Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Bevel gear differential

Subclass of:

475 - Planetary gear transmission systems or components

475220000 - DIFFERENTIAL PLANETARY GEARING

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
475230000 Bevel gear differential 89
20090192007Casing Structure for Torque Transmission Device - A casing structure for a torque transmission device is provided with a ring gear for receiving and transmitting torque with an external member so as to rotate around an axis and a casing rotating with the ring gear. The ring gear is provided with tapped holes. The casing is provided with a main casing having first through holes and a cover having second through holes. Bolts are respectively inserted through the first and second through holes and tightened in the tapped holes so that the casing is fixed to the ring gear. A diameter of the first throughholes differs from a diameter of the second throughholes.07-30-2009
20090258750Vehicle differential - A differential assembly has a cross-pin connecting a ring gear to at least one section of a differential case half. The cross-pin may be secured in place by threading it into a part of the differential case or by a locking pin. Torque is transferred directly from the ring gear through the cross-pin to the differential side pinions or gears.10-15-2009
20100331134 AXLE - An axle has a central crown wheel receiving portion with a pinion side and an opposite side. The opposite side is defined by a first crown wheel bowl for receiving a part of a crown wheel, the first crown wheel bowl having a peripheral edge. The axle includes a second crown wheel bowl for receiving the part of the crown wheel. The second crown wheel bowl is nested with the first crown wheel bowl and is attached to the first crown wheel bowl at a peripheral edge to define a reservoir.12-30-2010
20090305835Four Pinion Differential With Cross Pin Retention Unit And Related Method - A differential having four pinions supported for rotation on cross pins within a differential case. The differential employs a retainer system for securing the cross pins relative to the differential case. The retainer system can include a retainer, such as a clip or a pair of roll pins, that can secure at least one of the cross pins in place.12-10-2009
20090280946VEHICULAR DIFFERENTIAL GEAR APPARATUS - A differential casing 11-12-2009
20090270218DIFFERENTIAL ASSEMBLY WITH BEARING DISCS IN OPENINGS FOR MOUNTING PURPOSES - The invention relates to a differential assembly in the form of a crown gear differential, more particularly for being used in the driveline of a motor vehicle. The differential assembly comprises a differential carrier (10-29-2009
20090088286DIFFERENTIAL GEAR - In a differential gear, a differential case includes: a first differential case on a side ranging from a pinion-shaft installation part on which a pinion shaft is installed, to a ring gear; and a second differential case on a side opposite to the side ranging from a pinion-shaft installation part on which the pinion shaft is installed, to the ring gear. The first differential case is integrally molded from only a low-carbon steel containing less than 0.45% of C, by forging or by forging and cutting. The second differential case is integrally molded from only a low-carbon steel containing less than 0.45% of C, by forging or by forging and cutting. The first differential case and the second differential case are bonded to each other by welding.04-02-2009
20110021305DIFFERENTIAL HAVING SELF-ADJUSTING GEARING - A differential for use in a vehicle drive train including a gear case that is operatively supported in driven relationship with respect to the drive train and a spider mounted for rotation with the gear case. The spider includes at least one pair of cross pins. Each cross pin defines a longitudinal axis and an outer surface that is convex about an axis extending perpendicular to the longitudinal axis of the cross pin. Pinion gears include a central bore where the cross pins are received in the central bore of the pinion gears such that the gears are mounted for rotation with the spider and in meshing relationship with side gears with an increased degree of rotational freedom of the pinion gears about the convex surface of the cross pin. Alternatively, the central bore of the cross pin may have an inner surface that is convex along the axis of the central bore.01-27-2011
20120115669DIFFERENTIAL APPARATUS - A differential apparatus is provided with a case; a pinion gear; a pair of side gears meshing with the pinion gear; a spherically depressed pinion gear supporting surface portion formed on an inner surface of the case to support a spherically projecting back side portion of the pinion gear; and spherically depressed side gear supporting surface portions formed on the inner surface of the case to respectively support spherically projecting back side portions of the side gears. The projecting back side portions of the side gears which are slidable on the depressed side gear supporting surface portions are formed on tooth portions of the side gears.05-10-2012
20120238396Lower Powertrain Axle Shroud - A shroud assembly and method for assembling such shroud assembly for a vehicle are disclosed. The shroud may comprise a collar joined to a nose cap. The shroud assembly may comprise the collar, the nose cap, and meshed ring and pinion gears. The collar may define at least one port and the nose cap may define an aperture. These allow lubricating fluid to escape outside of the shroud and thus be removed from the immediate vicinity of the rotating ring and pinion gears.09-20-2012
20130165290DIFFERENTIAL FOR MOTOR VEHICLES - In a differential for motor vehicles, comprising a tubular differential housing (06-27-2013
20100062892Differential Provided with a Drive Wheel - A differential provided with a drive wheel comprising two pairs of bevel gears disposed in a two-part housing, one of the pairs of bevel gears being a pair of axle bevel gears and the other pair of bevel gears being a pair of compensating bevel gears.03-11-2010
20090082161Differential assembly with welded differential carrier - A differential assembly includes a differential carrier (03-26-2009
20100130326Differential Assembly With Preload Adjustment Mechanism - A vehicle differential assembly may include a differential housing rotatable about an axis, a first output assembly, a pinion gear, and a first coupling assembly. The first output assembly may include a first side gear and a first output member. The first side gear may be disposed within the differential housing and may be rotatable about the axis. The first output member may be coupled to the first side gear for rotation therewith. The first coupling assembly may be engaged with the first output assembly and may include a coupling mechanism and a biasing member. The coupling mechanism may extend through an opening in the first output member and may be displaceable relative to the differential housing in a direction generally parallel to the axis. The biasing member may be engaged with the coupling mechanism and may urge the first output assembly into frictional engagement with the differential housing.05-27-2010
20110143879Axle Assembly with a Differential Provided with a Drive Wheel - An axle assembly comprising a differential provided with a drive wheel comprising two pairs of bevel gears disposed in a two-part housing, one of the pairs of bevel gears being a pair of axle bevel gears and the other pair of bevel gears being a pair of compensating bevel gears.06-16-2011
20090137357METHOD FOR MAKING VEHICLE AXLE DIFFERENTIAL CASING AND RESULTANT PRODUCT - A method for making a differential gear casing (05-28-2009
20090088285FOUR PINION DIFFERENTIAL WITH CROSS PIN RETENTION UNIT AND RELATED METHOD - A differential having four pinions supported for rotation on cross pins within a differential case. The differential employs a retainer system for securing the cross pins relative to the differential case. The retainer system can include a collar and a plurality of pin members.04-02-2009
20090105031Differential assembly and method for manufacturing same - A differential assembly and method of manufacturing such an assembly are provided. A method for manufacturing a differential assembly includes forming a first portion of a differential carrier; forming a second portion of the differential carrier; securing the first portion to the second portion to form the differential carrier; forming a differential housing; and securing the differential carrier to the differential housing to form a differential assembly. A sintering process may be used to form the first portion and second portion of the differential carrier, and the first and second portions may be secured together by a brazing process. The forming of the first and second portions of the differential carrier and the securing of the first and second portions to form a differential carrier may be achieved by a sinter-brazing process.04-23-2009
20090082162DIFFERENTIAL AND BEARING ARRANGEMENT - An axle assembly with an axle housing with a pair of bearing journals, a differential assembly disposed between the bearing journals, a pair of differential bearings and a pair of hollow adjusters that can be threaded into the bearing journals to preload the differential bearings and control gear lash between a pinion and a ring gear. Retaining members can be non-rotatably engage to the hollow adjusters and can be press-fit into counterbores in the outboard sides of the bearing journals. The axle housing can include an unitarily formed differential housing with a body and an axle tube structure, and a first axle tube that can be discretely formed and coupled to the body.03-26-2009
20080261748FOUR PINION DIFFERENTIAL WITH CROSS PIN RETENTION UNIT AND RELATED METHOD - A differential having four pinions supported for rotation on cross pins within a differential case. The differential employs a retainer system for securing the cross pins relative to the differential case. The retainer system can include a retainer, such as a clip or a pair of roll pins, that can secure at least one of the cross pins in place.10-23-2008
20080312024Differential Assembly With Centered Differential Gears - The invention relates to a differential assembly in the form of a crown gear differential, more particularly for being used in the driveline of a motor vehicle. The differential assembly comprises a differential carrier (12-18-2008
20090048055Differential With Cross Pin Retention System And Method For Assembly - A differential assembly includes a retainer for a cross pin having a bore aligned with a bore formed in a differential housing. The cross pin retainer is positionable at partially-inserted and fully-inserted positions within the cross pin and differential bores. At a first rotational orientation, the cross pin retainer is positionable in its partially-inserted position to temporarily retain the cross pin within the differential housing. At a second rotational orientation, the cross pin retainer is positionable in its fully-inserted position to retain the cross pin within the differential housing. Features of the cross pin retainer cooperate with surfaces formed in the differential housing to allow the cross pin retainer to be fixedly positioned and secured within the differential housing.02-19-2009
20110059822Powder Forged Differential Gear - A differential assembly, bevel gears for the assembly, and a method of making the bevel gears are disclosed. The bevel gears have a form which provides for high power density transfer.03-10-2011
20100151983Spider-less vehicle differential - A differential case has a plurality of spaced apart recesses on an internal surface for receiving a plurality of side pinions within the recesses. The side pinions are driven by the case without a differential spider or differential pin.06-17-2010
20100113207Differential With Cross Pin Retention System And Method For Assembly - A differential assembly includes a retainer for a cross pin having a bore aligned with a bore formed in a differential housing. The cross pin retainer is positionable at partially-inserted and fully-inserted positions within the cross pin and differential bores. At a first rotational orientation, the cross pin retainer is positionable in its partially-inserted position to temporarily retain the cross pin within the differential housing. At a second rotational orientation, the cross pin retainer is positionable in its fully-inserted position to retain the cross pin within the differential housing. Features of the cross pin retainer cooperate with surfaces formed in the differential housing to allow the cross pin retainer to be fixedly positioned and secured within the differential housing.05-06-2010
20100184552DIFFERENTIAL CARRIER ASSEMBLY FOR A VEHICLE - A differential carrier assembly for use in an axle of a vehicle includes a differential carrier that extends along a central axis. The differential carrier defines a chamber. A first stub shaft extends along a first rotational axis, transverse to the central axis. The first stub shaft is disposed within the chamber and is supported by the differential carrier. A first pair of gears is disposed in spaced relationship on the first stub shaft for rotation about the first rotational axis. A second stub shaft extends along a second rotational axis, transverse to the central axis and the first rotational axis. The second stub shaft is disposed within the chamber and supported by the differential carrier. A second pair of gears is disposed in spaced relationship on the second stub shaft for rotation about the second rotational axis.07-22-2010
20110245011VIBRATION DAMPING DEVICE AND POWER TRANSMISSION DEVICE - A vibration damping device is equipped with a mass body disposed spaced apart from a rotational center axis of a rotary shaft by a certain distance, and a rolling bearing that rotatably supports the mass body with respect to the rotary shaft and holds a support posture of the mass body with respect to the rotational center axis of the rotary shaft constant.10-06-2011
20100227727DIFFERENTIAL GEAR DEVICE - A differential gear device includes a case in which a housing portion is formed, and which rotates around a rotation center line; a first protruding portion that is located at a position away from the rotation center line, and protrudes from an inner surface of the case toward the rotation center line, wherein the first protruding portion tapers in a direction from the inner surface of the case toward the rotation center line; a first gear that is provided around the first protruding portion, and that is rotatable; a second gear that engages with the first gear, and that is connected with a first output shaft; and a third gear that engages with the first gear, and that is connected with a second output shaft.09-09-2010
20090215574DIFFERNTIAL GEAR - The invention relates to a differential gear having a differential housing in which two conical compensating gears are rotatably supported about a first axis of rotation and two conical output gears meshing with the compensating gears are rotatably supported about a second axis of rotation oriented at right angles to the first axis of rotation, wherein a spring device is arranged between the differential housing and at least one of the output and/or compensating gears to load it with a spring force.08-27-2009
20090215573Differential gear - A differential case includes a first boss part into which a first drive shaft is inserted, and a second boss part into which a second drive shaft opposed to the first drive shaft is inserted. The differential case is composed of: a first case body extending from pinion-shaft assembling parts on which a pinion shaft is assembled, to a ring gear; a second case body having the first boss part; and a third case body having the third boss part. The first case body is integrally formed by forging. The second case body is integrally formed by forging. The third case body is integrally formed by forging. The first case body and the second case body are joined to each other by welding. The first case body and the third case body are joined to each other by welding.08-27-2009
20090215572DIFFERENTIAL FOR MODEL CAR - A differential for a model car includes a housing having a chamber, four notches recessed in a periphery of the chamber and each having a trapezoid section, four blocks received in the notches respectively, a spider having four ends connected with the blocks respectively, four first bevel gears respectively sleeved on the ends of the spider, two second bevel gears received in the chamber and engaged with the first bevel gears respectively, a main gear sleeved on the housing, and two output shafts respectively passing through the main gear and the housing to be connected with the second bevel gears. Thus, the first bevel gears and the second bevel gears can be tightly engaged with each other by means of the arrangement of the spider and the blocks to eliminate the power loss of the model car.08-27-2009
20110251012DIFFERENTIAL ABIK FOR TRANSPORTATION MEANS - The invention relates to differential drives for driving axles and wheels of transport means. The differential includes output shafts, which are kinematically interconnected by at least one differential pinion. The differential pinion is connected to the differential's housing by means of at least one intermediate member, which rotates freely in the housing coaxially to the geometrical axis of the differential pinion, and—conjugated surface zones of the differential pinion and the intermediate member, which zones are offset relative to the geometrical axis of the differential pinion. The conjugated surface zones may have different configurations. The invention makes it possible to simplify the design of a self-locking differential and to significantly increase the range of the blocking effect.10-13-2011
20100261569FRONT DIFFERENTIAL FOR A VEHICLE - A front differential for a four wheel drive vehicle, includes: a switching mechanism that switches the vehicle between rear-wheel drive and front- and rear-wheel drive by selectively interrupting or allowing the transmission of power between one of a pair of side gears and one of a pair of front wheels; and an urging mechanism that urges at least one of the pair of side gears in a drive shaft axial direction toward at least one of the front wheels.10-14-2010
20110152028FOUR PINION DIFFERENTIAL WITH CROSS PIN RETENTION UNIT AND RELATED METHOD - A differential having four pinions supported for rotation on cross pins within a differential case. The differential employs a retainer system for securing the cross pins relative to the differential case. The retainer system can include a collar and a plurality of pin members.06-23-2011
20090118054DIFFERENTIAL APPARATUS FOR VEHICLE AND ASSEMBLING METHOD THEREOF - It is an object of the present invention to provide a differential apparatus for a vehicle and assembling method thereof obtaining a stable differential restricting torque and achieving high flexibility of setting a higher torque bias ratio TBR.05-07-2009
20080280720POWER TRANSMITTING APPARATUS - A power transmitting apparatus for performing switching between 2-wheel and 4-wheel drive modes and locking and unlocking of a differential by an operational shaft can comprise a reversible motor, a driving shaft rotationally driven by the motor and adapted to be engaged by the operational shaft for transmitting a rotational force therebetween, a sub case for containing the motor and the driving shaft therein and mounted on the main case, an opening formed in the sub case and having a size permitting the operational shaft to be inserted and an end face of the driving shaft for engaging an end face of the operational shaft to be exposed, and a first sealing means arranged on the inner circumferential surface of the opening at a position away from the driving shaft for sealing off the inside of the sub case with forming a seal between the inner circumferential surface of the opening and the outer circumferential surface of the operational shaft when the operational shaft is engaged with the driving shaft.11-13-2008
20100029434VEHICLE DIFFERENTIAL APPARATUS - A vehicle differential apparatus includes: a differential case; two side gears; and two pinions. An axial center of each pinion is provided with a first pinion shaft insertion hole. A pinion shaft is inserted in the first pinion shaft insertion holes. An inner peripheral surface of the first pinion shaft insertion hole of each pinion is provided with two sliding surfaces that are slidable on one of two pinion inner peripheral surface-supporting portions of the pinion shaft, and a non-contacting surface that is not able to contact the pinion inner peripheral surface-supporting portion. The sliding surfaces and the non-contacting surface of each first pinion shaft insertion hole are disposed at positions adjacent to each other in the axis direction of the first pinion shaft insertion hole.02-04-2010
20100056320Spider-less vehicle differential - A ring gear has a plurality of spaced apart recess on an internal surface for receiving a plurality of side pinions within the recesses. The side pinions are driven directly by the ring gear without a differential spider or differential pin.03-04-2010
20120015775DIFFERENTIAL ASSEMBLY FOR A VEHICLE - A differential assembly according to the invention and indicated generally by the reference numeral comprises a differential housing containing a spider on which are rotatably mounted a number of planet bevel gears which rotatably engage the bevel gears which are spline mounted on the output shafts. The output shafts are connected via articulating joints to propshafts that are driveably connected to the road wheels of the vehicle. The vehicle engine drives a propshaft by means of various gear mechanisms. This propshaft is connected to the differential assembly input shaft by means of a coupling on the input shaft so as to transmit torque to the differential assembly by means of a pinion gear on the input shaft. The pinion gear meshes with a crown wheel bevel gear which is mounted on the differential housing so as to transmit the engine torque to the housing. The crown wheel bevel gear has gear teeth which face away from the differential assembly spider thus providing a relatively large offset between the axis of the input shaft and the axis of the spider.01-19-2012
20090075777Support structure for differential - A support structure for a differential assembly comprising: a support ring having a peripheral wall extending between a first face and a second face, the support ring having a non-hollow center; a bore in the peripheral wall sized and shaped to receive a pinion shaft; and an aperture in the first face, the second aperture in fluid communication with the first aperture.03-19-2009
20120190494Differential - A differential, having at least one drive gear, at least two axle gears, at least one compensating gear, and at least one connector element, in which the connector element is subjected to at least one first torque from the drive gear and transmits at least one second torque to at least one of the at least two axle gears. The drive gear is constructed in such a manner that the drive gear at least partially encloses at least one interior space, and the connector element is arranged at least partially inside the interior space enclosed at least partially by the drive gear.07-26-2012
20090017962Differential mechanism assembly - A differential assembly includes a first case portion, a second case portion secured to the first case portion, the first case portion and the second case portions enclosing a cavity and supported for rotation about a first axis, a spider pin located within and extending beyond the cavity at an axial position to engage the ring gear and secured to at least one of the first case portion and the second case portion for rotation therewith, and a ring gear secured to at least one of the first case portion and the second case portion, located radially outboard of the spider pins and at the axial position of the spider pins.01-15-2009
20100130325DIFFERENTIAL OF LIGHTWEIGHT CONSTRUCTION FOR MOTOR VEHICLES - The invention relates to a differential of lightweight construction for motor vehicles having a differential housing made of two sheet metal shells, in which differential bevel gears (05-27-2010
20080227583DIFFERENTIAL CASE FOR VEHICLE AND DIFFERENTIAL DEVICE FOR VEHICLE INCLUDING DIFFERENTIAL CASE - It is an object of the present invention to provide a differential case for a vehicle and a differential device for a vehicle restricting change and movement of an intermeshing of a pair of side gears and a pair of pinion gears to achieve stable differential restriction force.09-18-2008
20080220926Differential for Vehicles - The differential for vehicles comprises a rotatable carcass (09-11-2008
20130116080VEHICLE DIFFERENTIAL GEAR - It is an object to provide a vehicle differential gear reducing, as compared with the prior art, the magnitude of the inertial force of the drive shafts upon the hitting of the side gears on the differential case to thereby prevent the drive shafts from disengaging from the side gears.05-09-2013
20100292041Differential for Motorcycle Trike - A tilting suspension system is adapted for use with a vehicle having three wheels and a frame. The system has two sets of control arms, each set of control arms being pivotally connected to one side of the frame. An upright is pivotally connected to each set of control arms, each upright having a rotatable hub for allowing one of the wheels to be mounted thereto. Two rocker arms are pivotally connected to the frame, and a control link is pivotally connected to each of the rocker arms, such that pivoting of one rocker arm causes corresponding pivoting of the other rocker arm. A link member operably connects each rocker arm to a corresponding upright, such that pivoting of each rocker arm causes corresponding movement of the uprights. An actuator is configured to selectively pivot the rocker arms, such that actuation of the actuator pivots the rocker arms, thereby causing the frame to rotate about a generally longitudinal roll center and causing each upright to rotate about a generally longitudinal axis.11-18-2010
20100317483HIGH PERFORMANCE DIFFERENTIAL - A gear set includes a first gear having at least one tooth with a first tooth profile. The first tooth profile may comprise a first segment comprising a first plurality of sections. At least one of the first plurality of sections may have a first profile angle, and at least one of the first plurality of sections may have a second profile angle. The first profile angle and the second profile angle may be different. A differential is also provided that includes a differential case, a pinion shaft disposed inside the differential case, and a pinion gear.12-16-2010
20120028750DIFFERENTIAL GEAR AND VEHICLE PROVIDED WITH DIFFERENTIAL GEAR - A differential gear is structured such that a first differential case and a second differential case overlap one another in the radial direction such that a first joining portion of the first differential case, i.e., a portion of an outward flange that is on the outer peripheral side of a through-hole, is positioned on the outer peripheral side of a second joining portion of the second differential case, i.e., a joining protrusion that is inserted in the through-hole. In addition, the ring gear is arranged facing those joining portions in the direction of the axis, and laser beam welded from the outer peripheral side at the portion where the ring gear faces both of those joining portions. Accordingly, the three members, i.e., the first differential case, the second differential case, and the ring gear, are all integrally joined together by a single welding operation, and manufacturing costs can be reduced.02-02-2012
475231000 With means to limit overspeed of one output (e.g., lock-up clutch) 37
20130029798ADJUSTING RING LOCK - A locking mechanism for a differential assembly includes an adjusting ring and a retainer. The adjusting ring is rotatable about an axis and has an inner peripheral surface and an outer peripheral surface. The adjusting ring is adjustable to set a desired preload. A plurality of pockets is formed within the outer peripheral surface, and the pockets are circumferentially spaced apart from each other about the axis. The retainer has a portion that at least partially extends into one of the pockets to prevent rotation of the adjusting ring about the axis once the desired preload is achieved.01-31-2013
20090011890Locking differential including disengagement retaining means - A locking differential includes a pair of annular clutch members that are normally displaced apart to effect engagement between clutch teeth on the remote ends of the clutch members and corresponding gear teeth on the adjacent ends of a pair of side gears between which the clutch members are colinearly arranged. When one output shaft overruns the other by a predetermined amount, the clutch member associated with the overrunning output shaft is disengaged from its associated side gear. A retaining device retains the clutch members in the disengaged condition until the overrunning condition is terminated. In one embodiment, the retaining device is a cam arm and follower pin arrangement that is connected between the clutch members and operates in conjunction with a pair of friction rings. In a second embodiment, the retaining device comprises a pair of holdout rings that operate between the clutch members and the side gears.01-08-2009
20090247350ELECTRONIC LOCKING DIFFERENTIAL WITH DIRECT LOCKING STATE DETECTION SYSTEM - An axle assembly with an electronic locking differential that employs a locking mechanism having components that are fixed to one another along an axis such that they co-translate with one another when the actuator that effects the locking and unlocking of the differential is operated.10-01-2009
20100267512BLOCK MOUNTED LOCK-OUT MECHANISM - A differential is provided that includes a first and second side gear and a reaction block disposed between the first and second side gear. The differential further includes an engagement mechanism configured to have at least a portion of the engagement mechanism that is moveable from a retracted position to an extended position and a lock-out mechanism that is configured to engage the portion of the engagement mechanism. The lock-out mechanism is mounted to the reaction block. A reaction block for a differential in which a lock-out mechanism is mounted on the reaction block is also provided.10-21-2010
20130190126TWO-MODE PASSIVE LIMITED SLIP DIFFERENTIAL - A limited slip differential assembly includes first and second output gears in constant meshed engagement with a pinion gear. Each of the gears is rotatably positioned within a carrier housing. The second output gear is axially moveable. A rotary to linear motion actuator includes a rotatable first member and a second member axially moveable in response to rotation of the first member. A primary clutch drivingly interconnects the second output gear and the first member of the actuator. The primary clutch includes an apply plate coupled to the second output gear such that an axial force acting on the second output gear during torque transmission through the differential assembly is transferred to the primary clutch via the apply plate. A secondary clutch drivingly interconnects the second output gear and the carrier housing. The second member of the actuator provides an apply force to the secondary clutch.07-25-2013
20090264243ANNULAR ACTUATOR HAVING PLUNGER CONFIGURED TO TRANSLATE THROUGH A VISCOUS LIQUID - An actuator having a linear motor and a plunger that is movable by the linear motor along an axis. The plunger includes an annular flange and a rim that is coupled to an outer periphery of the flange. The annular flange is oriented generally perpendicular to the axis. A plurality of apertures is formed through at least one of the flange and the rim. A locking differential and an axle assembly are also provided.10-22-2009
20080318725Differential assembly with preload adjustment mechanism - A vehicle differential assembly may include a differential housing rotatable about an axis, a first output assembly, a pinion gear, and a first coupling assembly. The first output assembly may include a first side gear and a first output member. The first side gear may be disposed within the differential housing and may be rotatable about the axis. The first output member may be coupled to the first side gear for rotation therewith. The first coupling assembly may be engaged with the first output assembly and may include a coupling mechanism and a biasing member. The coupling mechanism may extend through an opening in the first output member and may be displaceable relative to the differential housing in a direction generally parallel to the axis. The biasing member may be engaged with the coupling mechanism and may urge the first output assembly into frictional engagement with the differential housing.12-25-2008
20110230301VEHICLE FINAL REDUCTION GEAR UNIT - A vehicle final reduction gear unit includes a first friction brake positioned between a right case member which is a stationary body and a differential case which is a rotating body for applying a pressing force in an axial direction to generate a frictional force in order to put a brake on the differential case. A second friction brake occupies an area between the differential case and the right wheel and applies a pressing force in the axial direction to generate a frictional force in order to use a rotational difference to put the differential mechanism into a lock state. The second friction brake is placed within the radius of the first friction brake. A reduced size is accomplished and the final reduction gear unit can be reduced in length in the vehicle-transverse direction. Thus, a vehicle final reduction gear unit allowing a reduction in size can be provided.09-22-2011
20090088287DRIVE ASSEMBLY WITH INTERMEDIATE SHAFT AND COUPLING UNIT - The invention relates to a drive assembly for being used in the axle drive of a motor vehicle between an axle differential and a sideshaft. It comprises an intermediate shaft (04-02-2009
20090258751HYDRAULIC COUPLING WITH DISCONNECT PUMP CLUTCH - A power transfer assembly for use in a motor vehicle and having a hydraulic coupling operable to transfer drive torque to a driveline in response to slip. The hydraulic coupling includes a transfer clutch, a clutch operator for engaging the transfer clutch, a fluid actuation system including a fluid pump for controlling movement of the clutch operator, and a magnetorheological pump clutch capable of selectively shifting the fluid pump between operative and inoperative states.10-15-2009
20080269002POWER TRANSMITTING APPARATUS - A power transmitting apparatus can be configured to switch between 2-wheel drive mode and 4-wheel drive mode and to lock and unlock a differential device. The power transmitting apparatus can comprise an input shaft connected to a driving power source i.e. an engine of vehicle and rotated around one rotational axis, a pair of output shafts of left and right sides for driving front wheels or rear wheels of vehicle when driving force is transmitted from the input shaft, a differential device arranged between the input shaft and the output shafts for absorbing the difference of rotation between the output shafts by differential action thereof, an operational shaft for performing connection and disconnection between the input shaft and output shafts by connecting and disconnecting the input shaft and the output shafts and also performing locking and unlocking of the differential means, a driving means for arbitrarily driving the operational shaft, and a case mounted on a vehicle and containing the differential means and the operational shaft characterized in that the input shaft extends from a rear side of the case facing toward the engine substantially in parallel with the operational shaft; and that the driving means is arranged on the rear side of the case.10-30-2008
20100304916LOCKING DIFFERENTIAL SIDE GEAR TO FRICTION DISC UNLOADING - A differential is provided that includes a case, a cam side gear disposed proximate a first end of the case, and a side gear disposed proximate a second end of the case. The side gears have respective hubs. The differential further includes a first clutch pack disposed around the hub of the side gear. The differential further includes an annular engaging member disposed between the side gear and the case.12-02-2010
20090215575HYDRAULICALLY LOCKING LIMITED SLIP DIFFERENTIAL - An improved hydraulically locking limited slip differential assembly for a drivetrain of a motor vehicle having a fluid pump external to a differential carrier and arranged for preventing slip between the wheels by selectively pressurizing a differential clutch internal to the carrier, and a controller arranged for selectively activating the fluid pump.08-27-2009
20090029821CARRIER ASSEMBLY - A carrier assembly has a unique architecture which allows the carrier assembly to be defined by a very small packaging envelope. The carrier includes a main carrier housing with an internal cavity for receiving a differential and a carrier cover that closes the internal cavity once the differential has been installed. Examples of architectural features include a differential lock actuator that is mounted to the carrier cover, dowel pins that accommodate differential leg thrust loads and align the carrier cover relative to the main carrier housing, and bolt-in differential leg structures to facilitate pinion installation. Further, the carrier assembly can be utilized with an independent suspension to provide a increased jounce travel range.01-29-2009
20080242469LOCKABLE DIFFERENTIALS - The present invention provides user-selectable locking differential having a carrier coupled to a ring gear. The carrier includes a differential case that supports side bevel gears, which mesh with bevel pinion gears. The differential gear train is lockable by moving a locking ring into engagement with one of the bevel gears. In one embodiment, an expandable membrane seated in an annular groove of the differential case operates to urge the locking ring into engagement with the bevel gear. In another embodiment, a cup having a low-friction surface is placed in the annular groove of the case and a piston moves relative to the cup to urge the locking ring into engagement with the bevel gear. In addition, the locking ring, bevel gear, and the differential case each have engagement features that advantageously reduce the amount of friction between these respective components.10-02-2008
20110190091VEHICLE DIFFERENTIAL GEAR - To prevent a differential lock status during operation, in a differential gear with a differential lock. A locking piece which rotates along with rotation of a differential case is attached to the differential case. A contact piece contactable with the locking piece is formed in a fork member that moves a lock pin to set the differential lock status. When the number of revolutions of the differential case becomes a predetermined number of revolutions, the locking piece moves to a position facing the contact piece, to regulate actuation of the fork member. Accordingly, the differential mechanism section is prevented from entry into the differential lock status.08-04-2011
20110111913DIFFERENTIAL LOCK ASSEMBLY INCLUDING COUPLER - A differential assembly includes an axle, a differential, a differential lock assembly, a selector, and a coupler. The differential is coupled with the axle and is configured to facilitate operation of the axle at an axle speed. The differential lock assembly is associated with the differential and is movable between locked and unlocked positions. The selector is movable between lock-initiate and unlock-initiate positions. The coupler is configured to selectively couple the differential lock assembly and the selector. The coupler is configured for operation in deactivated and activated modes. When the coupler is in the deactivated mode, the differential lock assembly and the selector are decoupled from each other. When the coupler is in the activated mode, the differential lock assembly and the selector are coupled together.05-12-2011
20120252625LIMITED SLIP DIFFERENTIAL HAVING A DYNAMIC THRUST DEVICE - A limited slip differential comprising an input member and two output members and moreover having, built into a housing, at least one planet gear and at least one sun gear that are arranged so as to enable total or partial securing, rotatably, of two of the three input and/or output members by means of at least one thrust means on a securing means during a decrease in one of the output torques caused by grip loss or shifting into differential velocities. The differential also includes at least one second dynamic thrust means that is antagonistic to the thrust of the first thrust means, the antagonistic second dynamic thrust means being arranged so as to be activated during a shift of the differential into differential velocities.10-04-2012
20110039653Differential System - A power take-off support portion, including a shaft hole and an outer side surface formed around the shaft hole, is formed on a transaxle housing. The outer side surface of the power take-off support portion is shaped to fit a power take-off casing supporting a power take-off shaft in a first direction. A power take-off casing includes a power take-off main casing member and a base casing member joined to each other. The base casing member is formed with an inner side surface and an outer side surface. The inner side surface and the outer side surface of the base casing member are shaped so that the power take-off shaft supported by the power take-off main casing member is oriented in a second direction different from the first direction when the inner side surface of the base casing member is fitted to the outer side surface of the power take-off support portion, and the outer side surface of the base casing member is fitted to the inner side surface of the power take-off main casing member.02-17-2011
20100093481LOCKING DIFFERENTIAL HAVING IMPROVED CLUTCH TEETH - A hold-out ring type locking differential for an automobile or other type of motorized vehicle includes a differential case housing a number of components, such as a center driver positioned between holdout rings, clutch members, springs, spring retainers, side gears, and thrust washers. The center driver includes a center cam that engages inner teeth of the clutch members, which in turn include a tooth shape or profile for reducing stress and wear while increasing an operational life of the clutch member. The inner clutch teeth each have a top portion coupled to a base portion at an intersection point. The top portion extends from the intersection point to a free edge surface while the base portion extending from the intersection point continually into a root radius region.04-15-2010
20100234163FLUCTUATING GEAR RATIO LIMITED SLIP DIFFERENTIAL - A fluctuating gear ratio limited slip differential assembly is provided that includes a differential case and a pair of side gears disposed within the differential case. Each of the side gears may have a tooth with a first tooth flank. The differential assembly may further include a pinion shaft disposed within the differential case and a plurality of pinions supported by the pinion shaft. The pinions may be configured for engagement with the pair of side gears and each of the pinions may have a tooth with a second tooth flank. The first and second tooth flanks are configured to cause movement of the plane of action defining all contact points between the first tooth flank of the side gears and the second tooth flank of the pinions in a predetermined and/or controlled manner.09-16-2010
20120149522DIFFERENTIAL MECHANISM HAVING MULTIPLE CASE PORTIONS - A differential mechanism includes a case including first and second portions, the first portion including a first surface interrupted by recesses, the second portion including a second surface interrupted by second recesses, contacting the first surface, and secured to the first portion, a pin extending though said recesses, and a ring gear secured to said portions and overlapping said surfaces and said pin.06-14-2012
20110160017Structure for coupling differential assembly with drive shaft - A coupling structure is provided which can be used even when drive shafts cannot be provided on their end with a stopper. The coupling structure allows the drive shafts to be coupled to a differential assembly, requiring a manipulation only from outside the differential case to assure that the drive shafts are coupled to each other so as not to be movable in the direction of the axle shaft. The coupling structure includes a pair of right and left coupling heads and a coupling shaft. Each of the coupling heads has a coupling hole at the point of intersection of the axial line of pinion shafts provided in the differential assembly and the axial line of a pair of right and left drive shafts. The coupling heads are added to the drive shafts via a connector, respectively, to be rotatable about the axle shaft and not movable in the direction of the axle shaft, with the end portion of the coupling heads being disposed in a coupling ring of a cross shaft. The coupling shaft penetrates the through holes of the pair of pinion shafts and the coupling holes of the pair of right and left coupling heads.06-30-2011
20130130861CLUTCH ARRANGEMENT FOR A VEHICLE DRIVE TRAIN - A clutch arrangement has a rotary element which is mounted on a housing so as to be rotatable about a longitudinal axis and which defines a cavity. A clutch has a first clutch element and a second clutch element which can be coupled thereto, which clutch is arranged in the cavity. The first clutch element or the second clutch element is coupled to the rotary element. A fluidic actuator arrangement has a first and a second actuator element which can move relative to one another in order to activate the clutch. At least the first actuator element can be secured in a rotationally fixed fashion to the housing and extends from outside the rotary element into the cavity.05-23-2013
475232000 Centrifugal actuator 1
20090088288DIFFERENTIAL LIMITING APPARATUS - it is an object of the present invention to provide a differential limiting apparatus increasing the capacity of the clutch to obtain the enough large differential limiting force.04-02-2009
475233000 Lock-up clutch between pinion and pinion carrier 3
20120244987LOCKING DIFFERENTIAL ASSEMBLY - A locking differential having a movable locking ring that can selectively engage a gear of the differential to lock or unlock the differential is disclosed. The locking ring is moved by a pressure source, such as a pneumatic pressure source, and a spring. The locking ring engages a fixed annular ring in the case of the differential. Two O-rings create a seal between sides of the fixed annular ring and arms of the locking differential.09-27-2012
20120238397LIMITED SLIPPERY DIFFERENTIAL FOR REMOTE CONTROL MODEL VEHICLE - A limited slippery differential used in a remote control model vehicle is disclosed to include a housing, a main gear mounted on one side of the housing, two transmission gears mounted inside the housing, and a differential unit mounted in the housing. When the remote control model vehicle is moving over a turn at a high speed, bevel gears of the differential unit are forced into positive engagement with respective transmission gears to reduce the speed of the vehicle wheels that are suspending in the air. When the remote control model vehicle moved over the turn, the bevel gears are forced away from the transmission gears by respective spring members, enabling engine power to be normally transferred to the wheels.09-20-2012
20090062055LOCKING DIFFERENTIAL - The present invention relates to a differential gear equipped with a selectively controllable locking device. Said locking device is self energizing, i.e. it utilizes the differentiation energy (i.e. the possible torque imbalance) to self-lock on its own accord. The control signal is therefore not needed to lock the locking device but rather to selectively control it not to lock itself. Said control signal is designed to, separately for each of the two possible differentiation directions, allow or not allow the locking device to lock. In this way the differential gear will get four different working modes. Said working modes are respectively; open regardless of differentiation direction; open in one differentiation direction but self-locking in the other direction; open in the other direction but self-locking in the first one; self-locking regardless of differentiation direction. A control unit is supplied with sensor data of the present “driving situation”. Said control unit has a steering strategy. With the right steering strategy it can regulate the control signal so as to admit the differential gear to equalize the torque at each output shaft for as long as possible but still to practically eliminate the risk of one wheel spin.03-05-2009
475234000 By axial movement of output gear 6
20090192008DIFFERENTIAL GEAR UNIT - A differential gear unit has a pinion gear that can spin as well as revolve, a differential case that has a pinion retaining portion that supports the pinion gear, and a pair of side gears that mesh with the pinion gear. Frictional force generated at a portion where the pinion gear contacts the pinion retaining portion when the rotation speed of one side gear is faster than the rotation speed of the other side gear is different from the frictional force generated between the pinion gear and the pinion retaining portion when the rotation speed of the one side gear is slower than the rotation speed of the other side gear.07-30-2009
20110021306DIFFERENTIAL HAVING IMPROVED TORQUE CAPACITY AND TORQUE DENSITY - A locking differential for an automotive vehicle including a housing and a differential mechanism supported in the housing. The differential mechanism includes a pair of clutch members where each of the clutch members presents an inwardly directed face. Each face includes a groove disposed in spacing relationship with respect to the other. A cross pin is received in the grooves and is operatively connected for rotation with the housing. The clutch members are axially moveable within the housing so that they may engage respective clutch members coupled to a pair of axle half shafts. Each of the grooves in the clutch members defines a first predetermined radius of curvature. The cross pin defines a second radius of curvature wherein the first radius of curvature of the groove is greater than the second radius of curvature of the cross pin such that contact between the cross pin and the groove defines a line extending along the axis of the cross pin.01-27-2011
20100093482LOCKING DIFFERENTIAL ASSEMBLY FOR A MODEL VEHICLE - A locking differential assembly for use in a toy model vehicle. This is accomplished by mounting a locking clutch assembly on an output shaft of a differential gear carrier having an external face. The locking clutch assembly includes a slider member that may be configured to move along the output shaft to engage the external face to disable a differential action of the differential gear carrier.04-15-2010
475235000 With spring bias on gear or clutch 3
20100075797Limited Slip Differential - A limited slip differential for use in model cars includes a pair of pressure plates installed within a housing and a differential element is located between the pressure plates, so that when the rotation speed of a drive wheel of the model car increases, the differential element will move toward against the pressure plates causing gear racks of the differential element to frictionally contact the shafts of the helical gears on a cross shaft. This lowers the rotation speed of the helical gears, while at the same time separately lowers the rotation speed of the drive wheel, and raises the rotation speed of the other drive wheel allowing the model car to be able to turn at high speed.03-25-2010
20090197732LOCKING DIFFERENTIAL HAVING A SPLIT-CENTER DRIVER - A locking differential includes a housing with an interior chamber in which a two-piece split-center driver is located. The split-center driver is positioned on opposite sides of a cross-pin assembly. A pair of axially spaced output shafts extend from the interior chamber and are coupled to a pair of side gears. The split-center driver gear and a centered cam member are arranged co-axially about the adjacent ends of the output shafts, and annular clutch members are operable to disconnect an overrunning output shaft08-06-2009
20090093334Method and Kit to Convert an Open Differential to a Limited Slip Differential - A kit and method of using the kit to convert an open differential in a golf cart to a limited slip differential by replacing the side gears with side gears containing an integrated clutch surface that engage a spring loaded case containing an integrated clutch surface.04-09-2009
475236000 Particular gear shape or tooth interaction limits overspeed 1
20100113208LOCKING DIFFERENTIAL WITH SHEAR PIN/SPRING ASSEMBLY - A clutch assembly for a locking differential includes driving clutch members engaged with driven clutch members in a preloaded configuration to provide a minimum amount of preload there between during low torque conditions. The driving clutch members are biased relative to each other with shear pin/spring assemblies located within bores of the driving clutch members. During assembly of the clutch assembly, the shear pin/spring assemblies may be positively locked down within the bores with a removable tool. In one embodiment, the removable tool is inserted into a small opening extending through the driving clutch member and the tool engages an annular groove on a shear pin of the shear pin/spring assembly. Further, the clutch assembly may include driving clutch members having drainage openings that may help prevent hydraulic lock during operation of the locking differential.05-06-2010
475237000 Manual actuator 1
475238000 Friction clutch 1
20080254931Differential Device for Vehicle - A differential device includes a differential casing 10-16-2008
475240000 Spring bias on overspeed limiting means 1
475241000 Helically coiled spring 1
20100022345AXLE ASSEMBLY - A drive assembly and method of braking the assembly is disclosed. The assembly has a first clutch pack that selectively brakes a driven shaft. The braking torque is transmitted to a second clutch pack in a differential where it can be distributed equally or unequally between two axle half shafts.01-28-2010
475243000 Output gear rotatable relative to axial support shaft 1
475244000 Support shaft coupled to other output gear 1
20100093483DIFFERENTIAL ASSEMBLY WITH ONE-PIECE DIFFERENTIAL CARRIER AND FOUR DIFFERENTIAL GEARS - The invention relates to a differential assembly, more particularly for being used in the driveline of a motor vehicle, comprising a one-piece differential carrier 04-15-2010
475246000 With roller bearing between gear and its support 2
20120295753Bearing Preload Adjuster - A bearing preload adjuster assembly can include a first annular member defining a first outer wall having a threaded region and a first inner wall having a plurality of first ramped surfaces formed thereon. The first outer wall can threadably engage a corresponding threaded region of an axle assembly. A second annular member can define a second outer wall having a plurality of second ramped surfaces formed thereon and can be received in the first annular member such that the second outer wall faces the first inner wall. A biasing member can bias the second annular member in a first axial direction such that the plurality of second ramped surfaces are in selective meshed engagement with the plurality of first ramped surfaces. A retaining member can be coupled to the first inner wall and can retain the biasing member and second annular member within the first annular member.11-22-2012
475247000 Ball bearing 1
20080300085FINAL REDUCTION GEAR DEVICE - A final reduction gear device including an orthogonal axis gear and a speed reduction mechanism portion employing a planetary gear is provided. A radial bearing, more specifically a cylindrical roller bearing, having a large radial load capacity is disposed between a bevel ring gear of the orthogonal axis gear and a differential case. A thrust bearing, more specifically a thrust ball bearing or a thrust roller bearing, having a large axial load capacity is disposed between an axial end portion of a sun gear, and an inner race side of the radial bearing and the side of a fitting portion of the differential case, to which the inner race is fitted. A thrust bearing, more specifically a thrust ball bearing or a thrust roller bearing, having a large axial load capacity is disposed between the bevel ring gear and a planetary carrier of the speed reduction mechanism portion.12-04-2008

Patent applications in class Bevel gear differential

Patent applications in all subclasses Bevel gear differential