Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


To produce aromatic

Subclass of:

585 - Chemistry of hydrocarbon compounds

585310000 - PLURAL SERIAL DIVERSE SYNTHESES

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
585319000 To produce aromatic 89
20110004037Use of Mixed Activity Dehydrogenation Catalyst Following Oxidative Reheat - Methods are disclosed for the dehydrogenation of feed streams, such as in the manufacture of styrene from ethylbenzene, using a catalyst bed having catalyst with differing activities. In particular, the use of upstream and downstream catalyst beds of relatively low and high activities, respectively, can reduce the production of unwanted byproducts, especially in styrene production processes employing an oxidative reheat step (oxidation zone) prior to ethylbenzene dehydrogenation. The methods allow the maximum temperature in the oxidation zone to be decreased, thereby reducing the formation of unwanted oxygenated byproducts (e.g., phenol).01-06-2011
20130165719ENHANCED AROMATICS PRODUCTION BY LOW PRESSURE END POINT REDUCTION AND SELECTIVE HYDROGENATION AND HYDRODEALKYLATION - A reforming process includes an endpoint reduction zone for converting C06-27-2013
20110301392VARIATION OF TIN IMPREGNATION OF A CATALYST FOR ALKANE DEHYDROGENATION - A catalyst for the dehydrogenation of alkanes or alkyl substituents of hydrocarbons, is a shaped body having at least one oxide from the elements of the main or secondary group II to IV of the periodic table or of a mixed oxide thereof serving as base material of the shaped body. The catalyst further contains an additional constituent which is an oxide of an element of the main group IV of the periodic table, added during the shaping process. A platinum compound and a compound of an element of the main group IV of the periodic table is used as a surface constituent of the catalyst. The invention further relates to the production of the catalyst and to a method for the dehydrogenation of alkanes using the catalyst.12-08-2011
20100234656Olefinic Feedstock Treatment Processes - Aromatic by-products are sorbed from mono-olefin-containing feedstocks of olefins having from about 6 to 22 carbon atoms per molecule that contain aromatic by-products having from 7 to 22 carbon atoms per molecule. A benzene-containing regenerant displaces and desorbs the aromatic by-products from the sorbent and a regeneration effluent is provided. The regeneration effluent is treated in a regeneration effluent distillation system to provide a benzene-rich stream and an aromatic by-products-containing stream. The latter is subjected to benzene-forming conditions and recycled to the regeneration effluent distillation system where benzene is recovered.09-16-2010
20110270003ZONE REACTOR INCORPORATING REVERSIBLE HYDROGEN HALIDE CAPTURE AND RELEASE - An improved process and a zone reactor for converting a hydrocarbon feedstock into higher hydrocarbons is provided. A first zone in the reactor contains both a material capable of releasing hydrogen halide (HX) and a carbon-carbon coupling catalyst; a second zone is initially empty or contains a halogenation and/or oxyhalogenation catalyst; and a third zone contains both a carbon-carbon coupling catalyst and a material capable of capturing HX. Air or oxygen is introduced into the first zone, a feedstock is introduced into the second zone, and products are produced in the third zone. HX produced during the reaction is reversibly captured and released in zones 11-03-2011
20110152593PRODUCTION OF HYDROCARBON LIQUIDS - A process to efficiently convert organic feedstock material into liquid non-oxygenated hydrocarbons in the C06-23-2011
20130158319COUNTER-CURRENT CATALYST FLOW WITH SPLIT FEED AND TWO REACTOR TRAIN PROCESSING - A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The process includes passing a catalyst stream in a counter-current flow relative to the hydrocarbon process stream.06-20-2013
20110257451Alkylation of Toluene to Form Styrene and Ethylbenzene - A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.10-20-2011
20110257450Method of Coupling a Carbon Source with Toluene to Form a Styrene Ethylbenzene - A process is disclosed for making styrene or ethylbenzene by reacting toluene with a C1 source that is selected from the group consisting of methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, and combinations thereof.10-20-2011
20100305376PROCESS AND PLANT FOR PRODUCING SYNTHETIC FUELS - In a process for producing synthetic fuels from an educt mixture containing hydrogen and oxygenates, such as methanol and/or dimethyl ether, the educt mixture is reacted on a catalyst in a first process stage to obtain a hydrocarbon product containing olefins with preferably 2 to 8 carbon atoms. In a second process stage the hydrocarbon product is oligomerized to long-chain olefins, from which gasoline and Diesel products are obtained. The hydrocarbon product obtained in the first process stage is separated into a liquid phase and a gaseous phase. The gaseous phase is supplied to the second process stage. The liquid phase is separated into a mixture rich in C12-02-2010
20120046508PROCESS FOR TOLUENE AND METHANE COUPLING IN A MICROREACTOR - A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.02-23-2012
20120059206PROCESS FOR PRODUCTION OF ETHYLBENZENE FROM TOLUENE AND METHANE - A process for making ethylbenzene and/or styrene by reacting toluene with methane is disclosed. In one embodiment the process can include reacting toluene with methane to form a product stream comprising ethylbenzene and further processing the ethylbenzene to form styrene in an existing styrene production facility.03-08-2012
20120157733PROCESS FOR THE CONVERSION OF RENEWABLE OILS TO LIQUID TRANSPORTATION FUELS - A method of producing a hydrocarbon product by hydrotreating a feedstock comprising triacylglyceride (TAG) and TAG-derived materials such as free fatty acid (FFA) and fatty acid methyl ester (FAME) in the presence of a nonsulfided hydrotreating catalyst to produce a first product comprising hydrocarbons. A method of producing a transportation fuel by selecting an undoped feedstock comprising virgin TAG, used TAG, FFA, and FAME or a combination thereof; hydrotreating the undoped feedstock in the presence of an unsulfided hydrotreating catalyst to produce a first product and subjecting the first product to at least one process selected from aromatization, cyclization, and isomerization to produce a second hydrocarbon product selected from gasoline, kerosene, jet fuel, and diesel fuels. A method is described by which fatty acids may be converted to hydrocarbons suitable for use as liquid transportation fuels. Additionally, the method allows for the blending of fatty acids with TAGs, and the conversion of such blends to hydrocarbons suitable for use as liquid transportation fuels. The method utilizes a catalyst and hydrogen as reductant to convert fatty acids to hydrocarbons. Subsequent steps, including dewatering, isomerization, and distillation, can provide a hydrocarbon mixture useful as a liquid transportation fuel or as a blendstock with petroleum transportation fuels.06-21-2012
20120330075Process for Producing Para-Xylene - A process for producing a PX-rich product, the process comprising: (a) providing a PX-depleted stream; (b) isomerizing at least a portion of the PX-depleted stream to produce an isomerized stream having a PX concentration greater than the PX-depleted stream and a benzene concentration of less than 1,000 ppm and a C12-27-2012
20130197286Production of Paraxylene - The process concerns ethylbenzene conversion and xylene isomerization with a catalyst pretreated by sulfiding.08-01-2013
20120088944PROCESS FOR THE PREPARATION OF HYDROCARBONS - The invention provides a process for the preparation of hydrocarbons comprising the steps of: 04-12-2012
20120095274COMBINATION OF ZEOLITE UPGRADING WITH HYDROGENATION UPGRADING TO PRODUCE RENEWABLE GASOLINE FROM BIOMASS - Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A self-sustainable process was designed to reduce the coke by co-feeding sugars/sugar derivatives with the paraffin products from hydrogenation of sugars/sugar derivatives. Paraffins without complete conversion result in products with less aromatics and relatively low density compared with the products directly from zeolite upgrading. Thus, the process is more economically favorable.04-19-2012
20130267746PROCESS FOR PRODUCTION OF XYLENES THROUGH INTEGRATION OF METHYLATION AND TRANSALKYLATION - The inventive process is directed to the production of xylenes through integration of aromatics methylation and transalkylation. This integrated process maximizes the production of xylenes and eliminates or minimizes the production of benzene.10-10-2013
585320000 Polycyclic 4
20110295047METHOD FOR PRODUCING COMPOUND - A method for producing a compound according to the present invention includes synthesizing a compound represented by general formula (3): R—Ar12-01-2011
20100137665Process for Lignin Conversion to Chemicals or Fuels with H2 Generated from Lignin Depolymerization Products - A process is presented for the production of high value chemicals from lignin. The process comprises combining several internal steps to use the hydrogen generated by the process, rather than adding an external source of hydrogen. The process can combine the decomposition of oxygenates formed during the deoxygenation process with hydrogenation of deoxygenated lignin compounds.06-03-2010
20130245347DEVICE AND METHOD FOR ARYL-ALKYL COUPLING USING DECARBOXYLATION - A method for alkylating aromatic compounds is described using an electrochemical decarboxylation process. This process produces aryl-alkyl compounds that have properties useful in Group V lubricants (and other products) from abundant and economical carboxylic acids. The process presented here is also advantageous as it is conducted at moderate temperatures and conditions, without the need of a catalyst. The electrochemical decarboxylation has only H09-19-2013
20130197287ALKYLATION PROCESS - The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in08-01-2013
585321000 Having plural side-chains 9
20110009682METHOD OF PRODUCING PARA-SUBSTITUTED AROMATIC HYDROCARBON - This invention relates to a method of efficiently producing a high-purity para-substituted aromatic hydrocarbon while suppressing caulking without requiring isomerization-adsorption separation steps, and more particularly to a method of producing a para-substituted aromatic hydrocarbon, characterized in that a methylating agent and an aromatic hydrocarbon are reacted in the presence of a catalyst formed by coating MFI type zeolite having a particle size of not more than 100 μm with a crystalline silicate.01-13-2011
20120271082VARIATIONS ON PRINS-LIKE CHEMISTRY TO PRODUCE 2,5-DIMETHYLHEXADIENE FROM ISOBUTANOL - The method of the present invention provides a high yield pathway to 2,5-dimethylhexadiene from renewable isobutanol, which enables economic production of renewable p-xylene (and subsequently, terephthalic acid, a key monomer in the production of PET) from isobutanol. In addition, the present invention provides methods for producing 2,5-dimethylhexadiene from a variety of feed stocks that can act as “equivalents” of isobutylene and/or isobutyraldehyde including isobutanol, isobutylene oxide, and isobutyl ethers and acetals. Catalysts employed in the present methods that produce 2,5-dimethylhexadiene can also catalyze alcohol dehydration, alcohol oxidation, epoxide rearrangement, and ether and acetal cleavage.10-25-2012
20100228066Integrated Process for the Production of P-Xylene - The present invention provides an integrated process for the production of p-xylene, comprising the steps of A) separating a mixed feedstock containing benzene, toluene, C09-09-2010
20130217936Method of Making Catalyst, Catalyst Made Thereby and Use Thereof - The invention concerns a method of making a catalyst adapted for isomerization of xylenes.08-22-2013
20130131413PROCESS FOR THE PRODUCTION OF PARA-XYLENE - A reforming process using a medium pore zeolite under conditions to facilitate the conversion of C05-23-2013
20110130603Aromatics Processing Catalyst System - This disclosure relates to a catalyst system adapted for processing aromatic feedstreams comprising C06-02-2011
20120149958Method and Apparatus for Obtaining Aromatics from Diverse Feedstock - The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.06-14-2012
20100094068Heavy Aromatics Processing Catalyst and Process of Using the Same - This disclosure relates to a catalyst system adapted for transalkylation a C04-15-2010
20120316373PROCESS FOR PRODUCING ONE OR MORE ALKYLATED AROMATICS - One exemplary embodiment may be a process for producing one or more alkylated aromatics. Generally, the process includes providing a first stream including an effective amount of benzene for alkylating benzene from a fractionation zone, providing a second stream including an effective amount of ethene for alkylating benzene from a fluid catalytic cracking zone, providing at least a portion of the first and second streams to an alkylation zone; and passing at least a portion of an effluent including ethylbenzene from the alkylation zone downstream of a para-xylene separation zone.12-13-2012
585322000 Including an aromatization step 8
20120271083PRODUCTION OF AROMATICS FROM NONCATALYTICALLY CRACKED FATTY ACID BASED OILS - A method for producing aromatic compounds from fatty acid oils including heating a fatty acid oil to a temperature between about 100° C. to about 800° C. at a pressure between about vacuum conditions and about 200 psia for a time sufficient to crack the oil and produce a cracked fatty acid oil; removing undesired materials, unreacted oil, heavy ends, and light ends from the cracked fatty acid oil; heating the resulting purified cracked fatty acid oil to a temperature between about 100° C. to about 800° C. at a pressure between about vacuum conditions and about 200 psia for a time sufficient to reform alkenes and alkanes in the cracked fatty acid oil into aromatic compounds and produce a reformed fatty acid oil; and extracting components from the reformed fatty acid oil to produce a mixture of chemical products containing between 5% and 90% aromatic compounds by weight.10-25-2012
20100160700PROCESS AND CATALYSTS FOR REFORMING FISHER TROPSCH NAPHTHAS TO AROMATICS - Improved processes and catalysts are described for the conversion of oxygenate-containing olefinic Fischer Tropsch naphtha into aromatics. This involves removal of the oxygenates without complete saturation of the olefins followed by aromatization of the oxygenate-depleted olefinic naphtha preferably over a catalyst that is tolerant to oxygenates.06-24-2010
20120157734PROCESS FOR THE CONVERSION OF RENEWABLE OILS TO LIQUID TRANSPORTATION FUELS - The present invention relates to production of fuels or fuel blendstocks from renewable sources. Various embodiments provide a method of producing a hydrocarbon product by hydrotreating a feedstock including at least one of a renewable triacylglyceride (TAG), renewable free fatty acid (FFA), and renewable fatty acid C06-21-2012
20110184217Method of Enhancing an Aromatization Catalyst - A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.07-28-2011
20110263917Process for Producing Propylene and Aromatics from Butenes by Metathesis and Aromatization - The invention is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.10-27-2011
20130131414PROCESS FOR THE CONVERSION OF PROPANE AND BUTANE TO AROMATIC HYDROCARBONS - A process for the conversion of propane and/or butane into aromatics which comprises first reacting a propane and/or butane feed in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of propane and/or butane into first stage aromatic reaction products, separating ethane produced in the first stage reaction from the first stage aromatic reaction products, reacting ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating ethane from the second stage aromatic reaction products.05-23-2013
20130158320INITIAL HYDROTREATING OF NAPHTHENES WITH SUBSEQUENT HIGH TEMPERATURE REFORMING - A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.06-20-2013
20130261361DEHYDROGENATION OF ALKANOLS TO INCREASE YIELD OF AROMATICS - The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.10-03-2013
585323000 Including an alkylation step 50
20100076237Alkylaromatics Production - A process for alkylation or transalkylation of an alkylatable aromatic compound having reactive impurities with an alkylating agent to produce a monoalkylated aromatic compound, comprising the steps of contacting at least a portion of said alkylatable aromatic compounds and said alkylating agent with a first molecular sieve catalyst in a guard bed under suitable conditions to remove said reactive impurities and form a first effluent comprising monoalkylated aromatic compound, unreacted alkylatable aromatic compounds and unreacted alkylating agent; contacting said first effluent with a second molecular sieve catalyst different from said first molecular sieve catalyst in said reaction zone under suitable alkylation or transalkylation conditions to produce additional said monoalkylated aromatic compounds; and maintaining said water content from about 1 wppm to about 10 wt. % based on the combined weight of said alkylatable aromatic compound and said alkylating agent in said reaction zone for the majority of the on-oil time.03-25-2010
20130079573METHODS FOR CO-PRODUCTION OF ALKYLBENZENE AND BIOFUEL FROM NATURAL OILS - Embodiments of methods for co-production of linear alkylbenzene and biofuel from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. A first portion of the paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. A second portion of the paraffins is processed to form biofuel.03-28-2013
20100105971SEPARATION METHOD OF AROMATIC COMPOUNDS COMPRISING SIMULATED MOVING BED XYLENE MIXTURE PRE - TREATMENT PROCESS AND ADDITIONAL XYLENE ISOMERIZATION PROCESS - Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography and a crystallization process, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a crystallization process for para-xylene separation, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.04-29-2010
20100069693Liquid Phase Alkylation with Multiple Catalysts - A process is disclosed for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones, each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene are introduced into the first alkylation reaction zone. The first and second alkylation reaction zones are operated under conditions of temperature and pressure effective to cause alkylation of the aromatic compound with the alkene in the presence of the alkylation catalyst, the temperature and pressure being such that the aromatic compound is at least partly in the liquid phase. The alkylation catalyst in the first alkylation reaction zone, which may be a reactor guard bed, has more acid sites per unit volume of catalyst than the alkylation catalyst in the second reaction zone.03-18-2010
20130072734Monoalkylated Aromatic Compound Production - A process for producing a monoalkylated aromatic compound in an alkylation reaction zone, said process comprising the steps of: 03-21-2013
20100081853Alkylaromatics Production - A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of: (a) providing at least one reaction zone having a water content with at least one alkylation catalyst having an activity and a selectivity for said monoalkylated benzene, said alkylation catalyst comprising a porous crystalline molecular sieve of a MCM-22 family material, said MCM-22 family material is characterized by having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.07 Angstroms; (b) supplying the reaction zone with at least one alkylatable aromatic compound and at least one alkylating agent; (c) operating the reaction zone under suitable alkylation or transalkylation conditions, to produce at least one effluent which comprises a monoalkylated aromatic compound and a polyalkylated aromatic compound(s); (d) monitoring the amount of the monoalkylated aromatic compound or the amount of the polyalkylated aromatic compound(s) in the effluent; (e) adjusting the water content in the reaction zone to secure a desired amount of the monalkylated aromatic compound or the polyalkylated aromatic compound(s) in the effluent, the water content in the reaction zone being in a range from about 1 wppm to about 900 wppm; and wherein the polyalkylated aromatic compound(s) produced is reduced as compared to the reaction zone having a water content of about 0 wppm when the reaction zone is operated under equivalent conditions.04-01-2010
20110282121PROCESS FOR THE PRODUCTION OF ALKYLBENZENES FROM AN OLEFINIC FEEDSTOCK PRODUCED BY OLIGOMERIZATION THAT IS CATALYZED HOMOGENEOUSLY - A process for the production of a mixture of alkylbenzenes in the presence of an aromatic feedstock and an olefinic stream produced from an ethylene feedstock is described, with said process comprising at least: 11-17-2011
20100249472Alkylaromatics Production - A process is described for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene and one or more alkanes are introduced into said first alkylation reaction zone, having operating conditions, e.g., temperature and pressure, which are controlled effective to cause the alkylatable aromatic compound to be partly in the vapor phase and partly in the liquid phase with the ratio of liquid volume to vapor volume of the feed in each zone to be from about 0.5 to about 10. The aromatic compound and the alkene are reacted in the presence of the alkylation catalyst to form an effluent comprising the alkylaromatic compound, unreacted alkylatable aromatic compound, any unreacted alkene and the alkane, which is withdrawn and then supplied to the second alkylation reaction zone without removal of the alkane.09-30-2010
20090281361Organic Compound Conversion Process - The present invention provides a process for conversion of feedstock comprising organic compounds to desirable conversion product at organic compound conversion conditions in the presence of catalyst comprising an acidic, porous crystalline material and having a Proton Density Index of greater than 1.0, for example, from greater than 1.0 to about 2.0, e.g. from about 1.01 to about 1.85. The acidic, porous crystalline material of the catalyst may comprise a porous, crystalline material or molecular sieve having the structure of zeolite Beta, an MWW structure type material, e.g. MCM-22, MCM-36, MCM-49, MCM-56, or a mixture thereof.11-12-2009
20120108873Catalysts Containing Nano-Materials and Methods of Making and Using Same - A method of making a catalyst containing nanosize zeolite particles supported on a support material is disclosed. A process for making styrene or ethylbenzene by reacting toluene with a C05-03-2012
20080255397Promotors for Controlling Acidity and Pore Size of Zeolite Catalysts for Use in Alkylation - A metal-modified alkylation catalyst including a metal/zeolite is provided where the metal is one or two selected from the group consisting of yttrium and a rare earth of the lanthanide series other than cerium. Where two metals are used, one may be Ce or La. The metal-promoted zeolite is useful as a molecular sieve aromatic alkylation catalyst for the production of ethylbenzene by the ethylation of benzene in the liquid phase or critical phase. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 10-60 wt % of the ethyl benzene.10-16-2008
20120296133PROCESS FOR TOLUENE AND METHANE COUPLING IN A MICROREACTOR - A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.11-22-2012
20120296132USE OF AN OXIDANT IN THE COUPLING OF TOLUENE WITH A CARBON SOURCE - A process for making styrene including reacting toluene with a C11-22-2012
20120296130METHOD FOR ALKYLATION OF TOLUENE TO FORM STYRENE UTILIZING AN OXY-DEHYDROGENATION REACTOR - A process for making styrene is disclosed that includes reacting toluene with a C11-22-2012
20120296131METHOD FOR ALKYLATION OF TOLUENE IN A PRE-EXISTING DEHYDROGENATION PLANT - A process for making styrene in a pre-existing facility including an infrastructure capable of producing styrene, wherein the infrastructure includes at least one dehydrogenation unit. The process includes coupling an alkylation unit including an alkylation reactor to the infrastructure and contacting toluene with a C11-22-2012
20090023968CATALYST AND PROCESS FOR PRODUCING LIGHT AROMATIC HYDROCARBONS AND LIGHT ALKANES FROM HYDROCARBONACEOUS FEEDSTOCK - The present invention provides a catalyst comprising metallic Pt and/or Pd supported on a binder-free zeolite for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock, wherein the amount of metallic Pt and/or Pd is of 0.01-0.8 wt %, preferably 0.01-0.5 wt % on the basis of the total weight of the catalyst, and the binder-free zeolite is selected from the group consisting of mordenite, beta zeolite, Y zeolite, ZSM-5, ZSM-11 and composite or cocrystal zeolite thereof. The present invention also provides a process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using said catalyst.01-22-2009
20110224469Alkylated Aromatics Production - Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.09-15-2011
20100210886Production of High Purity Ethylbenzene From Non-Extracted Feed and Non-Extracted Reformate Useful Therein - A process for producing an ethylbenzene product having a purity of at least 99.50 percent based on the weight of ethylbenzene present in the product by the ethylation of the benzene present in non-extracted feed, e.g., non-extracted hydrocarbon composition. The non-extracted feed is substantially free of both C08-19-2010
20090149685Treatment of Alkylation Catalyst Poisons with Dehydrogenation - Methods and processes for reducing alkylation catalyst poisoning are described herein. Such methods generally include providing a dehydrogenation system including a dehydrogenation reactor and a separation system, wherein the separation system includes a first column and a second column, introducing an alkyl aromatic hydrocarbon into the dehydrogenation reactor, contacting the alkyl aromatic hydrocarbon with a dehydrogenation catalyst disposed within the dehydrogenation reactor to form a dehydrogenation output stream comprising a vinyl aromatic hydrocarbon, passing at least a portion of the dehydrogenation output stream to first column, recovering a first overhead fraction including benzene and a first bottoms fraction from the first column, passing at least a portion of the benzene from the first column to an alkylation system including an alkylation catalyst, passing the first bottoms fraction from the first column to the second column, recovering a second overhead fraction and a second bottoms fraction from the second column, withdrawing offtest from effluent streams selected from the dehydrogenation output stream, the first bottoms fraction, the second bottoms fraction and combinations thereof to form withdrawn offtest and introducing the withdrawn offtest into the separation system downstream from the first column.06-11-2009
20130217937Processes for The Reduction of Alkylation Catalyst Deactivation Utilizing Stacked Catalyst Bed - Alkylation systems and methods of minimizing alkylation catalyst regeneration are discussed herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a first preliminary alkylation catalyst disposed therein to form a first output stream. The first preliminary alkylation catalyst generally includes a Y zeolite. The systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.08-22-2013
20110245559PROCESS FOR INCREASING WEIGHT OF OLEFINS - The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.10-06-2011
20110245558Cumene Production with High Selectivity - Cumene production methods are disclosed, based on the alkylation of benzene with propylene, in which byproducts of the alkylation reaction are advantageously reduced to achieve a high cumene selectivity. This may be attained by (i) reducing the portion of the total alkylation effluent that is recycled, after cooling, to the alkylation reaction zone for quenching or direct heat exchange and/or (ii) reducing the benzene:propylene molar ratio of the alkylation feedstock. To manage the temperature differential across catalyst bed(s) in the alkylation reaction zone, indirect heat exchange may be used to remove heat.10-06-2011
20100056835Process for Producing Cumene - A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inch03-04-2010
20100004497Integrated Processes for Making Detergent Range Alkylbenzenes from C5-C6-Containing Feeds - Integrated processes for making detergent range alkylbenzenes from C01-07-2010
20080242905Alkylaromatics Production Using Dilute Alkene - process for producing an alkylated aromatic product in a reactor by reacting an alkylatable aromatic compound feedstock with another feedstock comprising alkene component and alkane component in a reaction zone containing an alkylation catalyst. The reaction zone is operated in predominantly liquid phase without inter-zone alkane removal. The polyalkylated aromatic compounds can be separated as feed stream for transalkylation reaction in a transalkylation reaction zone.10-02-2008
20110137095PROCESS FOR PRODUCING OLEFINS - The present invention provides a process for producing olefins, comprising: 06-09-2011
20100145119SEPARATION METHOD OF AROMATIC COMPOUNDS COMPRISING SIMULATED MOVING BED XYLENE MIXTURE PRE-TREATMENT PROCESS AND ADDITIONAL XYLENE ISOMERIZATION PROCESS - Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.06-10-2010
20110306810PROCESSES FOR SYNTHESIZING ETHYLBENZENE FROM ETHANOL AND BENZENE - Processes for catalytically synthesizing ethylbenzene from ethanol and benzene comprising: 12-15-2011
20130225888Process for the Reduction of Alkylation Catalyst Deactivation - Alkylation systems and methods of minimizing alkylation catalyst regeneration are described herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a preliminary alkylation catalyst disposed therein to form a first output stream. The preliminary alkylation catalyst generally includes a zeolite catalyst having a SiO08-29-2013
20100217056ALKYLATION PROCESS - A process is disclosed for the alkylation of aromatics by charging a hydrocarbon feed containing aromatic hydrocarbons and olefinic hydrocarbons to a distillation column for separation into at least one fraction; removing an aromatics/olefin stream containing at least a portion of the aromatic hydrocarbons and at least a portion of the olefinic hydrocarbons; charging the aromatics/olefin stream to an alkylation reactor, operated at a temperature in the range of from about 80° C. to about 220° C., for alkylation of at least a portion of the aromatic hydrocarbons with the olefinic hydrocarbons; recycling at least a portion of the resulting reactor effluent to the distillation column; and removing a product stream containing alkylated aromatics from the distillation column.08-26-2010
20120271084RECYCLE OF TRANSALKYLATION EFFLUENT FRACTIONS ENRICHED IN TRIMETHYLBENZENE - Methods are disclosed for producing C10-25-2012
20120277509Alkylation of Toluene to Form Styrene and Ethylbenzene - A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.11-01-2012
20110282120Selective Oligomerization of Isobutene - A process for oligomerizing isobutene comprises contacting a feedstock comprising isobutene with a catalyst comprising a MCM-22 family molecular sieve under conditions effective to oligomerize the isobutene, wherein said conditions including a temperature from about 45° C. to less than 140° C. The isobutene may be a component of a hydrocarbon feedstock containing at least one additional C11-17-2011
20110306809PROCESS FOR THE REDUCTION OF GASOLINE BENZENE CONTENT BY ALKYLATION WITH DILUTE ETHYLENE - The process converts ethylene in a dilute ethylene stream and dilute benzene in an aromatic containing stream via alkylation to heavier hydrocarbons. The catalyst may be a zeolite such as UZM-8. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, and hydrogen and selectively converts benzene. At least 40 wt-% of the ethylene in the dilute ethylene stream and at least 20 wt-% of the benzene in the dilute benzene stream can be converted to heavier hydrocarbons.12-15-2011
20120149959Method to Adjust 2-Phenyl Content of an Alkylation Process for the Production of Linear Alkyl Benzene - A process is presented for controlling the output of monoalkylated benzenes. The alkylbenzenes are linear alkylbenzenes and the process controls the 2-phenyl content of the product stream. The control of the process to generate a linear alkylbenzene with a 2-phenyl content within a desired range by recycling a portion of the effluent from the alkylation reactor to the inlet of the reactor.06-14-2012
20110160506Alkylaromatics Production Using Dilute Alkene - A process for producing an alkylated aromatic product in a reactor by reacting an alkylatable aromatic compound feedstock with another feedstock comprising alkene component and alkane component in a reaction zone containing an alkylation catalyst. The reaction zone is operated in predominantly liquid phase without inter-zone alkane removal. The polyalkylated aromatic compounds can be separated as feed stream for transalkylation reaction in a transalkylation reaction zone.06-30-2011
20130023708PROCESSES FOR MAKING CX-CY OLEFINS FROM C5 AND C6 PARAFFINS - Processes for making C01-24-2013
20130172646Method to Adjust 2-Phenyl Content of an Alkylation Process for the Production of Linear Alkyl Benzene - A process is presented for controlling the output of monoalkylated benzenes. The alkylbenzenes are linear alkylbenzenes and the process controls the 2-phenyl content of the product stream. The control of the process to generate a linear alkylbenzene with a 2-phenyl content within a desired range by recycling a portion of the effluent from the alkylation reactor to the inlet of the reactor.07-04-2013
20080242906Alkylation Process - A process for the production of ethylbenzene by the ethylation of benzene in the critical phase in a reaction zone containing a molecular sieve aromatic alkylation catalyst comprising cerium-promoted zeolite beta. A polyethylbenzene is supplied into the reaction zone and into contact with the cerium-promoted zeolite beta having a silica/alumina mole ratio within the range of 20-500. The reaction zone is operated at temperature and pressure conditions in which benzene is in the supercritical phase to cause ethylation of the benzene and the transalkylation of polyethylbenzene and benzene in the presence of the zeolite beta catalyst. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated byproducts of no more than 60 wt. % of the ethylbenzene. The alkylation reaction zone is operated under conditions providing a composite byproduct yield of propyl benzene and butyl benzene relative to ethylbenzene, which is no more than one half of the corresponding yield byproduct for zeolite beta promoted with lanthanum. The production of ethylbenzene in the critical phase alkylation reaction zone is attended by recycle of a polyalkylated aromatic component of the reaction product back to the reaction zone.10-02-2008
20080228018Transalkylation of Heavy Alkylate Using a Layered Catalyst - A layered catalyst is disclosed for use in transalkylation of polyalkylated benzenes. The catalyst comprises an inner core material with a molecular sieve bonded over the core. The process minimizes the cracking of the alkyl groups during the transalkylation reaction.09-18-2008
20130237733PROCESSES FOR PREPARING ALKYLATED AROMATIC COMPOUNDS - Processes for preparing alkylation aromatic compounds are provided herein. In an embodiment, a process for preparing alkylated aromatic compounds includes reacting an aromatic compound and an olefin in a first alkylation reaction in the presence of a first alkylation catalyst to produce a first effluent that includes an alkylated aromatic compound and unreacted aromatic compound. Unreacted aromatic compound from the first effluent and additional olefin are reacted in at least one downstream alkylation reaction in the presence of a second alkylation catalyst to produce a second effluent including the alkylated aromatic compound. A recycle stream including the alkylated aromatic compound is recycled from the second effluent to the at least one downstream alkylation reaction and, optionally, the first alkylation reaction. A ratio of the recycle stream to a total mass flow is greater in the at least one downstream alkylation reaction than in the first alkylation reaction.09-12-2013
20130096357HEAVY ALKYLBENZENE TRANSALKYLATION OPERATING COST REDUCTION - A process for increasing the production of monoalkylbenzenes is presented. The process includes utilizing a transalkylation process to convert dialkylbenzenes to monoalkylbenzenes. The transalkylation process recycles a portion of the effluent stream from the transalkylation reactor back to the feed of the transalkylation reactor. The recycled dialkylbenzenes and a portion of the recycled benzene are converted to monoalkylbenzenes.04-18-2013
20130131415Process for Ethylbenzene Production From Ethanol - A method of producing an alkylaromatic by the alkylation of an aromatic with ethanol, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed.05-23-2013
20110275871PROCESS FOR THE PRODUCTION OF BRANCHED ALKYLBENZENES THAT USES A RENEWABLE CARBON SOURCE - A process for the production of alkylbenzenes in the presence of an aromatic feedstock and an olefinic stream produced from an ethanol feedstock, itself produced from a renewable source obtained from biomass, is described, with said process comprising at least: 11-10-2011
20100298617Process and Catalyst for the Transalkylation of Aromatics - Disclosed herein is a process and catalyst for producing an ethylbenzene feed from a polyethylbenzene feed, comprising the step of contacting a benzene feed with a polyethylbenzene feed under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.01 wt. % to 0.5 wt. % of said catalyst, to provide a product which comprises ethylbenzene.11-25-2010
20120283497Monoalkylated Aromatic Compound Production - A process for producing a monoalkylated aromatic compound in an alkylation reaction zone, said process comprising the steps of: 11-08-2012
20130253242METHOD FOR PRODUCING HIGH-ADDED-VALUE AROMATIC PRODUCTS AND OLEFINIC PRODUCTS FROM AN AROMATIC-COMPOUND-CONTAINING OIL FRACTION - The present invention relates to a method for manufacturing aromatic products (benzene/toluene/xylene) and olefinic products from an aromatic-compound-containing oil fraction, whereby it is possible to substitute naphtha as a feedstock for aromatic production and so make stable supply and demand, and it is possible to substantially increase the yield of high-added-value olefinic and high-added-value aromatic components, by providing a method for manufacturing olefinic and aromatic products from light cycle oil comprising a hydrogen-processing reaction step, a catalytic cracking step, an separation step and a transalkylation step, and optionally also comprising a recirculation step.09-26-2013
20130211164Alkylation Process - The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in08-15-2013
20100004496Integrated Processes for Making Detergent Range Alkylbenzenes from C5-C6-Containing Feeds - Integrated processes for making detergent range alkylbenzenes from C01-07-2010
20110166399METHOD FOR IMPROVING PRODUCTIVITY AND PROCESS STABILITY IN STYRENE MANUFACTURING SYSTEM HAVING MULTIPLE REACTORS CONNECTED IN SERIES - Provided is a method for improving productivity and process stability in styrene monomer manufacturing system which uses ethylbenzene dehydrogenation and multiple reactors connected in series by divergence of the feed containing steam and ethylbenzene and injection thereof into a certain point of the system.07-07-2011

Patent applications in class To produce aromatic

Patent applications in all subclasses To produce aromatic