Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


LIQUID PHASE FISCHER-TROPSCH REACTION

Subclass of:

518 - Chemistry: fischer-tropsch processes; or purification or recovery of products thereof

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
518701000 Rhodium containing catalyst utilized 1
20090286890METHOD FOR RECOVERING A NATURAL GAS CONTAMINATED WITH HIGH LEVELS OF CO2 - The present invention provides a method for recovering a natural gas contaminated with high levels of carbon dioxide. A gas containing methane and carbon dioxide is extracted from a reservoir containing natural gas, where carbon dioxide comprises at least 50 vol. % of the extracted gas. The extracted gas is oxidized with an oxygen containing gas in the presence of a partial oxidation catalyst at a temperature of less than 600° C. to produce an oxidation product gas containing hydrogen, carbon monoxide, and carbon dioxide. The oxidation product gas is then utilized to produce a liquid hydrocarbon or a liquid hydrocarbon oxygenate.11-19-2009
Entries
DocumentTitleDate
20110196048Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method - A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the apparatus is provided with: a reactor in which the synthesis gas contacts with the slurry; and an unreacted gas supply device which draws unreacted gas from the reactor, then pressurizes the unreacted gas, and supplies the unreacted gas to a constituent device which constitutes the hydrocarbon synthesis reaction apparatus.08-11-2011
20130079426CARBON NEUTRAL NATURAL GAS TO LIQUIDS PLANT WITH BIOMASS CO-FEED - Configurations, systems, and methods for a gas-to-liquids plant are presented in which the energy demand for natural gas reformation is provided at least in part by biomass gasification to reduce or eliminate net carbon emissions. Preferred plants, systems, and methods may recycle various process streams to further reduce water demand, improve the hydrogen/carbon ratio of a feed stream to a Fischer-Tropsch process, and recover and/or recycle carbon dioxide.03-28-2013
20100041776GLYCEROL CONVERSION INTO CLEAN AND RENEWABLE LIQUID FUEL - A technique of cooling of a reactor with a fixed catalytic bed for exothermic catalytic syntheses, such as the Fischer-Tropsch (FT) synthesis of liquid fuels by selective hydrogenation of the monoxide of carbon (CO) by the hydrogen (H02-18-2010
20090215911STRUCTURED CATALYST BED AND METHOD FOR CONVERSION OF FEED MATERIALS TO CHEMICAL PRODUCTS AND LIQUID FUELS - The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C08-27-2009
20130131197GTL-FPSO SYSTEM FOR CONVERSION OF ASSOCIATED GAS IN OIL FIELDS AND STRANDED GAS IN STRANDED GAS FIELDS, AND PROCESS FOR PRODUCTION OF SYNTHETIC FUEL USING THE SAME - Disclosed are a gas to liquids (GTL)-floating production, storage and offloading (FPSO) system that can be used in offshore oil fields or stranded gas fields and a method for producing synthetic fuel using the same. More particularly, the disclosure relates to a GTL-FPSO system capable of producing liquid synthetic fuel from gas extracted from stranded gas fields or associated gas extracted from oil fields, including a reforming reactor and a liquid hydrocarbon producer, and a method for producing the same.05-23-2013
20090012188Process for the production of synthesis gas with conversion of CO2 into hydrogen - Process for the production of liquid hydrocarbons from a feedstock that comprises at least one elementary feedstock from the group of biomass, coal, lignite, petroleum residues, methane, and natural gas, comprising: at least one stage a) for gasification of the feedstock by partial oxidation and/or steam reforming to produce a synthesis gas SG; a stage b) for separating CO2 from SG and a portion of the effluent of the subsequent stage c); the mixing of a portion of the CO2 that is separated with a gas of an H2/CO ratio of more than 3; a stage c) for partial conversion with hydrogen, thermal or thermocatalytic, of the CO2 that is present in said first mixture according to the reaction: CO2+H2→CO+H2O in a specific reaction zone that is separated from said gasification zone or zones; a stage d) for Fisher-Tropsch synthesis on a synthesis gas that comprises at least a portion of SG and at least a portion of the CO that is produced by the conversion of CO2 into hydrogen.01-08-2009
20120238645THERMAL AND CHEMICAL UTILIZATION OF CARBONACEOUS MATERIALS, IN PARTICULAR FOR EMISSION-FREE GENERATION OF ENERGY - A process for the generation of energy and/or hydrocarbons and other products utilizing carbonaceous materials. In a first process stage (P09-20-2012
20080293834Production of Liquid and, Optionally, Gaseous Hydrocarbons from Gaseous Reactants Into an Expanded Slurry Bed - A process for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level a gaseous reactants feed comprising at least CO and H11-27-2008
20090170965ACETYLENE ENHANCED CONVERSION OF SYNGAS TO FISCHER-TROPSCH HYDROCARBON PRODUCTS - A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.07-02-2009
20110039953PROCESS FOR STABILIZING THE PERFORMANCES OF A CATALYST FOR FISCHER TROPSCH REACTION - Process for maintaining the stability of performances of a catalyst for Fischer-Tropsch reaction, performed in a slurry bubble column reactor under a triphase system which comprises gradually increasing the P02-17-2011
20100113622INTEGRATED MULTI-STEP SOLID/LIQUID SEPARATION SYSTEM FOR FISCHER-TROPSCH PROCESSES - A system for separating liquids from solids comprising an immobilization unit comprising an immobilization vessel containing a bed of magnetizable material and a magnet configured to produce a magnetic field within the immobilization vessel, wherein the immobilization vessel further comprises an immobilization vessel outlet and an immobilization vessel inlet for a fluid comprising liquid and metal-containing particles. A method for separating solid particles from liquid by introducing a fluid comprising liquid and a first concentration of solid particles into an immobilization unit comprising an immobilization vessel and at least one magnet configured to produce high density magnetic flux lines within the immobilization vessel and/or a high field gradient at or near the surface of the magnetizable material when powered, wherein the immobilization vessel contains therein a bed of magnetizable material; and removing from the immobilization unit a product having a second particle concentration less than the first particle concentration.05-06-2010
20100081726Catalytic reaction process using microchannel technology - The disclosed technology relates to a process for conducting a chemical reaction between at least one liquid reactant and at least one gaseous reactant in a process microchannel containing at least one catalyst, the catalyst comprising a solid phase catalyst or a homogeneous catalyst immobilized on a solid. In one embodiment, the process microchannel comprises a processing zone containing one or more structures for disrupting fluid flow and a reaction zone containing one or more structures for contacting and/or supporting the catalyst, the one or more structures for contacting and/or supporting the catalyst containing openings to permit the reactants to flow through the one or more structures and contact the catalyst. The process comprises: forming a reactant mixture comprising at least one liquid reactant and the at least one gaseous reactant; flowing the reactant mixture in the processing zone in contact with the one or more structures for disrupting fluid flow to enhance mixing of the liquid reactant and the gaseous reactant; flowing the reactant mixture in openings in the one or more structures for contacting and/or supporting the catalyst in contact with catalyst; and reacting the at least one liquid reactant with the at least one gaseous reactant to form at least one product. In one embodiment, the process relates to a process for conducting a Fischer-Tropsch synthesis in a process microchannel containing at least one Fischer-Tropsch synthesis catalyst, the catalyst comprising a solid phase catalyst or a homogeneous catalyst immobilized on a solid, the process comprising: flowing reactants comprising H04-01-2010
20100099780FISCHER-TROPSCH CATALYSTS - A method of producing an alumina-supported catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial γ-alumina support material at a temperature of at least 550° C. to produce a modified alumina support material; impregnating the modified alumina support material with a source cobalt; calcining the impregnated support material at a temperature of 700° C. to 1200° C., and activating the catalyst.04-22-2010
20090170964MEMBRANE REACTOR WITH IN-SITU DEHYDRATION AND METHOD FOR USING THE SAME - A fixed bed membrane reactor is disclosed. The reactor has a housing including an inlet for receiving reactants and an outlet for discharging retentate streams of reaction products. The inlet and outlet are in fluid communication with a reaction zone in which the reactants may passe downstream from the inlet to the outlet with the reactants reacting to produce reaction products including water. The reactor further includes a membrane assembly disposed in fluid communication with the reaction zone. The membrane assembly includes at least one porous support with a water permselective membrane affixed thereto. The membrane allows water produced in the reaction zone to be selectively removed from the reaction zone as a permeate stream while allowing retentate reaction products to remain in the reaction zone and be discharged as a retentate stream. Ideally, the membrane assembly locates most of the membrane proximate the downstream portion of the reaction zone where accumulated produced water may be selectively removed from the reaction product as opposed to the upstream portion where relatively little water accumulation has occurred. A method for using the reactor to perform in situ water dehydration of reactions, such as Fischer-Tropsch reaction, is also disclosed.07-02-2009
20090298957METHOD AND INSTALLATION FOR COMBINED PRODUCTION OF HYDROGEN AND CARBON DIOXIDE - The invention concerns a method for combined production of hydrogen and carbon dioxide from a mixture of hydrocarbons wherein the residual PSA is treated to produce a carbon dioxide-enriched fluid, and wherein: the residual PSA is compressed to a pressure such that the partial pressure of the CO2 contained ranges between about 15 and 40 bar; the residue is subjected to one or more condensation/separation steps with production of CO2-rich condensate(s) and a purge of noncondensable gas; the purge of noncondensable gas is preferably treated to produce a H2-rich permeate which is recycled to the PSA, and a residue which is recycled to syngas generation, Preferably, the condensate(s) are purified by cryogenic distillation to produce food grade CO2. The invention also concerns an installation for implementing the method.12-03-2009
20110201698CARBON RECYCLING AND REINVESTMENT USING THERMOCHEMICAL REGENERATION - Techniques, systems, apparatus and material are disclosed for regeneration or recycling of carbon dioxide into renewable liquid fuel. In one aspect, a method of recycling carbon to produce a renewable fuel can include harvesting carbon dioxide emitted from an industrial process. Biomass waste is dissociated under an anaerobic reaction to produce hydrogen. The harvested carbon dioxide is reacted with the biomass waste produced hydrogen under pressure and heat to generate a renewable fuel.08-18-2011
20080275142Method To Start A Process For Producing Hydrocarbons From Synthesis Gas - The present invention provides a method to start a steady state process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons from synthesis gas, which method comprises the steps of: (i) providing an activated catalyst in tubes of a fixed bed reactor, preferably a multitubular fixed bed reactor, the catalyst being suitable to convert synthesis gas to normally gaseous, normally liquid and optionally normally solid hydrocarbons; (ii) contacting the activated catalyst with a liquid to obtain a wetted activated catalyst; (iii) contacting the wetted activated catalyst with synthesis gas and catalytically converting the synthesis gas at an elevated temperature and pressure to obtain the normally gaseous, normally liquid and optionally normally solid hydrocarbons.11-06-2008
20120295991METHOD FOR PRODUCING FORMIC ACID - An object of the present invention is providing a method for producing formic acid under mild reaction conditions and by a simple procedure. As a means for achieving the object, the method for producing formic acid of the present invention is characterized by a reaction between carbon dioxide and hydrogen in the presence of an ionic liquid. According to the present invention, it is possible to generate formic acid effectively, because the method does not require that carbon dioxide be brought into a supercritical state and because no basic substances are required to be added to the reaction system.11-22-2012
20090143491PROCESS FOR STABILISING A CATALYST - The invention provides a process for modifying a Fischer-Tropsch catalyst or catalyst precursor, the process comprising the steps of: contacting a Fischer-Tropsch catalyst or catalyst precursor comprising a titania carrier with a compound having the general formula R06-04-2009
20080319094PROCESS FOR MAKING FISCHER-TROPSCH OLEFINIC NAPHTHA AND HYDROGENATED DISTILLATES - A process is described by which an olefinic naphtha and a hydrogenated distillate fuel are made from a Fischer-Tropsch process. The olefinic naphtha is suitable for use in an ethylene cracker where the olefins enhance the formation of ethylene. Thy hydrogenated distillate fuel is used in jet and or diesel fuels. Optionally the olefinic naphtha has a low content of acids. This low acid content, is obtained by operating the Fischer-Tropsch unit at H12-25-2008
20090023821Method and apparatus for synthesizing hydrocarbons using sonic mixing and solid catalysts - Gasses containing carbon monoxide and hydrogen are converted into hydrocarbons using a reactor vessel having a liquid, a catalyst dispersed in the liquid, and a sonic mixing system interfaced with the reactor vessel. The sonic mixing system is used to agitate the mixture. In combination with the catalysts, the agitation increases reaction kinetics, thereby promoting chemical reactions used to efficiently convert gasses containing carbon monoxide and hydrogen into hydrocarbons.01-22-2009
20090221720CONVERSION OF PRODUCED OXYGENATES TO HYDROGEN OR SYNTHESIS GAS IN A CARBON-TO-LIQUIDS PROCESS - Processes for making hydrogen and optionally carbon monoxide and their integrations in a Carbon-to-Liquids plant are disclosed. A first syngas produced by a first syngas generator is converted in a hydrocarbon synthesis process to hydrocarbon products, oxygenates and product water comprising dissolved oxygenates. The first syngas generator may use partial oxidation, reforming, gasifying, or pyrolysis of any solid, liquid or gaseous carbonaceous feedstock. The product water may be treated, for example by distillation and/or by stripping, to form an oxygenates-rich stream which comprises a reforming reactant and oxygenates originating from the product water. Oxygenates from the oxygenates-rich stream fed to a second syngas generator are converted under reforming conditions to form at least hydrogen. The hydrogen formed by reforming may be supplied to one or more units using hydrogen within a Carbon-to-Liquids plant.09-03-2009
20090239960METHODS AND SYSTEMS FOR FISCHER TROPSCH REACTOR LOW PRODUCT VARIATION - Methods and systems for operating a carbon to liquids system are provided. The method includes receiving a flow of syngas, shifting the syngas to increase an H09-24-2009
20090239959METHODS AND SYSTEMS FOR REACTOR LOW PRODUCT VARIATION - A method of operating a carbon-to-liquids system is provided. The method includes receiving a flow of syngas at the carbon-to-liquids system, shifting the syngas to facilitate increasing a hydrogen to carbon monoxide ratio (H09-24-2009
20090253814COMPACT REACTOR - The invention relates to a compact reactor that consists of a number of plates that are arranged like stacks and spaced some distance apart, whereby 10-08-2009
20100160460Systems and methods to remove liquid product and fines from a slurry reactor - The present invention provides methods and means for separating slurry liquid from catalyst in a three-phase slurry process. The embodiments of the invention are characterized by conducting the three-phase process under conditions to provide an upper region in the slurry that contains a catalyst concentration of about 20 wt % or less and a lower region with a catalyst concentration higher than about 20 wt %. A portion of the slurry in this upper region is degassed and passed to liquid-solid separation devices for recovery of liquid product.06-24-2010
20100216896GAS-LIQUID-SOLID THREE-PHASE SUSPENSION BED REACTOR FOR FISCHER-TROPSCH SYNTHESIS AND ITS APPLICATIONS - A Fischer-Tropsch synthesis three-phase suspension bed reactor (“suspension bed” also called “slurry bed”) and its supplemental systems, may include: 1) structure and dimension design of F-T synthesis reactor, 2) a gas distributor located at the bottom of the reactor, 3) structure and arrangement of a heat exchanger members inside the reactor, 4) a liquid-solid filtration separation device inside reactor, 5) a flow guidance device inside reactor, 6) a condensate flux and separation member located in the gas phase space at the top of reactor, 7) a pressure stabilizer, a cleaning system for the separation device; an online cleaning system for the gas distributor; an ancillary system for slurry deposition and a pre-condensate and mist separation system located at the outlet of upper reactor. This reactor is suitable for industrial scale application of Fischer-Tropsch synthesis.08-26-2010
20100160461INTEGRATED PROCESS AND REACTOR ARRANGEMENT FOR HYDROCARBON SYNTHESIS - The present invention relates to a process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons during a production cycle (i.e. between regenerations or between start-up with freshly loaded catalyst and the first regeneration) by catalytic conversion of synthesis gas in a multiple reactor arrangement comprising at least two parallel operating reactors containing a catalyst capable of converting synthesis gas to hydrocarbons, and each reactor having a different relative reaction rate, wherein synthesis gas is distributed to each reactor at a feed rate proportional to the relative reaction rate in the respective reactor. It further relates to a reactor arrangement suitable for operating the process according to the invention for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons during a production cycle by catalytic conversion of synthesis gas comprising at least two parallel operating reactors, each containing a catalyst, wherein the reactors are connected to a common header for the distribution of synthesis gas to the reactors, and wherein the common header comprises a distribution means for selectively controlling the amount of synthesis gas fed to each reactor.06-24-2010
20100160459Product filtration system for slurry reactors - A filter system for use in a three-phase slurry reactor is provided. The filter system comprises one or more bundles of a plurality of filter elements for separating liquid from a mixture of liquid and solids contained in the reactor. Each filter bundle is connected to a product transfer conduit transporting separated liquid to a location outside of and downstream from the reactor. The transfer conduit is provided with means for backflushing the filter bundle and guard filter means.06-24-2010
20090292030PROCESS AND APPARATUS FOR SYNTHESIS GAS AND HYDROCARBON PRODUCTION - A process and apparatus for preparing a synthesis gas suitable for feeding to a suitable hydrocarbon production reactor, such as a Fischer Tropsch reactor is described. According to one aspect, the process and apparatus utilize heat exchangers that thermally integrate the reaction steps such that heat generated by exothermic reactions, e.g., combustion, are arranged closely to the heat sinks, e.g., cool methane, water and air, to minimize heat loss and maximize heat recovery. Effectively, this thermal integration eliminates excess piping throughout, reduces initial capital and operating costs, provides built-in passive temperature control, and improves synthesis gas production efficiencies.11-26-2009
20100184872PREPARATION OF FISCHER-TROPSCH CATALYSTS - A method of producing a catalyst for use in a Fischer-Tropsch synthesis reaction. The method comprises the steps of: impregnating a catalyst support material with an active cobalt catalyst component to form a catalyst precursor; and calcining the catalyst precursor in an atmosphere of a dry calcining gas.07-22-2010
20100216897PROCESS FOR THE PREPARATION OF DIMETHYL ETHER - Process for the preparation of dimethyl ether by catalytic conversion of synthesis gas to dimethyl ether comprising contacting a stream of synthesis gas comprising carbon dioxide with one or more catalysts active in the formation of methanol and the dehydration of methanol to dimethyl ether, to form a product mixture comprising the components dimethyl ether, carbon dioxide and unconverted synthesis gas, washing the product mixture comprising carbon dioxide and unconverted synthesis gas in a first scrubbing zone with a first solvent rich in dimethyl ether and subsequently washing the effluent from the first scrubbing zone in a second scrubbing zone with a second solvent rich in methanol to form a vapour stream comprising unconverted synthesis gas stream with reduced content of carbon dioxide, transferring the vapour stream comprising unconverted synthesis gas stream with reduced carbon dioxide content for further processing to dimethyl ether.08-26-2010
20100113623SYSTEMS, METHODS, AND COMPOSITIONS FOR PRODUCTION OF SYNTHETIC HYDROCARBON COMPOUNDS - A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines. Phase conversion of working fluid is used in heat distribution lines for increased energy efficiency. The resulting use of electric energy is less than 1.4 times the amount of the high heating value of combustion of so produced hydrocarbon compounds when carbon dioxide is converted to carbon monoxide in the invention, and less than 0.84 when carbon monoxide is the source.05-06-2010
20100210739Slurry reactor fines segregation and removal - The embodiments of the present invention are characterized by degasifying a portion of a gas and slurry mixture in a three-phase slurry process and lowering the solids content of the degassed slurry portion to below about 20 wt %. The degassed and lowered solids content slurry portion is then introduced into a fines separation device for separation and removal of fines. The foregoing procedure has been found to increase the effectiveness of the fines separation device.08-19-2010
20110028573High Shear Production of Value-Added Product From Refinery-Related Gas - A method of producing value-added product from refinery-related gas, the method comprising: providing a refinery-related gas comprising at least one selected from C1-C8 compounds; intimately mixing the refinery-related gas with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the gas bubbles in the dispersion have a mean diameter of less than or equal to about 5 μm; and extracting value-added product comprising at least one component selected from higher hydrocarbons, olefins and alcohols. A system for producing value-added product from refinery-related gas comprising: at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator; apparatus for the production of a refinery-related gas comprising one or more of C1-C8 compounds; and a pump configured for delivering a liquid stream comprising the liquid carrier to the high shear device.02-03-2011
20110028574Method and Apparatus for the Continuous Separation and Discharge of Solid Catalysts and Products for Fischer-Tropsch Synthesis Reactions - The present invention relates to a continuous separation and discharge apparatus and method of solid catalysts and liquid products for Fischer-Tropsch synthesis reactions, and more particularly, to a continuous separation and discharge apparatus and method of solid catalysts and products for Fischer-Tropsch synthesis reactions involving the conversion of synthetic gas into synthetic oil, by which products of the Fischer-Tropsch synthesis including wax, as a long-chain hydrocarbon, can be stably obtained by continuously separating the products from a slurry comprising solid catalyst particles and the products using periodic pulses of a feeding gas and discharging the products through a lower portion of a reactor. Provided is a continuous separation and discharge apparatus of solid catalysts and products for Fischer-Tropsch synthesis reactions including: a level sensing device which is installed at an upper portion of a reactor and detects the slurry-level of reactants; a solid catalyst/product separation device and a discharge device which are installed at a lower portion of the reactor and separate and discharge liquid products from a mixed slurry in the reactor; and a control unit which receives a signal from the level sensing device to open and close the discharge device, wherein the separation device filters the solid catalysts, and the discharge device continuously discharges the products separated from the solid catalysts through the lower portion of the reactor by the amount of the synthesized products measured by a level sensing device.02-03-2011
20090170963Process for the Conversion of Hydrocarbons to C2-Oxygenates - The present invention relates to an improved process in term of selectivity and catalyst activity and operating life for the conversion of hydrocarbons to ethanol and optionally acetic acid in the presence of a particulate catalyst, said conversion proceeding via a syngas generation intermediate step.07-02-2009
20090318573METHODS AND APPARATUS FOR SELECTIVELY PRODUCING ETHANOL FROM SYNTHESIS GAS - The invention provides methods and apparatus for selectively producing ethanol from syngas. As disclosed herein, syngas derived from cellulosic biomass (or other sources) can be catalytically converted into methanol, which in turn can be catalytically converted into acetic acid or acetates. Finally, the acetic acid or acetates can be reduced to ethanol according to several variations. In some embodiments, yields of ethanol from biomass can exceed 100 gallons per dry ton of biomass.12-24-2009
20090318572APPARATUS AND PROCESS FOR PRODUCTION OF LIQUID FUEL FROM BIOMASS - The liquid fuel synthesizing apparatus (12-24-2009
20090111898Device for Producing Liquid Hydrocarbons By Fischer-Tropsch Synthesis In a Three-Phase Bed Reactor - The invention relates to an apparatus for the production of liquid hydrocarbons by Fischer-Tropsch synthesis on solid catalyst particles in a three-phase bed reactor, the apparatus being provided with at least one filter cartridge mounted in a filtration zone in the interior of said reactor, the filter cartridge comprising: 04-30-2009
20100298449METHOD OF PRODUCING SYNTHETIC GAS WITH PARTIAL OXIDATION AND STEAM REFORMING - Process for producing liquid hydrocarbons from a heavy feedstock such as biomass, carbon, lignite, or heavy petroleum residue comprising: 11-25-2010
20130131196SYSTEM AND PROCESS FOR BIOMASS CONVERSION TO RENEWABLE FUELS WITH BYPRODUCTS RECYCLED TO GASIFIER - This invention relates generally to a method and system for improving the conversion of carbon-containing feed stocks to renewable fuels, and more particularly to a thermal chemical conversion of biomass to renewable fuels and other useful chemical compounds, including gasoline and diesel, via a unique combination of unique processes. More particularly, this combination of processes includes (a) a selective pyrolysis of biomass, which produces volatile hydrocarbons and a biochar; (b) the volatile hydrocarbons are upgraded in a novel catalytic process to renewable fuels, (c) the biochar is gasified at low pressure with recycled residual gases from the catalytic process to produce synthesis gas, (d) the synthesis gas is converted to dimethyl ether in a novel catalytic process, and (e) the dimethyl ether is recycled to the selective pyrolysis process.05-23-2013
20100179231HYDROFORMULATION PROCESS - A hydroformylation process for the production of alcohols comprising reacting, in a reactor system comprising one or more feed streams, a reaction environment and an output stream, a feedstock composition comprising a compound having at least one olefinic carbon-to-carbon bond with hydrogen and carbon monoxide in the presence of an organophosphine modified cobalt hydroformylation catalyst, wherein the hydroformylation process is carried out in the reaction environment which comprises at least two reaction zones, comprising a first reaction zone, a second reaction zone and, optionally, one or more later reaction zones, wherein the molar ratio of hydrogen to carbon monoxide entering the first reaction zone is in the range of from 0.5 to 1.65, and wherein water is added into the reactor system.07-15-2010
20110034569CO-PRODUCTION OF FUELS, CHEMICALS AND ELECTRIC POWER USING GAS TURBINES - A method and system for co-production of electric power, fuel, and chemicals in which a synthesis gas at a first pressure is expanded using a stand-alone mechanical expander or a partial oxidation gas turbine, simultaneously producing electric power and an expanded synthesis gas at a second pressure after which the expanded synthesis gas is converted to a fuel and/or a chemical.02-10-2011
20110124748Coal and Biomass Conversion to Multiple Cleaner Energy Solutions System producing Hydrogen, Synthetic Fuels, Oils and Lubricants, Substitute Natural Gas and Clean Electricity - The system contained within this application for patent protection provides the ability to produce clean syngas, natural gas, synthetic fuels, electricity, hydrogen fuels, and oil substitutes using a variety of materials. These materials include, but are not limited to: coal, biomass (including but not limited to municipal solid wastes), and agricultural byproducts. The fuels and electricity generated by this system can immediately be utilized by existing power and transportation grids, and as such, allow for rapid integration into the nation's energy needs. The system also removes and sequesters carbon dioxide, creating a clean, environmentally responsible supply of multiple types of power. The overall process provides an alternative to current oil and power solutions, allowing for domestic production of various energy requirements, creating the possibility for the reduced dependence on foreign imports for energy needs.05-26-2011
20090048353PROCESSES USING A SUPPORTED CATALYST - The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.02-19-2009
20110178185INTEGRATED BIOREFINERY FOR PRODUCTION OF LIQUID FUELS - A method and system for reforming a carbonaceous feedstock comprising the steps, reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. In certain instances, the method and system may be used to produce a liquid fuel.07-21-2011
20110178186Preparation Methods for Liquid Hydrocarbons by Fischer-Tropsch Synthesis Through Slurry Reaction - The present invention relates to a method for preparing liquid hydrocarbons via a slurry phase Fischer-Tropsch (F-T) synthesis. In particular, the present invention relates to a method for preparing liquid hydrocarbons from syngas via slurry phase F-T synthesis using a catalyst, which can prevent the decrease in catalyst activity and filter clogging due to catalyst aggrega-tion, simultaneously with improving selectivity for C07-21-2011
20100240778METHANOL PRODUCTION PROCESS - A process for the production of methanol comprises feeding a hydrocarbon feedstock to a partial oxidation reactor to produce a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide; subjecting the synthesis gas to methanol synthesis to produce a methanol product stream and a tail gas stream; separating the tail gas stream into at least two streams comprising a purge stream and a recycle stream, the recycle stream comprising a substantial portion of the tail gas stream; and, recycling the recycle stream to the partial oxidation reactor.09-23-2010
20110039952METHOD OF REMOVING MAGNETIC PARTICLE FROM FISCHER-TROPSCH SYNTHETIC CRUDE OIL AND METHOD OF PRODUCING FISCHER-SYNTHETIC CRUDE OIL (As Amended) - A method of separating magnetic particles from Fischer-Tropsch synthetic crude oil is provided, the method including: a solid-liquid separation step of separating a solid component from Fischer-Tropsch synthetic crude oil produced by a Fischer-Tropsch synthesis reaction; and a magnetic separation step of capturing magnetic particles contained in the Fischer-Tropsch synthetic crude oil subjected to the solid-liquid separation step and separating the magnetic particles from the Fischer-Tropsch synthetic crude oil, wherein the magnetic separation step is carried out by means of a high gradient magnetic separator including a washing liquid introduction line for introducing washing liquid used to intermittently clean the captured magnetic particles and a washing liquid discharge line for discharging the washing liquid which has been used to clean the magnetic particles.02-17-2011
20110054044SYSTEMS, METHODS, AND COMPOSITIONS FOR PRODUCTION OF SYNTHETIC HYDROCARBON COMPOUNDS - A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines. Phase conversion of working fluid is used in heat distribution lines for increased energy efficiency. The resulting use of electric energy is less than 1.4 times the amount of the high heating value of combustion of so produced hydrocarbon compounds when carbon dioxide is converted to carbon monoxide in the invention, and less than 0.84 when carbon monoxide is the source.03-03-2011
20100305220METHOD AND APPARATUS FOR PRODUCING LIQUID BIOFUEL FROM SOLID BIOMASS - The invention relates to a method and apparatus for producing liquid hydro carbonaceous product (12-02-2010
20100240777CATALYST FOR PRODUCING HYDROCARBON FROM SYNGAS, METHOD FOR PRODUCING CATALYST, METHOD FOR REGENERATING CATALYST, AND METHOD FOR PRODUCING HYDROCARBON FROM SYSNGAS - A catalyst for F-T synthesis which exhibits high activity, long life, and high water resistance without deteriorating strength and attrition resistance is disclosed. A method for producing such a catalyst, a method for regenerating such a catalyst, and a method for producing a hydrocarbon by using such as catalyst are also disclosed. Specifically, a catalyst for producing a hydrocarbon from a syngas, wherein cobalt metal, or cobalt metal and cobalt oxides; and zirconium oxides are supported by a catalyst support mainly composed of silica, is disclosed. This catalyst is characterized in that the content of impurities of the catalyst 0.01 mass % to 0.15 mass %. Specifically, a method for producing such a catalyst, a method for regenerating such a catalyst, and a method for producing a hydrocarbon by using such a catalyst are also disclosed.09-23-2010
20110136924CATALYST AND PROCESS FOR PRODUCING LIQUEFIED PETROLEUM GAS - The present invention relates to a catalyst for producing a liquefied petroleum gas, which is used for producing a liquefied petroleum gas containing propane or butane as a main component by reacting carbon monoxide and hydrogen, and comprises a Cu—Zn-based methanol synthesis catalyst and a Cu-supported β-zeolite in which at least Cu is supported on a β-zeolite.06-09-2011
20120149787FISCHER-TROPSCH CATALYSTS - A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial γ-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.06-14-2012
20110201697Liquid-fuel synthesizing method and liquid-fuel synthesizing apparatus - A liquid-fuel synthesizing method includes a synthesizing step of synthesizing liquid fuels by making a synthesis gas including a carbon monoxide gas and a hydrogen gas as the main components and a slurry having solid catalyst particles suspended in a liquid react with each other in a reactor, and a synthesis gas supply step of supplying the synthesis gas to the reactor from a plurality of supply devices provided in the reactor so as to have different heights.08-18-2011
20110201696Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method - A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the hydrocarbon synthesis reaction apparatus is provided with: a reactor which contains the slurry; a synthesis gas introduction part which introduces the synthesis gas into the reactor; and a synthesis gas heating part which is provided in the synthesis gas introduction part to heat the synthesis gas introduced into the reactor to the decomposition temperature of carbonyl compounds or higher.08-18-2011
20090286889INTEGRATED COAL TO LIQUIDS PROCESS AND SYSTEM - An integrated coal-to-liquids process is provided to minimize carbon dioxide emissions and efficiently make use of carbon resources, by recovering carbon dioxide emissions from Coal-to-Liquids (CTL) facilities, using the recovered carbon dioxide in at least one carbonylation reaction step for converting ammonia to urea and then converting urea into dimethyl carbonate.11-19-2009
20080319093CONVERSION OF CARBON DIOXIDE TO METHANOL AND/OR DIMETHYL ETHER USING BI-REFORMING OF METHANE OR NATURAL GAS - The invention discloses a method of converting carbon dioxide to methanol and/or dimethyl ether using any methane source or natural gas consisting of a combination of steam and dry reforming, in a specific ratio to produce a 2:1 molar ratio of hydrogen and carbon monoxide with subsequent conversion of the CO and H12-25-2008
20110306682METHOD FOR RECOVERING HYDROCARBON COMPOUNDS AND A HYDROCARBON RECOVERY APPARATUS FROM A GASEOUS BY-PRODUCT - There is provided a method for recovering hydrocarbon compounds from gaseous by-products generated in a Fischer-Tropsch synthesis reaction. The method includes absorbing light hydrocarbon compounds and a carbon dioxide gas from the gaseous by-products using an absorption solvent including liquid hydrocarbon compounds and a carbon dioxide gas absorbent, separating the absorption solvent which has absorbed the light hydrocarbon compounds and the carbon dioxide gas into the liquid hydrocarbon compounds and the carbon dioxide gas absorbent, heating the separated liquid hydrocarbon compounds to recover the light hydrocarbon compounds from the separated liquid hydrocarbon compounds, heating the separated carbon dioxide gas absorbent to strip the carbon dioxide gas from the separated carbon dioxide gas absorbent, and reusing the gaseous by-products from which the light hydrocarbon compounds and the carbon dioxide gas are absorbed as a feedstock gas for the Fischer-Tropsch synthesis reaction.12-15-2011
20110306683FISCHER-TROPSCH CATALYST, PREPARATION METHOD AND APPLICATION THEREOF - A micro-spherical iron-based catalyst and a preparation method thereof are disclosed. The catalyst contains a potassium promoter, and at least one transitional metal promoter M which is one or more kinds of metals selected from Cr, Cu, Mn and Zn. It also contains a structure promoter S, which is SiO12-15-2011
20090176895Multi-Tubular Reactors With Monolithic Catalysts - Multi-tubular reactors for fluid processing incorporate reactor tubes containing thermally conductive monolithic catalyst structures with relative dimensions and thermal expansion characteristics effective to establish both a non-interfering or slidably interfering fit between the monolith structures and the reactor tubes at selected monolith mounting temperatures, and geometries at reactor operating temperatures such that the operating gaps between tubes and monoliths under the conditions of reactor operation do not exceed about 250 μm over tube sections where high heat flux to or from the monoliths is required.07-09-2009
20120004329LIQUID FUEL PRODUCING METHOD AND LIQUID FUEL PRODUCING SYSTEM - A liquid fuel producing method which synthesizes hydrocarbons from a synthesis gas by a Fisher-Tropsch synthesis reaction and produces liquid fuels by using the hydrocarbons, the method includes: subjecting the hydrocarbons to a pretreatment in the presence of a hydrogen by using a catalyst for the pretreatment in which at least one kind of metal selected from metals of Groups 6, 7, 8, 9, 10, 11, and 14 of the Periodic Table is supported on a carrier; and hydroprocessing the hydrocarbons by using a hydroprocessing catalyst after the pretreatment.01-05-2012
20120010304Method and System for Synthesizing Liquid Hydrocarbon Compounds - Provided is a method for synthesizing liquid hydrocarbon compounds wherein synthesizing liquid hydrocarbon compounds from a synthesis gas by a Fisher-Tropsch synthesis reaction. The method includes a first absorption step of absorbing a carbon dioxide gas, which is contained in gaseous by-products generated in the Fisher-Tropsch synthesis reaction, with an absorbent, and a second absorption step of absorbing a carbon dioxide gas, which is contained in the synthesis gas, with the absorbent which is passed through the first absorption step.01-12-2012
20120016040DEVICE AND METHOD FOR INCREASING THE EFFECTIVENESS OF CATALYTIC CHEMICAL PROCESSES - The present invention relates to a monolithic solid catalyst for carrying out a heterogeneous catalytic chemical reaction in a reaction fluid which flows through the catalyst and comprises at least one educt, wherein the catalyst has at least one passage opening for the reaction fluid to flow through the catalyst.01-19-2012
20120071572COUNTER-CURRENT MULTISTAGE FISCHER TROPSCH REACTOR SYSTEMS - The invention discloses an improved multistage fischer tropsch process scheme for the production of hydrocarbon fuels comprising feeding gaseous phase syngas and liquid stream hydrocarbons in a counter current manner such as herein described into the reaction vessel at a number of stages containing reaction catalysts; wherein fresh syngas enters into the stage where the product liquid stream leaves and the fresh liquid stream enters into the stage where the unreacted syngas leaves; wherein further the temperature of each stage can be controlled independently. More particularly the invention relates to improving the heat release in different reactors, product selectivity and reactor productivity of FT reactors.03-22-2012
20120157555APPARATUS AND PROCESS FOR THREE-PHASE REACTION - A system and process for removing catalyst fines from a gas stream overhead the slurry in a Fischer-Tropsch slurry bubble column reactor. The gas phase at the top of the slurry bubble column reactor containing small amounts of entrained liquid and catalyst particles. The unreacted gases are passed through a demister, which removes larger droplets and catalyst particles. Smaller droplets and catalyst fines are conveyed to a secondary gas cleaner, such as a cyclone, whereby substantially all remaining particles are removed from the gas phase. A particle-containing liquid produced in the secondary gas cleaner can be further subjected to a filtrate cleaning unit to filter out fine catalyst particles and produce a substantially particle-free liquid product stream and a slurry stream of liquid product containing catalyst particles.06-21-2012
20120157554MEDIUM OIL USED FOR A SYNTHESIS REACTION, PROCESS FOR PREPARING DIMETHYL ETHER AND PROCESS FOR PREPARING A MIXTURE OF DIMETHYL ETHER AND METHANOL - A medium oil to be used for a synthesis reaction in a slurry-bed reaction procedure. The medium oil has as a main component, a branched, saturated aliphatic hydrocarbon having 16 to 50 carbon atoms, 1 to 7 tertiary carbon atoms, 0 quaternary carbon atoms, and 1 to 16 carbon atoms in the branched chains bonded to the tertiary carbon atoms; and at least one of the tertiary carbon atoms is bonded to hydrocarbon chains with a chain length having 4 or more carbon atoms in three directions, wherein the synthesis reaction in the slurry-bed reaction procedure comprises producing an oxygen-containing organic compound from a raw gas containing carbon monoxide and hydrogen.06-21-2012
20110065813Microchannel Compression Reactor Assembly - The present invention includes a removable microchannel unit including an inlet orifice and an outlet orifice in fluid communication with a plurality of microchannels distributed throughout the removable microchannel unit, and a pressurized vessel adapted have the removable microchannel unit mounted thereto, the pressurized vessel adapted to contain a pressurized fluid exerting a positive gauge pressure upon at least a portion of the exterior of the removable microchannel unit. The invention also includes a microchannel unit assembly comprising a microchannel unit operation carried out within a pressurized vessel, where pressurized vessel includes a pressurized fluid exerting a positive gauge pressure upon an exterior of the microchannel unit operation, and where the microchannel unit operation includes an outlet orifice in fluid communication with an interior of the pressurized vessel.03-17-2011
20110105630Catalytic Support for use in Carbon Dioxide Hydrogenation Reactions - A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.05-05-2011
20120149786SYSTEM AND METHOD FOR PREPARING LIQUID FUELS - Techniques, methods and systems for preparation liquid fuels from hydrocarbon and carbon dioxide are disclosed. The present invention can transform hydrocarbon and carbon dioxide generated from organic feed stocks or other industrial emissions into renewable engineered liquid fuels and store them in a cost-efficient way. The method of the present invention includes: supplying hydrocarbon and carbon dioxide to a heated area of a reaction chamber in controlled volumes; forming carbon monoxide by the energy provided by the heated area; transporting carbon monoxide and hydrogen to an reactor in controlled volumes; supplying additional hydrogen to the reactor; regulating the pressure in the reactor by adjusting the controlled volumes in order to achieve a predetermined object; forming the liquid fuel in the reactor according to the predetermined object; and, storing the liquid fuel in a storage device.06-14-2012
20120083538PROCESS FOR GENERATION OF SYNTHETIC FUEL FROM CARBONACEUS SUBSTANCES - A method and apparatus for the generation of synthetic motor fuels and additives to oil fuels, C04-05-2012
20120136075SYSTEM AND PROCESS FOR FISCHER-TROPSCH CONVERSION - A system for converting carbon monoxide and hydrogen gas into C2+ hydrocarbons including at least one high shear mixing device comprising at least one rotor and at least one stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the at least one rotor of greater than 22.9 m/s (4,500 ft/min), and a pump configured for delivering a fluid stream comprising liquid medium to the high shear mixing device.05-31-2012
20120172459Acetylene Enhanced Conversion of Syngas to Fischer-Tropsch Hydrocarbon Products - A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.07-05-2012
20120172458HYDROCARBON SYNTHESIS REACTION APPARATUS, HYDROCARBON SYNTHESIS REACTION SYSTEM, AND LIQUID HYDROCARBON RECOVERY METHOD - A hydrocarbon synthesis reaction apparatus synthesizes hydrocarbons by a Fischer-Tropsch synthesis reaction. The apparatus includes a reactor; a flowing line; a first cooling unit; a second cooling unit; a first separating unit which separates the liquid hydrocarbons condensed by the first cooling unit from the gaseous hydrocarbons; and a second separating unit which separates the liquid hydrocarbons condensed by the second cooling unit from the gaseous hydrocarbons. The first cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range equal to or lower than a condensing point at which a wax fraction condenses, and higher than a freezing point at which the wax fraction solidifies. The second cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range lower than the temperature to which the gaseous hydrocarbons are cooled by the first cooling unit, and higher than a freezing point at which a middle distillate solidifies.07-05-2012
20120178831PROCESS FOR PRODUCING HYDROCARBON OIL, AND SYNTHESIS REACTION SYSTEM - A process for producing a hydrocarbon oil from a feedstock gas containing carbon monoxide gas and hydrogen gas using a Fischer-Tropsch synthesis reaction, the process including a hydrocarbon synthesis step of synthesizing hydrocarbons by reacting the carbon monoxide gas and hydrogen gas contained in the feedstock gas within a catalyst particle-containing slurry contained inside a reactor, a powdered particle removal step of filtering the slurry extracted from a top section of a slurry bed inside the reactor, trapping and separating powdered particles formed by powdering of the catalyst particles to obtain liquid hydrocarbons, a catalyst particle trapping step of filtering the slurry extracted from a position lower than the top section of the slurry bed, trapping and separating the catalyst particles to obtain liquid hydrocarbons, and a catalyst particle return step of returning the trapped catalyst particles in the catalyst particle trapping step to the reactor, and a hydrocarbon recovery step of mixing the liquid hydrocarbons obtained in the powdered particle removal step and the liquid hydrocarbons obtained in the catalyst particle trapping step to recover a hydrocarbon oil.07-12-2012
20100292350Processes For Hydromethanation Of A Carbonaceous Feedstock - The present invention relates to processes for preparing gaseous products, and in particular methane, via the catalytic hydromethanation of a carbonaceous feedstock in the presence of steam, syngas and an oxygen-rich gas stream.11-18-2010
20090018220METHANOL SYNTHESIS - A process for synthesising methanol comprises the steps of: (i) reforming a hydrocarbon feedstock and separating water to generate a make-up gas comprising hydrogen and carbon oxides, the make-up gas mixture having a stoichiometric number, R, R=([H01-15-2009
20120232172HYDROCRACKING PROCESS AND PROCESS FOR PRODUCING HYDROCARBON OIL - A hydrocracking process for a wax fraction that includes a wax fraction hydrocracking step of hydrocracking a wax fraction contained within liquid hydrocarbons synthesized by a Fischer-Tropsch synthesis reaction, thereby obtaining a hydrocracked product, a fractional distillation step of supplying the hydrocracked product to a fractionator in which a bottom cut temperature is set to a constant value, and obtaining at least a middle distillate and a bottom oil from the fractionator, a recycling step of resupplying all of the bottom oil to the wax fraction hydrocracking step, and a hydrocracking control step of controlling the wax fraction hydrocracking step using a flow rate of the bottom oil as an indicator.09-13-2012
20080300326Processing Residue Gas of a Fischer-Tropsch Process - The invention concerns a method for converting hydrocarbon-containing gases into hydrocarbon-containing liquids wherein the Fischer-Tropsch process is implemented, said Fischer-Tropsch process producing hydrocarbon-containing liquids and a residue gas comprising at least hydrogen, carbon monoxide, carbon dioxide and hydrocarbons having a carbon number not more than 6, wherein the residue gas is subjected to a separation method producing: at least one gas stream comprising for the major part hydrogen; at least one stream comprising for the major part methane; at least one gas stream comprising for the major part inerts (carbon dioxide, nitrogen, argon) and hydrocarbons having a carbon number not less than 2.12-04-2008
20120322898PROCESS FOR PRODUCING SYNTHETIC LIQUID HYDROCARBONS AND REACTOR FOR FISCHER-TROPSCH SYNTHESIS - The disclosure relates to petrochemistry, gas chemistry, coal chemistry, particularly to a synthesis of hydrocarbons C12-20-2012
20110294905Conversion Of Liquid Heavy Hydrocarbon Feedstocks To Gaseous Products - The present invention relates to processes and apparatuses for generating light olefins, methane and other higher-value gaseous hydrocarbons from “liquid” heavy hydrocarbon feedstocks.12-01-2011
20080242748PROCESS FOR PRODUCING BRANCHED OLEFINS FROM LINEAR OLEFIN/ PARAFFIN FEED - A process for producing branched olefins from a mixed linear olefin/paraffin isomerisation feed comprising linear olefins having at least 7 carbon atoms in 5-50% w comprising in a first stage skeletally isomerising linear olefins in the isomerisation feed and in a second stage separating branched and linear molecules wherein branched molecules are substantially olefinic and linear molecules are olefinic and/or paraffinic; novel stages and combinations thereof; apparatus therefor; use of catalysts and the like therein; and use of branched olefins obtained thereby.10-02-2008
20080234397Method for Treatment of a Gas - A method of treating off-gas from a Fischer-Tropsch reaction is disclosed, the method comprising the steps of: (i) recovering the off-gas from a Fischer-Tropsch reaction, and (ii) hydrogenating a portion of the olefins present in said off-gas. In preferred embodiments the hydrogenated off-gas is used as a feed for a hydrogen manufacturing unit based on steam reforming. Carbon monoxide can be oxidised or methanated. A CuO/ZnO based catalyst can be used to hydrogenate the olefins. The present invention allows Fischer-Tropsch off-gas (containing unconverted syngas, olefins, C09-25-2008
20130143971PROCESS FOR PRODUCING HYDROCARBON OIL AND SYSTEM FOR PRODUCING HYDROCARBON OIL - Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.06-06-2013
20110218254USING FOSSIL FUELS TO INCREASE BIOMASS-BASED FUEL BENEFITS - In the production of fuel such as ethanol from carbonaceous feed material such as biomass, a stream comprising hydrogen and carbon monoxide is added to the raw gas stream derived from the feed material, and the resulting combined stream is converted into fuel and a gaseous byproduct such as by a Fischer-Tropsch reaction. The gaseous byproduct may be utilized in the formation of the aforementioned stream comprising hydrogen and carbon monoxide.09-08-2011
20130158136APPARATUS AND METHOD FOR CONDUCTING A FISCHER-TROPSCH SYNTHESIS REACTION - In order to avoid fouling (precipitation of solid matter on cold surfaces) in heat-exchangers down-stream of the gas outlet of a Fischer-Tropsch reactor, the reactor gas stream containing hydrocarbon products that are solid at lower temperatures is fed into a liquid wash tank. Condensation of heavy oil in the liquid wash tank is effected by feeding an evaporable light oil into the liquid wash tank. Heavy oil is recovered as a bottom product from the liquid wash tank while a gaseous product is taken out of the liquid wash tank as the top product. The light oil is obtained from the wash tank top product.06-20-2013
20080200569Fischer-Tropsch Synthesis Process with Improved Regulation - A process for the production of liquid hydrocarbons by the Fischer-Tropsch process comprises a step a) for generating a synthesis gas, a step b) for Fischer-Tropsch synthesis, a step c) for condensing the gaseous effluent obtained during step b), a step d) for separating the effluent condensed during step c) to obtain a gaseous effluent enriched in carbon monoxide and hydrogen, and a step e) for recycling at least a portion of the enriched gaseous effluent obtained during step d) to the Fischer-Tropsch synthesis step b), characterized in that: 08-21-2008
20110230572Water-Forming Hydrogenation Reactions Utilizing Enhanced Catalyst Supports and Methods of Use - Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.09-22-2011
20110313063APPARATUS AND METHOD FOR CONDUCTING A FISCHER-TROPSCH SYNTHESIS REACTION - A system for a Fischer-Tropsch synthesis using a three-phase reactor in which a primary filter removes coarse catalyst particles from the product and in which catalyst fines are removed in a secondary filter. Some or all portion of the product wax from the secondary filter can be recycled back to the reactor, either as a back flush medium for the primary filter or directly to the slurry in the reactor, whereby removal of catalyst fines is rendered independent of the rate of wax production.12-22-2011
20100317748GASIFICATION OF CARBONACEOUS MATERIALS AND GAS TO LIQUID PROCESSES - Herein disclosed is a method of producing synthesis gas from carbonaceous material, the method comprising: (a) providing a mixture comprising carbonaceous material and a liquid medium; (b) subjecting the mixture to high shear under gasification conditions whereby a high shear-treated stream comprising synthesis gas is produced; and (c) separating a product comprising synthesis gas from the high shear-treated stream. Herein also disclosed is a method for producing a liquid product. The method comprises forming a dispersion comprising gas bubbles dispersed in a liquid phase in a high shear device, wherein the average gas bubble diameter is less than about 1.5 μm; contacting the dispersion with a multifunctional catalyst to form the liquid product; and recovering the liquid product. In an embodiment, the liquid product is selected from the group consisting of C2+ hydrocarbons, C2+ oxygenates, and combinations thereof.12-16-2010
20100317747Medium oil used for a synthesis reaction, process for preparing dimethyl ether and process for preparing a mixture of dimethyl ether and methanol - A medium oil to be used for a synthesis reaction in a slurry-bed reaction procedure. The medium oil has as a main component, a branched, saturated aliphatic hydrocarbon having 16 to 50 carbon atoms, 1 to 7 tertiary carbon atoms, 0 quaternary carbon atoms, and 1 to 16 carbon atoms in the branched chains bonded to the tertiary carbon atoms; and at least one of the tertiary carbon atoms is bonded to hydrocarbon chains with a chain length having 4 or more carbon atoms in three directions.12-16-2010
20110313062SLURRY BUBBLE COLUMN REACTOR - A slurry bubble column reactor with a gas distribution arrangement comprising an upper sparger, a lower sparger, and an open-ended tube. Gas from the lower sparger enters the tube and lowers the density of slurry in the tube. The difference in slurry density causes the slurry in the tube to rise, causing slurry outside the tube to move down, maintaining circulation and flushing catalyst from the vessel wall.12-22-2011
20110313061PROTECTED FISCHER-TROPSCH CATALYST AND METHOD OF PROVIDING SAME TO A FISCHER-TROPSCH PROCESS - A method of preparing a spray dried catalyst by combining spray dried catalyst particles with wax so the spray dried catalyst particles are coated with wax, yielding wax coated catalyst particles, and shaping the wax coated catalyst to provide shaped wax coated catalyst. A method of activating Fischer-Tropsch catalyst particles containing oxides by contacting the catalyst particles with a reducing gas in an activation vessel to produce an activated catalyst, wherein contacting is performed in the absence of a liquid medium under activation conditions. A system for activating a Fischer-Tropsch catalyst containing an activation reactor configured to introduce an activation gas to a fixed or fluidized bed of the Fischer-Tropsch catalyst in the absence of a liquid medium and at least one separation device configured to separate a gas stream comprising entrained catalyst fines having an average particle size below a desired cutoff size from the activation reactor.12-22-2011
20090176894PROCESS OF FISCHER-TROPSCH SYNTHESIS BY CONTROL OF THE PARTIAL PRESSURE OF WATER IN THE REACTION ZONE - The subject of the invention is a process for the synthesis of hydrocarbons based on a synthesis gas type feedstock in which said synthesis gas is brought into contact with a catalyst in a reactor under Fischer-Tropsch synthesis conditions and in which the partial pressure of water is controlled in order to keep it below a critical value ppH07-09-2009
20130197109SUSPENDED-SLURRY REACTOR - An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.08-01-2013
20120071571COBALT CATALYSTS - A catalyst suitable for the Fischer-Tropsch synthesis of hydrocarbons is described comprising cobalt nanocrystallites containing a precious metal promoter, dispersed over the surface of a porous transition alumina powder wherein the cobalt content of the catalyst is ≧25% by weight, the precious metal promoter metal promoter content of the catalyst is in the range 0.05 to 0.25% by weight, and the cobalt crystallites have a average size, as determined by hydrogen chemisorption, of ≧15 nm. A method for making the catalyst is also described.03-22-2012
20130210935OPERATION OF PROCESSES WHICH EMPLOY A CATALYST THAT DEACTIVATES OVER TIME - A method of operating a process for catalytically converting one or more reactants to one or more products using a fluid bed reactor containing a catalyst which deactivates over time includes, during a catalyst campaign, in a step A, gradually increasing an operating temperature of the reactor to counteract the negative effect of catalyst deactivation on a conversion rate of the one or more reactants. The operating temperature is not allowed to exceed a selected maximum operating temperature. Thereafter, in a step B, catalyst is added which has the tendency to increase the conversion rate of the one or more reactants into the reactor, and the operating temperature of the reactor is reduced to counteract to at least some extent the effect of the added catalyst on the conversion rate of the one or more reactants. The operating temperature remains above a selected minimum operating temperature during step B. Steps A and B are repeated until the end of the catalyst campaign or until the end of a production run.08-15-2013

Patent applications in class LIQUID PHASE FISCHER-TROPSCH REACTION

Patent applications in all subclasses LIQUID PHASE FISCHER-TROPSCH REACTION