Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Specified configuration of electrode or contact

Subclass of:

438 - Semiconductor device manufacturing: process

438584000 - COATING WITH ELECTRICALLY OR THERMALLY CONDUCTIVE MATERIAL

438597000 - To form ohmic contact to semiconductive material

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
438667000 Conductive feedthrough or through-hole in substrate 96
438668000 Specified aspect ratio of conductor or viahole 1
20100099254SEMICONDUCTOR MANUFACTURING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, STORAGE MEDIUM AND COMPUTER PROGRAM - A semiconductor manufacturing apparatus, when a barrier film and a copper film are formed along a recess in an insulating film by using an alloy layer of copper and addictive metal, e.g., Mn, and copper wiring is embedded therein, reduces Mn in the copper film to suppress an increase in wiring resistance. A vacuum transfer module is connected, through a load lock chamber, to a loader module for transferring a wafer with respect to a carrier. A formic acid treatment module supplying formic acid vapor as an organic acid to the wafer and a module forming a film of Cu, e.g., by CVD are connected to the vacuum transfer module to configure an apparatus manufacturing a semiconductor. The wafer W subjected to alloy layer formation and then, e.g., to annealing is transferred into the apparatus, and treatment with formic acid is performed followed by Cu film formation.04-22-2010
Entries
DocumentTitleDate
20100112809Multilevel imprint lithography - A mold with a protruding pattern is provided that is pressed into a thin polymer film via an imprinting process. Controlled connections between nanowires and microwires and other lithographically-made elements of electronic circuitry are provided. An imprint stamp is configured to form arrays of approximately parallel nanowires which have (1) micro dimensions in the X direction, (2) nano dimensions and nano spacing in the Y direction, and three or more distinct heights in the Z direction. The stamp thus formed can be used to connect specific individual nanowires to specific microscopic regions of microscopic wires or pads. The protruding pattern in the mold creates recesses in the thin polymer film, so the polymer layer acquires the reverse of the pattern on the mold. After the mold is removed, the film is processed such that the polymer pattern can be transferred on a metal/semiconductor pattern on the substrate.05-06-2010
20130078803SEMICONDUCTOR DEVICE INCLUDING A CIRCUIT AREA AND A MONITOR AREA HAVING A PLURALITY OF MONITOR LAYERS AND METHOD FOR MANUFACTURING THE SAME - In a circuit area wherein a semiconductor integrated circuit is to be formed, an isolation insulating film is formed on a surface of a semiconductor substrate, and, at the same time, five isolation insulating films extending in one specific direction are formed within a monitor area at a fixed spacing. Then, a gate insulation film and a gate electrode are formed within the circuit area on the semiconductor substrate, and, at the same time, five gate insulation films and five gate electrodes extending in the same direction as the isolation insulating films are formed within the monitor area at the same spacing as that of the isolation insulating films.03-28-2013
20130210226PATTERN FORMATION METHOD - According to one embodiment, a pattern formation method comprises forming a hard mask material on a processed film on a wiring, forming a guide layer on the hard mask material, forming a tetragonal opening in the guide layer, coating the opening with a block polymer, heating the block polymer to form a micro phase separation structure film in which first polymer parts and second polymer parts parallel to the wiring are alternately arranged, removing the second polymer part while leaving the first polymer part, processing the hard mask material with the guide layer and the first polymer part as a mask to form a first hole pattern in the hard mask material, and processing the processed film with the hard mask material as a mask to form a second hole pattern corresponding to the first hole pattern in the processed film.08-15-2013
20120264295STRUCTURE AND METHOD OF REDUCING ELECTROMIGRATION CRACKING AND EXTRUSION EFFECTS IN SEMICONDUCTOR DEVICES - A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.10-18-2012
20100330802MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A semiconductor manufacturing method includes forming a word line crossing with an active region on a semiconductor substrate; forming a diffusion layer region; forming a first insulating film as high as a bit line to be formed; etching the first insulating film, while using, as a mask, a pattern having a linear aperture extending to the active region on the first insulating film so as to form a groove pattern for exposing the surface of the semiconductor substrate; embedding a conductive film in the groove pattern; forming a mask pattern passing over a portion, in which a bit contact is formed, on the first insulating film; and removing the first insulating film and the conductive layer until the upper layer insulating film of the word line is exposed, while using the mask pattern as a mask so as to isolate a bit contact from another contact.12-30-2010
20130029487MANUFACTURING METHOD OF DEVICE - A device manufacturing method includes: sequentially forming a first sacrificial film, a first support film, a second sacrificial film, and a second support film on a semiconductor substrate; forming a hole to pass through these films; forming a crown-shaped electrode covering an inner surface of the hole and connected to the second support film and the first support film; forming a first opening in the second support film into a first pattern designed such that the connection between the crown-shaped electrode and the second support film is at least partially maintained; removing at least a part of the second sacrificial film through the first opening; forming a second opening in the first support film with use of the first opening; and removing the first sacrificial film through the second opening. This method is able to prevent misalignment of openings between the support films.01-31-2013
20090305501METHOD OF FABRICATING SEMICONDUCTOR DEVICE USING A CHEMICAL MECHANICAL POLISHING PROCESS - A method of fabricating a semiconductor device by using a chemical-mechanical polishing (CMP) process includes forming an insulating layer on a semiconductor wafer, etching the insulating layer to form via-holes, and forming a conductive layer on the insulating layer to fill the via-holes. The method further includes performing a first polishing process to etch the conductive layer until an upper surface of the insulating layer is exposed,, performing a second polishing process to etch the insulating layer to a predetermined thickness and performing a third polishing process to remove protrusions of the conductive layer.12-10-2009
20130072016METHODS OF FORMING CONDUCTIVE CONTACTS WITH REDUCED DIMENSIONS - Disclosed herein are various methods of forming conductive contacts with reduced dimensions and various semiconductor devices incorporating such conductive contacts. In one example, one method disclosed herein includes forming a layer of insulating material above a semiconducting substrate, wherein the layer of material has a first thickness, forming a plurality of contact openings in the layer of material having the first thickness and forming an organic material in at least a portion of each of the contact openings. This illustrative method further includes the steps of, after forming the organic material, performing an etching process to reduce the first thickness of the layer of insulating material to a second thickness that is less than the first thickness, after performing the etching process, removing the organic material from the contact openings and forming a conductive contact in each of the contact openings.03-21-2013
20090286395Butted Source Contact and Well Strap - A butted contact structure forming a source contact electrically connecting a voltage node and a well region and method for forming the same, the butted contact structure including an active region having a well region disposed adjacent an electrical isolation region on a semiconductor substrate; a MOSFET device including a source and drain region on the active region; and, a conductive contact having a first portion formed to the source region and a second portion formed through the electrical isolation region to the doped well region.11-19-2009
20090156000METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a semiconductor device is provided, which includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a first slurry containing first resin particles and a water-soluble polymer to planarize a surface of the organic film precursor, and polishing the organic film precursor where the surface is planarized using a second slurry containing second resin particles and a water-soluble polymer to leave the organic film precursor in the recess, thereby exposing the insulating film, an average particle diameter of the second resin particles being smaller than that of the first resin particles.06-18-2009
20110027989INCREASED DENSITY OF LOW-K DIELECTRIC MATERIALS IN SEMICONDUCTOR DEVICES BY APPLYING A UV TREATMENT - A silicon-based low-k dielectric material is formed on the basis of a single precursor material, such as OMTCS, without incorporating a porogen species. To this end, the initial deposition of the low-k dielectric material may be formed on the basis of a reduced process temperature, while a subsequent treatment, such as a UV treatment, may allow the adjustment of the final material characteristics without causing undue out-gassing of volatile organic components.02-03-2011
20130164934MANUFACTURING METHOD OF A SEMICONDUCTOR DEVICE AND METHOD FOR CREATING A LAYOUT THEREOF - A method for manufacturing a semiconductor device of one embodiment of the present invention includes: forming an insulation layer to be processed over a substrate; forming a first sacrificial layer in a first area over the substrate, the first sacrificial layer being patterned to form in the first area a functioning wiring connected to an element; forming a second sacrificial layer in a second area over the substrate, the second sacrificial layer being patterned to form in the second area a dummy wiring; forming a third sacrificial layer at a side wall of the first sacrificial layer and forming a fourth sacrificial layer at a side wall of the second sacrificial layer, the third sacrificial layer and the fourth sacrificial layer being separated; forming a concavity by etching the insulation layer to be processed using the third sacrificial layer and the fourth sacrificial layer as a mask; and filling a conductive material in the concavity.06-27-2013
20110294290THREE-DIMENSIONAL SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR MANUFACTURING THE SAME - A three-dimensional semiconductor memory device includes a stacked structure including a plurality of conductive patterns, an active pillar penetrating the stacked structure, and a data storage pattern between the active pillar and the conductive patterns, wherein the active pillar includes a vertical semiconductor pattern penetrating the stacked structure and protruding semiconductor patterns between the vertical semiconductor pattern and the data storage pattern, the protruding semiconductor patterns having a different crystalline structure from that of the vertical semiconductor pattern.12-01-2011
20100112810Resistive random access memory and method for manufacturing the same - A resistive random access memory including, an insulating layer, a hard mask layer, a bottom electrode, a memory cell and a top electrode is provided. The insulating layer is disposed on the bottom electrode. The insulating layer has a contact hole having a first width. The hard mask layer has an opening. A portion of the memory cell is exposed from the opening and has a second width smaller than the first width. The top electrode is disposed on the insulating layer and is coupled with the memory cell.05-06-2010
20090149023METHOD OF FABRICATING SEMICONDUCTOR DEVICE HAVING THREE-DIMENSIONAL STACKED STRUCTURE - A method of fabricating a semiconductor device having a three-dimensional stacked structure is provided, which realizes easily the electrical interconnection between the stacked semiconductor circuit layers along the stacking direction by using buried interconnections.06-11-2009
20100081278Methods for Nanoscale Feature Imprint Molding - Methods for fabricating nanoscale features are disclosed. One technique involves depositing onto a substrate, where the first layer may be a silicon layer and may subsequently be etched. A second layer and third layer may be deposited on the etch first layer, followed by the deposition of a silicon cap. The second and third layer may be etched, exposing edges of the second and third layers. The cap and first layer may be removed and either the second or third layer may be etched, creating a nanoscale pattern.04-01-2010
20100099253Method for Structuring a Layered Stack - One implementation is a method for fabricating a semiconductor on a substrate. A first layer is formed on the substrate. An implanted pattern is introduced into the first layer by implanting using a structured implantation mask arranged over the first layer. A structured second layer is formed on the first layer after removing the implantation mask. A first pattern is generated in the substrate using the second layer as a mask. The first layer is developed with regard to the implanted pattern. A second pattern is generated in the substrate using the first layer as a mask.04-22-2010
20090280646MANUFACTURING METHOD FOR MICRO-TRANSFORMERS - A micro-transformer manufacturing method is provided, which can improve throughput, prevent a crack from entering an insulating film between coils, and manufacture the micro-transformer without using a mask material having a high selection ratio. An insulating film is deposited on the whole face of a semiconductor substrate having an impurity-diffused region. This insulating film is partially removed to form a first opening and a second opening. A primary coil is formed such that a center pad contacts the impurity-diffused region through the first opening. A thin insulating film is deposited on the primary coil. An insulator material having a secondary coil formed thereon is adhered onto the insulating film on the primary coil by adhesive tape. The insulator material is sized to not cover both a pad, connected with the center pad of the primary coil through the impurity-diffused region, and an outer-end pad of the primary coil.11-12-2009
20080293244Methods of Positioning and/or Orienting Nanostructures - Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.11-27-2008
20080274612SHIELDED CAPACITOR STRUCTURE - A method and apparatus if provided for shielding a capacitor structure formed in a semiconductor device. In a capacitor formed in an integrated circuit, one or more shields are disposed around layers of conductive strips to shield the capacitor. The shields confine the electric fields between the limits of the shields.11-06-2008
20080318419CHARGE DISSIPATION OF CAVITIES - Structures and methods for the dissipation of charge build-up during the formation of cavities in semiconductor substrates.12-25-2008
20100003818METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device according to one embodiment includes: forming a porous film above a semiconductor substrate; forming an altered layer by applying alteration treatment to a first pattern region of the porous film up to a predetermined depth; forming a first concave portion by etching a second pattern region to a depth deeper than the predetermined depth, the second pattern region at least partially overlapping the first pattern region of the porous film having the altered layer formed therein; and forming a second concave portion by selectively removing the altered layer from the porous film after forming the first concave portion.01-07-2010
20090104771METHOD FOR MAKING A SELF-CONVERGED VOID AND BOTTOM ELECTRODE FOR MEMORY CELL - A base layer, comprising an electrically conductive element, is formed. An upper layer, including a third, lower planarization stop layer, a second layer and a first, upper layer is formed on the base layer. A keyhole opening is formed through the upper layer to expose a surface of an electrically conductive element in the base layer. The first layer has an overhanging portion extending into the opening so that the opening in the first layer is shorter than in the second layer. A dielectric material is deposited into the keyhole opening to create a self-converged void within the deposited dielectric material. In some examples the keyhole forming step comprises increasing the volume of the first layer while in other examples the keyhole forming step comprises etching back the second layer.04-23-2009
20090017620Method of manufacturing semiconductor device for dual damascene wiring - A method of manufacturing a semiconductor device includes forming a via hole in an interlayer dielectric film, forming a wiring trench in said interlayer dielectric film for connecting to the via hole, and forming a dual damascene wiring trench in the interlayer dielectric film for forming a dual damascene wiring which is connected to a conductive film. In forming the via hole, the via hole is formed in a bow shape and, in forming the wiring trench, the wiring trench is formed by etching to a position where a diameter of the via hole becomes substantially a maximum to provide a via having a forward taper shape under the wiring trench.01-15-2009
20080261395Semiconductor Device, Method for Manufacturing Semiconductor Devices and Mask Systems Used in the Manufacturing of Semiconductor Devices - Semiconductor device with a first structure comprising a plurality of at least in part parallel linear structures, a second structure comprising a plurality of pad structures, forming at least in part one of the group of linear structure, curved structure, piecewise linear structure and piecewise curved structure which is positioned at an angle to the first structure, and the plurality of pad structures are intersecting at least one of the linear structures in the first structure. An electronic device with at least one semiconductor device, methods for manufacturing a semiconductor device and a mask system are also covered.10-23-2008
20090221143METHOD OF CLEANING AND PROCESS FOR PRODUCING SEMICONDUCTOR DEVICE - A method of cleaning for removing metal compounds attached to a surface of a substrate, wherein the cleaning is conducted by supplying a supercritical fluid of carbon dioxide comprising at least one of triallylamine and tris(3-aminopropyl)amine to the surface of the substrate and a process for producing a semiconductor device using the method of cleaning are provided. In accordance with the method of cleaning and the method for producing a semiconductor device using the method, etching residues or polishing residues containing metal compounds are efficiently removed selectively from the electroconductive material forming the electroconductive layer. When the electroconductive layer is a wiring, an increase in resistance due to residual metal compounds can be suppressed, and an increase in the leak current due to diffusion of the metal from the metal compounds to the insulating film can be prevented. Therefore, reliability on the wiring is improved, and the yield of the semiconductor device can be increased.09-03-2009
20120196438CHIP PACKAGE STRUCTURE - The formation of the conductive wire of a chip package consists of a plurality of steps. Coat a first dielectric layer on the pad-mounting surface and a slot is formed on each bonding pad correspondingly. Then coat a second dielectric layer and produce a wiring slot corresponding to each bonding pad and the slot thereof. Next each wiring slot is filled with electrically conductive metal so as to form a conductive wire. Later Coat a third dielectric layer and a corresponding slot is formed on one end of each conductive wire while this slot is filled with electrically conductive metal to form a solder point. The above steps can further be repeated so as to form an upper-layer and a lower-layer conductive wire. Thereby precision of the chip package, use efficiency of the wafer and yield rate of manufacturing processes are all improved.08-02-2012
20100144139Methods For Fabricating Semiconductor Components With Conductive Interconnects Having Planar Surfaces - A backside method for fabricating a semiconductor component with a conductive interconnect includes the step of providing a semiconductor substrate having a circuit side, a backside, and a substrate contact on the circuit side. The method also includes the steps of forming a substrate opening from the backside to the substrate contact, and then bonding the conductive interconnect to an inner surface of the substrate contact.06-10-2010
20100130007BOTTOM UP PLATING BY ORGANIC SURFACE PASSIVATION AND DIFFERENTIAL PLATING RETARDATION - Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. One embodiment provides a method provides a method for processing a substrate comprising forming a seed layer over a substrate having trench or via structures formed therein, coating a portion of the seed layer with an organic passivation film, and immersing the trench or via structures in a plating solution to deposit a conductive material over the seed layer not covered by the organic passivation film.05-27-2010
20090286394Method for Forming Self-Assembled Mono-Layer Liner for Cu/Porous Low-k Interconnections - A method for fabricating an integrated circuit comprises forming a low-k dielectric layer over a semiconductor substrate, etching the low-k dielectric layer to form an opening, and treating the low-k dielectric layer with a gaseous organic chemical to cause a reaction between the low-k dielectric layer and the gaseous organic chemical. The gaseous organic chemical is free from silicon.11-19-2009
20100304564SELECTIVE LOCAL INTERCONNECT TO GATE IN A SELF ALIGNED LOCAL INTERCONNECT PROCESS - A semiconductor device fabrication process includes forming a gate of a transistor on a semiconductor substrate using a hard mask. The hard mask is selectively removed in one or more selected regions over the gate. The removal of the hard mask in the selected regions allows the gate to be connected to an upper metal layer through at least one insulating layer located substantially over the transistor. Conductive material is deposited in one or more trenches formed through the at least one insulating layer. The conductive material forms a local interconnect to the gate in at least one of the selected regions.12-02-2010
20130137261METHOD OF MODIFYING A LOW K DIELECTRIC LAYER HAVING ETCHED FEATURES AND THE RESULTING PRODUCT - A dielectric layer having features etched thereon and a low dielectric constant, and that is carried by a semiconductor substrate. The etched dielectric layer is modified so its surface energy is reduced by at least one of: (a) applying thermal energy to the layer to cause the layer temperature to be between 100 C and 400 C; (b) irradiating the layer with electromagnetic energy; and/or (c) irradiating the layer with free ions.05-30-2013
20100311239Method for forming dual damascene pattern - A method for forming a dual damascene pattern includes preparing a multi-functional hard mask composition including a silicon resin as a base resin, wherein the silicon resin comprises about 20 to 45% silicon molecules by weight, based on a total weight of the resin; forming a deposition structure by sequentially forming a self-arrangement contact (SAC) insulating film, a first dielectric film, an etching barrier film, and a second dielectric film over a hardwiring layer; etching the deposition structure to expose the hardwiring layer, thereby forming a via hole; coating the multi-functional hard mask composition over the second dielectric film and in the via hole to form a multi-functional hard mask film; and etching the resulting structure to expose a part of the first dielectric film using a photoresist pattern as an etching mask, thereby forming a trench having a width greater than that of the via hole.12-09-2010
20090068837LINE ENDS FORMING - Methods of forming line ends and a related memory cell including the line ends are disclosed. In one embodiment, the method includes forming a first device element and a second device element separated from the first device element by a space; and forming a first line extending from the first device element, the first line including a bulbous line end over the space and distanced from the first device element, and a second line extending from the second device element, the second line including a bulbous line end over the space and distanced from the second device element.03-12-2009
20110081776METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A first insulating film is formed on or above a substrate, and a first conductor is formed in an upper portion of the formed first insulating film. Then, a second insulating film is formed on the first insulating film so as to cover the first conductor. Then, a film quality alteration process is performed for the second insulating film. Moreover, a third insulating film is formed on the second insulating film, and a curing process is performed for the formed third insulating film.04-07-2011
20120202347THROUGH SILICON VIAS USING CARBON NANOTUBES - The various embodiments of the present invention provide carbon nanotube (CNT)-based TSVs and methods of making the same. The CNT-based TSVs embodiments comprise a silicon wafer having a plurality of through-vias defined therein, and a support layer comprising a CNT catalyst layer disposed beneath the silicon wafer to facilitate CNT growth through the plurality of through-vias. Once CNT arrays have grown inside and through the through-vias, the support layer and accompanying CNT catalyst layer can be removed from the silicon wafer, which will result in the CNTs remaining in the TSVs.08-09-2012
20100279504INTEGRATED CIRCUIT PACKAGE SYSTEM INCLUDING HONEYCOMB MOLDING - A method of manufacture of an integrated circuit package system includes: providing a substrate with a top surface; configuring the top surface to include electrical contacts and an integrated circuit; providing a structure over the substrate with only a honeycomb meshwork of posts contacting the top surface of the substrate; and depositing a material to prevent warpage of the substrate on the top surface of the substrate and over the integrated circuit, the material patterned to have discrete hollow conduits that expose the electrical contacts.11-04-2010
20120202346METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE - Certain embodiments provide a method for manufacturing a semiconductor device including forming first and second insulating films on first and second regions formed on a semiconductor substrate, respectively, selectively irradiating UV light to a second contact region where the second contact is to be formed in the second insulating film, forming first and second opening on the first and second insulating films by concurrently etching a first contact region in the first insulating film where the first contact is to be formed and the second contact region after having irradiated the UV light, respectively, forming first and second contacts in the first and second openings. The second insulating film differs from the first insulating film in the membrane stress, and is an insulating film with an etching rate that approaches an etching rate of the first insulating film by the UV light being irradiated.08-09-2012
20110053371SEMICONDUCTOR PROCESS - A semiconductor manufacturing process is provided. First, a substrate is provided, wherein a patterned conductive layer, a dielectric layer and a patterned metal hard mask layer are sequentially formed thereon. Thereafter, a portion of the dielectric layer is removed to form a damascene opening exposing the patterned conductive layer. Afterwards, the dielectric layer is heated to above 200° C. Thereafter, a plasma treatment process is performed on the damascene opening, wherein the gases used to generate the plasma include hydrogen gas and inert gas. Afterwards, a conductive layer is formed in the damascene opening to fill therein.03-03-2011
20100285661SEMICONDUCTOR ELEMENT AND DISPLAY DEVICE USING THE SAME - Provided is a semiconductor element including: a semiconductor having an active layer; a gate insulating film which is in contact with the semiconductor, a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer; a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second nitride insulating film, in which a first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.11-11-2010
20100055899PARTICLE REDUCTION IN PECVD PROCESSES FOR DEPOSITING LOW-K MATERIAL BY USING A PLASMA ASSISTED POST-DEPOSITION STEP - When forming dielectric materials of reduced dielectric constant in sophisticated metallization systems, the creation of defect particles on the dielectric material may be reduced during a plasma enhanced deposition process by inserting an inert plasma step after the actual deposition step.03-04-2010
20110306206Methods Of Forming Contact Openings And Methods Of Increasing Contact Area In Only One Of X and Y Axes In The Fabrication Of Integrated Circuitry - A method of forming contact openings in the fabrication of integrated circuitry includes forming a mask which includes at least one of photoresist and amorphous carbon received over a plurality of spaced conductive line constructions. The conductive line constructions include insulative caps and insulative sidewalls. The mask includes a plurality of spaced lines and trench spaces between adjacent of the spaced lines. The spaced lines and the trench spaces angle relative to the conductive line constructions. The trench spaces are received over node locations which are received between adjacent of the conductive line constructions. The at least one of photoresist and amorphous carbon is treated with a plasma to reduce lateral width of the spaced lines and to increase lateral width of the trench spaces. After the treating, contact openings are etched to the node locations selectively relative to the insulative caps and the insulative sidewalls.12-15-2011
20110318921Methods Of Forming An Interconnect Between A Substrate Bit Line Contact And A Bit Line In DRAM - The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure. Other aspects and implementations are contemplated.12-29-2011
20120208364METHOD FOR OPENING ONE-SIDE CONTACT REGION OF VERTICAL TRANSISTOR AND METHOD FOR FABRICATING ONE-SIDE JUNCTION REGION USING THE SAME - A method for opening a one-side contact region of a vertical transistor is provided. The one-side contact region of the vertical transistor is opened using a polysilicon layer, a certain portion of which can be selectively removed by a selective ion implantation process. In order to selectively remove the polysilicon layer formed on one of both sides of an active region, at which the one-side contact is to be formed, impurity ion implantation is performed in a direction vertical to the polysilicon layer by a plasma doping process, and a tilt ion implantation using an existing ion implantation process is performed. In this manner, the polysilicon layer is selectively doped, and the undoped portion of the polysilicon layer is selectively removed.08-16-2012
20120009783Solder Bump With Inner Core Pillar in Semiconductor Package - A flip chip semiconductor package has a substrate with a plurality of active devices. A contact pad is formed on the substrate in electrical contact with the plurality of active devices. A passivation layer, second barrier layer, and adhesion layer are formed between the substrate and an intermediate conductive layer. The intermediate conductive layer is in electrical contact with the contact pad. A copper inner core pillar is formed by plating over the intermediate conductive layer. The inner core pillar has a rectangular, cylindrical, toroidal, or hollow cylinder form factor. A solder bump is formed around the inner core pillar by plating solder material and reflowing the solder material to form the solder bump. A first barrier layer and wetting layer are formed between the inner core pillar and solder bump. The solder bump is in electrical contact with the intermediate conductive layer.01-12-2012
20120058639SEMICONDUCTOR DEVICES AND METHODS OF FABRICATING THE SAME - A method of forming a nonvolatile memory device includes providing conductive pillars disposed in a first insulating layer and disposed on a semiconductor substrate, providing an etch stop layer on the first insulating layer, disposing a mold layer on the etch stop layer, and forming grooves in the mold layer. The grooves respectively extend over the conductive pillars in a first direction. The method further includes patterning the etch stop layer using the grooves to form holes respectively corresponding to the conductive pillars, and filling a metal into the grooves and the holes. The metal in the holes contacts the conductive pillars.03-08-2012
20120058638SEMICONDUCTOR DEVICE MANUFACTURING METHOD - According to one embodiment, a semiconductor device manufacturing method comprises defining a region in which absorptance of light illuminated for annealing to a substrate on which a pattern of a semiconductor integrated circuit is formed is not larger than a preset value as a coarse pattern region, locally forming a thin film that enhances light absorptance on the coarse pattern region, and annealing the substrate by illuminating light onto the substrate on which the pattern of the integrated circuit and thin film are formed.03-08-2012
20100210106SEMICONDUCTOR DEVICE HAVING A INTERLAYER INSULATION FILM WITH LOW DIELECTRIC CONSTANT AND HIGH MECHANICAL STRENGTH - A method for fabricating a semiconductor includes the steps of forming a porous insulation film and wires on a substrate, the wires embedded in the porous insulation film having a portion adjacent to the wires and a remote portion spaced apart from the wires; and applying an energy beam to the remote portion to change the structure of the porous insulation film such that an Young's modulus of the porous insulation film increased so as to substantially reinforce the strength of the porous insulation film.08-19-2010
20110065275Methods of manufacturing semiconductor devices - Provided are methods of manufacturing semiconductor devices by which two different kinds of contact holes with different sizes are formed using one photolithography process. The methods include preparing a semiconductor substrate in which an active region is titled in a diagonal direction. A hard mask is formed on the entire surface of the semiconductor substrate. A mask hole is patterned not to overlap a word line. A first oxide layer is deposited on the hard mask, and the hard mask is removed to form a piston-shaped sacrificial pattern. A first polysilicon (poly-Si) layer is deposited on the sacrificial pattern and patterned to form a cylindrical first sacrificial mask surrounding the piston-shaped sacrificial pattern. A second oxide layer is coated on the first sacrificial mask to such an extent as to form voids. A second poly-Si layer is deposited in the voids and patterned to form a pillar-shaped second sacrificial mask. The second oxide layer is removed to expose the active region. The sectional area of a buried contact (BC) storage contact pad may be increased, while the sectional area of a direct contact (DC) bit line contact pad may be reduced.03-17-2011
20110104894METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device includes etching a semiconductor substrate using a hard mask layer as a barrier to form a trench defining a plurality of active regions, forming a gap-fill layer to gap-fill a portion of the inside of the trench so that the hard mask layer becomes a protrusion, forming spacers covering both sides of the protrusion, removing one of the spacers using a doped etch barrier as an etch barrier, and etching the gap-fill layer using a remaining spacer as an etch barrier to form a side trench exposing one side of the active region.05-05-2011
20100210107SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device and a manufacturing method thereof are provided for the improvement of the reliability of copper damascene wiring in which a film between wiring layers and a film between via layers are comprised of an SiOC film with low dielectric constant. A film between wiring layers, a film between wiring layers, and a film between via layers are respectively comprised of an SiOC film, and stopper insulating films and a cap insulating film are comprised of a laminated film of an SiCN film A and an SiC film B. By doing so, it becomes possible to reduce the leakage current of the film between wiring layers, the film between wiring layers, and the film between via layers, and also possible to improve the adhesion of the film between wiring layers, the film between wiring layers, and the film between via layers to the stopper insulating films and the cap insulating film.08-19-2010
20100190337Method of Forming Metal Wirings of Semiconductor Device - A method of forming metal wirings of a semiconductor device includes providing a semiconductor substrate having a number of underlying conductive patterns separated from each other with a first insulating layer interposed between the underlying conductive patterns. The method also includes forming auxiliary patterns over the underlying conductive patterns, respectively, forming a second insulating layer over the first insulating layer to fill a space between the auxiliary patterns, removing the auxiliary patterns to form damascene patterns through which the underlying conductive patterns are respectively exposed, and filling interiors of the damascene patterns with a metal material.07-29-2010
20100273325METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device may include, but is not limited to the following processes. A mask layer is formed over a gate electrode portion and a wiring portion adjacent to the gate electrode portion. The mask layer includes a first portion covering the wiring portion. Then, at least a part of the first portion is removed.10-28-2010
20120258593SRAM CELL WITH T-SHAPED CONTACT - An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.10-11-2012
20120258592Layouts of POLY Cut Openings Overlapping Active Regions - A method of forming integrated circuits includes forming a mask layer over a gate electrode line, wherein the gate electrode line is over a well region of a semiconductor substrate; forming an opening in the mask layer, wherein a portion of the gate electrode line and a well pickup region of the well region are exposed through the opening; and removing the portion of the gate electrode line through the opening.10-11-2012
20120264294SRAM CELL WITH T-SHAPED CONTACT - An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.10-18-2012
20120264293SRAM CELL WITH T-SHAPED CONTACT - An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10-18-2012
20120322259DEFECT FREE DEEP TRENCH METHOD FOR SEMICONDUCTOR CHIP - A method for forming large substantially defect-free void areas on a semiconductor integrated circuit chip includes processing the chip through the passivation level processing operations then forming one or more openings in a designated blank area of the integrated circuit chip in a separate dedicated etching operation. The one or more openings may constitute 5-10% or more of the total area of the semiconductor chip. The void areas are deep trench openings that extend through the passivation layer and through all of the other material layers in the blank area exposing the substrate surface in one embodiment and through all material layers except for a field oxide layer formed directly on the substrate in another embodiment.12-20-2012
20100233877Method of disposing dummy pattern - A method of disposing a dummy pattern includes the steps of obtaining an inter-wiring parasitic capacity and a wiring total parasitic capacity for each wiring using wiring layout data and initial dummy pattern layout data; creating a first data base based on the inter-wiring parasitic capacity; creating a second data base based on the wiring total parasitic capacity; performing dynamic and static simulations for creating a third data base storing the results of the dynamic and static simulations, the result of the dynamic simulation being information about the first wiring, and the result of the static simulation being information about the second wiring; and performing an additional insertion of dummy pattern near a third wiring, the third wiring being determined to be a wiring which is capable of be affected by voltage noise based on the data in the third data base.09-16-2010
20120329275BORDERLESS INTERCONNECT LINE STRUCTURE SELF-ALIGNED TO UPPER AND LOWER LEVEL CONTACT VIAS - A metal layer is deposited on a planar surface on which top surfaces of underlying metal vias are exposed. The metal layer is patterned to form at least one metal block, which has a horizontal cross-sectional area of a metal line to be formed and at least one overlying metal via to be formed. Each upper portion of underlying metal vias is recessed outside of the area of a metal block located directly above. The upper portion of the at least one metal block is lithographically patterned to form an integrated line and via structure including a metal line having a substantially constant width and at least one overlying metal via having the same substantially constant width and borderlessly aligned to the metal line. An overlying-level dielectric material layer is deposited and planarized so that top surface(s) of the at least one overlying metal via is/are exposed.12-27-2012
20110159684SRAM CELL WITH T-SHAPED CONTACT - An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.06-30-2011
20130178061METHOD OF MANUFACTURING POROUS FILM AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - First, a porous insulating film 07-11-2013
20080200028METHODS OF POSITIONING AND/OR ORIENTING NANOSTRUCTURES - Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.08-21-2008
20120282771ELECTRODE ARRAYS AND METHODS OF FABRICATING THE SAME USING PRINTING PLATES TO ARRANGE PARTICLES IN AN ARRAY - Electrode arrays and methods of fabricating the same using a printing plate to arrange conductive particles in alignment with an array of electrodes are provided. In one embodiment, a semiconductor device comprises: a semiconductor topography comprising an array of electrodes disposed upon a semiconductor substrate; a dielectric layer residing upon the semiconductor topography; and at least one conductive particle disposed in or on the dielectric layer in alignment with at least one of the array of electrodes.11-08-2012
20120003832METHOD OF REDUCING EROSION OF A METAL CAP LAYER DURING VIA PATTERNING IN SEMICONDUCTOR DEVICES - During the patterning of via openings in sophisticated metallization systems of semiconductor devices, the opening may extend through a conductive cap layer and an appropriate ion bombardment may be established to redistribute material of the underlying metal region to exposed sidewall portions of the conductive cap layer, thereby establishing a protective material. Consequently, in a subsequent wet chemical etch process, the probability for undue material removal of the conductive cap layer may be greatly reduced.01-05-2012
20130095654METHODS OF MANUFACTURING A VERTICAL TYPE SEMICONDUCTOR DEVICE - According to example embodiments of inventive concepts, a method includes forming cell patterns and insulating interlayers between the cell patterns on the substrate. An upper insulating interlayer including initial and preliminary contact holes is formed on an uppermost cell pattern. A first reflection limiting layer pattern and a first photoresist layer pattern are formed for exposing a first preliminary contact hole while covering inlet portion of the initial and preliminary contact holes. A first etching process is performed on layers under the first preliminary contact hole to expose the cell pattern at a lower position than a bottom of the first preliminary contact hole. A partial removing process of sidewall portions of the first reflection limiting layer pattern and the first photoresist layer pattern and an etching process on exposed layers through bottom portions of the preliminary contact holes are repeated for forming contact holes having different depths.04-18-2013
20120094484NANO-TUBE THERMAL INTERFACE STRUCTURE - A structure, comprising: a semiconductor structure having an electrically and thermally conductive layer disposed on one surface of the semiconductor structure; an electrically and thermally conductive heat sink; a electrically and thermally conductive carrier layer; a plurality of electrically and thermally nano-tubes, a first portion of the plurality of nano-tubes having proximal ends disposed on a first surface of the carrier layer and a second portion of the plurality of nano-tubes having proximal ends disposed on an opposite surface of the carrier layer; and a plurality of electrically and thermally conductive heat conductive tips disposed on distal ends of the plurality of nano-tubes, the plurality of heat conductive tips on the first portion of the plurality of nano-tubes being attached to the conductive layer, the plurality of heat conductive tips on the second portion of the plurality of nano-tubes being attached to the heat sink.04-19-2012

Patent applications in class Specified configuration of electrode or contact

Patent applications in all subclasses Specified configuration of electrode or contact