroke volume by using non-invasive oximetric signals, such as SPO2 data and waveform, to determine blood flow quantitatively. A non-invasive system determines cardiac output or stroke volume. The system includes an input processor for receiving signal data representing oxygen content of blood of a patient at a particular anatomical location. A computation processor uses the received signal data in calculating a heart stroke volume of the patient comprising volume of blood transferred through the blood vessel in a heart cycle, in response to, a blood volume derived in response to oxygen content of patient blood and at least one factor representing reduction in blood flow volume from a patient heart to the particular anatomical location. An output processor provides data representing the calculated heart stroke volume to a destination device.06-14-2012
20130018241CAPILLARY REFILL TIME DIAGNOSTIC APPARATUS AND METHODS - An apparatus for measuring capillary refill time has a measurement module containing at least two radiation sources and at least one detector configured to detect radiation from each source that interacts with and is received from a measurement region of a patient or subject. One radiation source may be characterized by a wavelength that is absorbed substantially equally by oxyhemoglobin and deoxyhemoglobin. The other radiation source may be substantially unaffected by the presence or absence of blood in the measurement region. The measurement module may be applied against a measurement region of a patient for a first time period, and the released from the measurement region for a second time period, and detected signals processed to quantitatively evaluate capillary refill time.01-17-2013
20130172702Method of Assessing Blood Volume Using Photoelectric Plethysmography - A method and system for assessing blood volume within a subject includes generating a cardiovascular waveform representing physiological characteristics of a subject and determining blood volume of the subject by analyzing the cardiovascular waveform. The step of analyzing includes generating a first trace of the per heart-beat maximums of the cardiovascular waveform, which is representative of the systolic pressure upon the cardiovascular signal, generating a second trace of the per heart-beat minimums of the cardiovascular waveform, which is representative of the diastolic pressure upon the cardiovascular signal, and comparing the respective first trace and the second trace to generate an estimate of relative blood volume within the subject. In accordance with an alternate method of analyzing harmonic analysis is applied to the cardiovascular waveform, extracting a frequency signal created by ventilation and applying the extracted frequency signal in determining blood volume of the subject.07-04-2013
20130178725STACKED ADHESIVE OPTICAL SENSOR - An optical sensor having a cover layer, an emitter disposed on a first side of the cover, a detector disposed on the first side of said cover, and a plurality of stacked independent adhesive layers disposed on the same first side of the cover, wherein the top most exposed adhesive layer is attached to a patient's skin. Thus, when the sensor is removed to perform a site check of the tissue location, one of the adhesive layers may also be removed and discarded, exposing a fresh adhesive surface below for re-attachment to a patient's skin. The independent pieces of the adhesive layers can be serially used to extend the useful life of the product.07-11-2013
20080221419METHOD AND SYSTEM FOR MONITORING A HEALTH CONDITION - A system and method for monitoring a health condition are disclosed. The system includes a patient management application, a data store and a monitoring device. The monitoring device includes an optical sensor, a Doppler sensor, and a computing device adapted to provide health parameter values including oxygen saturation of the blood, blood flow, blood pressure, heart rate, and cardiac output.09-11-2008
20080221418NONINVASIVE MULTI-PARAMETER PATIENT MONITOR - Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation, methemoglobin saturation, total hemoglobin, arterial oxygen saturation, fractional arterial oxygen saturation, or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate. In an embodiment, the monitor advantageously includes a mode indicator to inform a user as to which parameter measurement would be displayed in one or more display areas upon actuation of a mode selector.09-11-2008
20080221417System and method for detection of venous pulsation - In accordance with an embodiment of the present technique, there is provided methods and systems for detecting the presence of venous pulsation by adjusting the sensitivity of a detection algorithm based on a sensor characteristic and/or notifying a caregiver of the presence of venous pulsation by ceasing display of physiological parameters. An exemplary embodiment includes receiving one or more signals from a sensor, the one or more signals corresponding to absorption of light in a patient's tissue; calculating one or more physiological parameters of the patient based on the one or more signals; displaying the patient's physiological parameters; enabling detection of venous pulsation with variable sensitivity based on a location of the sensor; and suspending or terminating the display of the one or more of the patient's physiological parameters when venous pulsation is detected.09-11-2008
20130204106Cloud-Based Monitoring of Medical Devices - A system for monitoring the use of a home-based medical apparatus providing medical therapy to a patient incorporates communication technology to permit communication from the operated component of the medical apparatus via a cellular network to a Cloud storage site. The operated medical apparatus can report any operational function to the Cloud storage site, which can be accessed by appropriate medical professionals or caregivers by contacting the Cloud storage site through a cellular network. If the medical apparatus is properly configured, the medical professional could change certain operational functions of the medical apparatus through the Cloud by communicating with the medical apparatus directly. Alternatively, a medical caregiver can visit the home-based patient to modify the operation of the medical apparatus. By limiting the number of visits needed to maintain proper operation of the medical apparatus, a medical caregiver can provide services to a larger number of patients.08-08-2013
20120253156METHOD AND APPARATUS FOR PROCESSING PHOTOPLETHYMOGRAPH SIGNALS - The disclosure relates to the field a method of and apparatus for processing a photoplethysmograph signal to support the analysis of photoplethysmograph signals in clinical scenarios. A derivative of a photoplethysmograph signal acquired over a time period is calculated. The derivative of the acquired photoplethysmograph signal with respect to time is analyzed and displayed in an x-y diagram as a function of the acquired photoplethysmograph signal or vice versa.10-04-2012
20130096403APPARATUS AND METHOD FOR IMPROVING TRAINING THRESHOLD - The present invention generally relates to a non-invasive biosensor device configured to measure physiological parameters of a subject. In one aspect, a method of determining a training threshold of a subject is provided. The method includes the step of detecting an oxygenation parameter of a tissue of the subject using Near InfraRed Spectroscopy (NIRS). The method further includes the step of processing the oxygenation parameter. Additionally, the method includes the step of determining the training threshold of the subject using the result of the processing. In another aspect, a biosensor device for determining a lactate threshold of a subject during exercise is provided. In a further aspect, a biosensor device for measuring parameters of a subject during exercise is provided.04-18-2013
20130096402APPARATUS AND METHOD FOR PREDICTION OF RAPID SYMPTOMATIC BLOOD PRESSURE DECREASE - A monitoring arrangement 04-18-2013
20130096404METHOD AND SYSTEM FOR SLEEP DISTURBANCE ANALYSIS - A system for automatic sleep test analysis, the system comprising: a pulse oximeter for continuously monitoring oxygen saturation values of a patient; a capnograph for continuously monitoring exhaled carbon dioxide (C02) values of the patient; and a computing unit configured to compute a continuous integrated sleep score based on a sequential analysis of the oxygen saturation values and the exhaled C02 values, wherein the continuous integrated sleep score is indicative of the patient's breathing-related sleep quality during at least a portion of the sleep test.04-18-2013
20130102864PORTABLE PULSEOXIMETER FOR A DIRECT AND IMMEDIATE AUTOMATED EVALUATION OF THE CARDIAC RHYTHM (REGULARITY) AND RELATED METHOD - A method and system of patient monitoring, the system performs short term acquisition of the plethysmographic waveform of a patient from a portable blood oxygenation level monitoring device and establishes whether the patient has an episode of Atrial Fibrillation (AF) or has a Normal Sinus Rhythm (NSR) or any other not-specific rhythm irregularity. Such classification is implemented directly in the device, suitable for at home use, and the result of the classification is displayed automatically using a three-state, traffic-light indicator.04-25-2013
20130131474REMOTE CONTROLLER AND DISPLAY SYSTEM - There is provided a remote controller including a plurality of press buttons, an optical finger mouse and a transmission interface. The press buttons are configured to trigger a control signal. The optical finger mouse is configured to detect a physiological characteristic and a displacement. The transmission interface is configured to output the control signal, the physiological characteristic and the displacement to a display device. There is further provided a display system.05-23-2013
20130131476OXIMETRIC PLETHYSMOGRAPHY - Systems and methods for estimating a plethysmograph waveform are provided. In some aspects, a system includes a detector module configured to receive, from a single channel, an oximeter output signal indicative of light absorption in a patient. The oximeter output signal includes infrared light components and red light components. The system also includes a processing module configured to determine an indicator of a ratio of (i) an indicator of at least one of the infrared light components to (ii) an indicator of at least one of the red light components. The processing module is configured to determine, based on the indicator of the ratio, an indicator of a plethysmograph waveform of the patient.05-23-2013
20130131473OPTICAL DISTANCE MEASUREMENT SYSTEM AND OPERATION METHOD THEREOF - There is provided an operation method of an optical distance measurement system including a first mode and a second mode. The first mode is configured to detect a finger distance. The second mode is configured to detect a physiological characteristic, wherein the optical distance measurement system transfers from the first mode to the second mode when the finger distance is within a predetermined range. There is further provided an optical distance measurement system.05-23-2013
20130131475PHOTOPLETHYSMOGRAPHY DEVICE AND METHOD - A system and method for measuring one or more light-absorption related blood analyte concentration parameters of a mammalian subject, is disclosed. In some embodiments, the system comprises: a) a photoplethysmography (PPG) device configured to effect a PPG measurement by illuminating skin of the subject with at least two distinct wavelengths of light and determining relative absorbance at each of the wavelengths; b) a dynamic light scattering measurement (DLS) device configured to effect a DLS measurement of the subject to rheologically measure a pulse parameter of the subject; and c) electronic circuitry configured to: i) temporally correlating the results of the PPG and DLS measurements; and ii) accordance with the temporal correlation between the PPG and DLS measurements, assessing value(s) of the one or more light-absorption related blood analyte concentration parameter(s).05-23-2013
20130144140MULTI-MODAL IMAGING OF BLOOD FLOW - The application features methods, devices, and systems for measuring blood flow in a subject. The computer-implemented methods include receiving functional magnetic resonance imaging (fMRI) data that provides information on at least one of volume or oxygenation of blood at one or more locations in a body over a first predetermined length of time. The methods also include receiving near-infrared spectroscopic (NIRS) imaging or measurement data representing at least one of blood concentration or oxygenation at a first portion of the body over a second predetermined length of time. The methods further include deriving, from the fMRI data corresponding to a second portion of the body, a time varying data set representing changes in blood oxygenation or volume or both blood oxygenation and volume at the second portion over the first predetermined length of time and determining, by a computing device, a time delay and a value of a similarity metric corresponding to a part of the spectroscopic imaging data that most closely matches the time varying data set. The time delay represents a difference between a first time in which blood flows from a third portion in the body to the first portion and a second time in which blood flows to the second portion from the third portion. The value of the similarity metric represents an amount of blood at the second portion. An estimate of a characteristic of at least one of blood flow or blood volume in the second portion at a given time is determined based on the time delay and the value of the similarity metric.06-06-2013
20110245641Monitor With Multi-Position Base - According to various embodiments, a medical monitoring device includes a monitor component and a base component. The base component has one or more connectors on a facing of the base component. The monitor component is capable of rotating with respect to the base component. In various embodiments, the monitor component may be above the base component.10-06-2011
20110275915Arm and wrist cuffs and pulse oximeter clip with conductive material for electrodes on small medical home monitors - This invention is an improvement to medical devices used for home and remote monitoring. The improvements include a coated fabric electrode used for arm and wristbands and for pulse oximeter clips. The electrode is comprised of the hook portion of hook and loop material that is coated with material made from a noble metal such as silver.11-10-2011
20130150687Apparatus and program for evaluating biological function - An apparatus and a program are provided which are capable of simultaneously measuring, evaluating, imaging and displaying the biological function of sites with different biological functions, such as the brain and the muscle, different parts of the brain or different muscle locations, using near-infrared spectroscopy. In an apparatus for evaluating biological function K, physiological indices, including parameters derived from changes in deoxyhemoglobin concentration and changes in oxyhemoglobin concentration, are calculated by a calculating part of a controller. To measure simultaneously, evaluate, image and display the biological functions of sites with different biological function, such as the brain and the muscle, different parts of the brain or different muscle locations, these physiological indices from different sites of the living body are adjusted in such a way that they can be compared with each other by the calculating part and displayed by a display part.06-13-2013
20100298676Estimating Transform Values Using Signal Estimates - According to embodiments, estimated values for a signal transform may be generated using estimated values for the signal. Signal parameters may then be determined based on the estimated signal transform. A first portion of a signal may be obtained. A second portion of the signal may be estimated. The second portion of the signal may correspond to a portion of the that is unknown, that is not yet available and/or that is obscured by noise and/or artifacts. A transform (e.g., a continuous wavelet transform) of both of the signal portions may be performed. One or more parameters corresponding to the signal may then be determined from transformed signal.11-25-2010
20100317947Tissue Oxygenation Monitoring in Heart Failure - A medical device system and associated method control the delivery of a therapy to a patient. The system includes an activity sensor and detects a change in activity level of the patient. The system further include an optical sensor to sense signal corresponding to tissue light attenuation. The system computes a tissue oxygenation measurement in response to detecting a change in activity level. A parameter controlling delivery of the therapy is adjusted in response to detecting the decreased tissue oxygenation.12-16-2010
20100317946Shock Reduction Using Absolute Calibrated Tissue Oxygen Saturation and Total Hemoglobin Volume Fraction - An implantable medical device for detecting and treating an arrhythmia includes an optical sensor adapted for positioning adjacent to a blood-perfused tissue volume. In one embodiment for controlling arrhythmia therapies delivered by the device, the optical sensor is controlled to emit light in response to detecting an arrhythmia, detect light scattered by the volume of blood perfused tissue including measuring an optical sensor output signal corresponding to the intensity of scattered light for at least four spaced-apart wavelengths, and compute a volume-independent measure of tissue oxygen saturation from the detected light. The hemodynamic status of the arrhythmia is detected in response to the measure of tissue oxygen saturation.12-16-2010
20100317945 CUFF FOR DETERMINING A PHYSIOLOGICAL PARAMETER - The invention relates to a cuff (12-16-2010
20120283535METHOD AND SYSTEM FOR PULSE MEASUREMENT - A method and system for determining a person's heart pulse rate in noisy environments is provided. The method of determining a person's heart pulse rate includes radiating first and second wavelengths of light towards a tissue, measuring and storing a first and second set of parameter values from the signals reflected back from the first and second wavelengths respectively. The first set of parameter values represents a first signal corresponding to a combination of the heart pulse rate and extraneous noise and the second set of parameter values represents a second signal mainly comprising extraneous noise. The heart pulse rate is obtained by deducting the second set of parameter values from the first set of parameter values.11-08-2012
20120283534DUAL MODE TEMPERATURE TRANSDUCER WITH OXYGEN SATURATION SENSOR - Apparatus for detecting intracranial temperature and blood oxygenation includes a transducer having a working surface for placement against a patient's cranium. The transducer forms a microwave antenna having walls defining an aperture having a pair of opposite broader boundaries and a pair of opposite narrower boundaries at the working surface. The antenna is tuned to a frequency which produces a first output signal indicative of heat emanating from the cranium. An oxygen saturation sensor sharing that aperture includes a radiation emitter located at one of narrower boundaries which directs electromagnetic radiation across the aperture to a radiation detector at the other of the narrower boundaries and which produces a corresponding second output signal. A control unit includes a display and a processor for processing the signals to calculate an intracranial temperature and an oxygen saturation value for display by the control unit.11-08-2012
20120283536Signal Procesing Systems and Methods Using Basis Functions and Wavelet Transforms - According to embodiments, systems and methods are provided that use continuous wavelet transforms and basis functions to provide an optimized system for the determination of physiological information. In an embodiment, the basis functions may be used to refine an area of interest in the signal in frequency or in time, and the continuous wavelet transform may be used to identify a maxima ridge in the scalogram at scales with characteristic frequencies proximal to the frequency or frequencies of interest. In another embodiment, a wavelet transform may be used to identify regions of a signal with the morphology of interest while basis functions may be used to focus on these regions to determine or filter information of interest. In yet another embodiment, basis functions and continuous wavelet transforms may be used concurrently and their results combined to form optimized information or a confidence metric for determined physiological information.11-08-2012
20130158375Alarm Processor for Detection of Adverse Hemodynamic Effects of Cardiac Arrhythmia - The disclosed embodiments relate to an apparatus and method for providing a warning. In one example, an apparatus includes a sensor, which is configured to be coupled to a body of a patient and to output a photoplethysmograph signal, which is indicative of pulse waveforms in the body. The apparatus also includes a processor, which is coupled to process the photoplethysmograph signal so as to identify sequential pulse waveforms in the signal, the processor detecting a cardiac arrhythmia based on identifying a shape feature of the pulse waveform occurring simultaneously with a change in rate or rhythm of the pulse waveforms or an electrocardiographic waveform, and to output a warning responsive to the simultaneous occurrence.06-20-2013
20130123593OXIMETER AMBIENT LIGHT CANCELLATION - A pulse oximeter method and apparatus which provides (1) a notch filter at a distance between a modulation frequency and a common multiple of commonly used power line frequencies (50, 60, 100 and 120) and also (2) a demodulation frequency greater than a highest pulse rate of a person and lower than any harmonic of 50, 60, 100 or 120 Hz, to filter ambient light interference, while choosing an optimum demodulation frequency that avoids interference from the notch filter or from harmonics of the line interference. Also, ambient light for any low frequency interference, such as power line interference, is measured both before and after each of the light emitter wavelengths and the average of the ambient light is then subtracted from the detected signal.05-16-2013
20110313263METHODA AND DEVICES FOR RELIEVING STRESS - Easy to use, cost-effective methods and devices for evaluating and treating stress and thereby disorders caused or exacerbated by stress are provided. More particularly methods and devices for identifying RSA waves during respiration which provide a subject with real-time RSA wave information are provided. These methods and devices also can be used to identify drop points in RSA waves. Such methods and devices provide subjects with the ability to maintain parasympathetic outflow and thereby prevent and/or reduce levels of stress.12-22-2011
20130190581AUTOMATED CCHD SCREENING AND DETECTION - Automated critical congenital heart defect (“CCHD”) screening systems and processes are described. A caregiver may be guided to use a single or dual sensor pulse oximeter to obtain pre- and post-ductal blood oxygenation measurements. A delta of the measurements indicates the possible existence or nonexistence of a CCHD. Errors in the measurements are reduced by a configurable measurement confidence threshold based on, for example, a perfusion index. Measurement data may be stored and retrieved from a remote data processing center for repeated screenings.07-25-2013
20120016219PULSE OXIMETER - The present invention provides a pulse oximeter of the portable type, which is possible to carry around and to use widely regardless of the adult, the infant, the newborn baby, and which can keep the finger still for performing the precise measurement. The pulse oximeter 01-19-2012
20120029330Cable cross talk suppression - Systems, methods, and devices are provided for suppressing cross-talk noise due to capacitive and/or inductive coupling in a medical sensor signal. For example, an embodiment of a patient monitor may include driving circuitry, an amplifier, and transient current discharge circuitry. When the driving circuitry drives an emitter to emit light into a patient, a detector may detect a portion of the light that passes through the patient, generating a detector signal. Cross-talk between the emitter driving signals and the detector signal may generate interference in the form of a transient current in the detector signal. Before the amplifier receives the detector signal, transient current discharge circuitry may discharge the transient current.02-02-2012
20130197330PHYSIOLOGICAL MONITOR - A patient monitor has multiple sensors adapted to attach to tissue sites of a living subject. The sensors generate sensor signals that are responsive to at least two wavelengths of optical radiation after attenuation by pulsatile blood within the tissue sites.08-01-2013
20130197329Systems And Methods For Estimating Values Of A Continuous Wavelet Transform - According to embodiments, techniques for estimating scalogram energy values in a wedge region of a scalogram are disclosed. A pulse oximetry system including a sensor or probe may be used to receive a photoplethysmograph (PPG) signal from a patient or subject. A scalogram, corresponding to the obtained PPG signal, may be determined. In an arrangement, energy values in the wedge region of the scalogram may be estimated by calculating a set of estimation locations in the wedge region and estimating scalogram energy values at each location. In an arrangement, scalogram energy values may be estimated based on an estimation scheme and by combining scalogram values in a vicinity region. In an arrangement, the vicinity region may include energy values in a resolved region of the scalogram and previously estimated energy values in the wedge region of the scalogram. In an arrangement, one or more signal parameters may be determined based on the resolved and estimated values of the scalogram.08-01-2013
20130197328SIGNAL PROCESSING APPARATUS AND METHOD - A method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, a transformation is used to evaluate a ratio of the two measured signals in order to find appropriate coefficients. The measured signals are then fed into a signal scrubber which uses the coefficients to remove the unwanted portions. The signal scrubbing is performed in either the time domain or in the frequency domain. The method and apparatus are particularly advantageous to blood oximetry and pulserate measurements. In another embodiment, an estimate of the pulserate is obtained by applying a set of rules to a spectral transform of the scrubbed signal. In another embodiment, an estimate of the pulserate is obtained by transforming the scrubbed signal from a first spectral domain into a second spectral domain. The pulserate is found by identifying the largest spectral peak in the second spectral domain.08-01-2013
20120095306SENSING GAS BUBBLES IN A LIVING BODY - A method of detecting gas bubbles in a living body, comprising transmitting at least one original electromagnetic signal to a body portion; detecting a signal modulated by a flow of blood in said body portion; and analyzing a perturbation in said signal to determine at least one of an existence and a property of a bubble in said blood flow.04-19-2012
20130211216CAPILLARY REFILL TIME DIAGNOSTIC APPARATUS AND METHODS - An apparatus for measuring capillary refill time has a measurement module containing at least two radiation sources and at least one detector configured to detect radiation from each source that interacts with and is received from a measurement region of a patient or subject. One radiation source may be characterized by a wavelength that is absorbed substantially equally by oxyhemoglobin and deoxyhemoglobin. The other radiation source may be substantially unaffected by the presence or absence of blood in the measurement region. The measurement module may be applied against a measurement region of a patient for a first time period, and the released from the measurement region for a second time period, and detected signals processed to quantitatively evaluate capillary refill time.08-15-2013

Patent applications in class And other cardiovascular parameters

Patent applications in all subclasses And other cardiovascular parameters