Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Subclass of:

438 - Semiconductor device manufacturing: process

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
438514000 Ion implantation of dopant into semiconductor region 274
438513000 Plasma (e.g., glow discharge, etc.) 82
438542000 Diffusing a dopant 77
438511000 Ordering or disordering 4
20090191696METHOD FOR INCREASING THE PENETRATION DEPTH OF MATERIAL INFUSION IN A SUBSTRATE USING A GAS CLUSTER ION BEAM - A method for infusing material below the surface of a substrate is described. The method comprises modifying a surface condition of a surface on a substrate to produce a modified surface layer, and thereafter, infusing material into the modified surface in the substrate by exposing the substrate to a gas cluster ion beam (GCIB) comprising the material.07-30-2009
20080268623SEMICONDUCTOR DOPING WITH IMPROVED ACTIVATION - A method is disclosed for doping a target area of a semiconductor substrate, such as a source or drain region of a transistor, with an electronically active dopant (such as an N-type dopant used to create active areas in NMOS devices, or a P-type dopant used to create active areas in PMOS devices) having a well-controlled placement profile and strong activation. The method comprises placing a carbon-containing diffusion suppressant in the target area at approximately 50% of the concentration of the dopant, and activating the dopant by an approximately 1,040 degree Celsius thermal anneal. In many cases, a thermal anneal at such a high temperature induces excessive diffusion of the dopant out of the target area, but this relative concentration of carbon produces a heretofore unexpected reduction in dopant diffusion during such a high-temperature thermal anneal. The disclosure also pertains to semiconductor components produced in this manner, and various embodiments and improvements of such methods for producing such components.10-30-2008
20090061605PROFILE ADJUSTMENT IN PLASMA ION IMPLANTER - A method to provide a dopant profile adjustment solution in plasma doping systems for meeting both concentration and junction depth requirements. Bias ramping and bias ramp rate adjusting may be performed to achieve a desired dopant profile so that surface peak dopant profiles and retrograde dopant profiles are realized. The method may include an amorphization step in one embodiment.03-05-2009
20080220595METHOD FOR FABRICATING A HYBRID ORIENTATION SUBSTRATE - A method for fabricating a hybrid orientation substrate includes steps of providing a direct silicon bonding (DSB) wafer having a first substrate with (100) crystalline orientation and a second substrate with (110) crystalline orientation directly bonded on the first substrate, forming and patterning a first blocking layer on the second substrate to define a first region not covered by the first blocking layer and a second region covered by the first blocking layer, performing an amorphization process to transform the first region of the second substrate into an amorphized region, and performing an annealing process to recrystallize the amorphized region into the orientation of the first substrate and to make the second region stressed by the first blocking layer.09-11-2008
438535000 By application of corpuscular or electromagnetic radiation (e.g., electron, laser, etc.) 4
20100087053METHOD FOR FABRICATING A SEMICONDUCTOR HAVING A GRADED PN JUNCTION - A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T04-08-2010
20100055887Laser Diffusion Fabrication of Solar Cells - A method of semiconductor junction formation in Laser diffusion process for fabrication of solar cells provides for delivery of inert gases in the vicinity of the Si wafer while dopant species are being diffused form a dopant source into the surface of the wafer irradiated by a laser beam. The laser beam is emitted by CW- or pulsed operated lasers including fiber lasers. Optionally, the passivation of the surface and formation of the antireflection coating are performed simultaneously with the diffusion of the dopant species.03-04-2010
20100240203SILICON-BASED VISIBLE AND NEAR-INFRARED OPTOELECTRIC DEVICES - In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.09-23-2010
20100093164SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - On the top surface of a thin semiconductor wafer, top surface structures forming a semiconductor chip are formed. The top surface of the wafer is affixed to a supporting substrate with a double-sided adhesive tape. Then, from the bottom surface of the thin semiconductor wafer, a trench, which becomes a scribing line, is formed by wet anisotropic etching so that side walls of the trench are exposed. On the side walls of the trench with the crystal face exposed, an isolation layer with a conductivity type different from that of the semiconductor wafer for holding a reverse breakdown voltage is formed simultaneously with a collector region of the bottom surface diffused layer by ion implantation, followed by annealing with laser irradiation. The side walls form a substantially V-shaped or trapezoidal-shaped cross section, with an angle of the side wall relative to the supporting substrate being 30-70°. The double-sided adhesive tape is then removed from the top surface to produce semiconductor chips. With such a manufacturing method, a reverse-blocking semiconductor device having high reliability can be formed.04-15-2010
438537000 Fusing dopant with substrate (i.e., alloy junction) 2
20090098718Multiple mask and method for producing differently doped regions - In order to produce doping regions (DG) in a substrate (S) having different dopings with the aid of a single mask (DM) different mask regions are provided which have elongated mask openings (MO) having different orientations relative to the spatial direction of an oblique implantation. The substrate is rotated between the first and second oblique implantations, wherein during the first oblique implantation maximum and minimum shadings in the different mask regions are opposite one another and the conditions are precisely reversed during the second oblique implantation after the rotation of the substrate.04-16-2009
20120149181METHOD FOR MANUFACTURING SEMICONDUCTOR WAFER - There is provided a method for manufacturing a semiconductor wafer, comprising: performing heating so that metals dissolve into semiconductors of the wafer to form a semiconductor-metal compound; and performing cooling so that the formed semiconductor-metal compound retrogradely melt to form a mixture of the metals and the semiconductors. According to embodiments of the present invention, it is possible to achieve wafers of a high purity applicable to the semiconductor manufacture.06-14-2012
20100129997ORGANIC LIGHT EMITTING DIODE (OLED) DISPLAY PANEL AND METHOD OF FORMING POLYSILICON CHANNEL LAYER THEREOF - An organic light emitting diode (OLED) display panel and a method of forming a polysilicon channel layer thereof are provided. In the method, firstly, a substrate having a polysilicon layer disposed thereon is provided. Then, a dopant atom not selected from the IIIA group and the VA group is doped inside the polysilicon layer to form a polysilicon channel layer.05-27-2010
20120244689SCHOTTKY DIODE WITH CONTROL GATE FOR OPTIMIZATION OF THE ON STATE RESISTANCE, THE REVERSE LEAKAGE, AND THE REVERSE BREAKDOWN - A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.09-27-2012
20130078787METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Disclosed is a method for manufacturing a semiconductor device, including the steps of: forming a first semiconductor film (03-28-2013
20130029481TEMPLATED CIRCUITRY FABRICATION - A method of making templated circuitry employs a template system that includes a template of an insulator material on a carrier having a conductive surface. The template includes multiple levels and multiple regions, wherein a first level exposes the conductive surface of the carrier. A first metal is electrochemically deposited on the conductive surface in first regions of the first level. A circuit material is deposited to cover the first metal. The template is etched until a second level of the template exposes the conductive surface in second regions on opposite sides of the first regions. A second metal is electrochemically deposited on the conductive surface in the second regions. The template of deposited materials is transferred from the carrier to a substrate.01-31-2013
20130089974METHOD OF MANUFACTURING A NON-VOLATILE MEMORY DEVICE HAVING A VERTICAL STRUCTURE - A method of manufacturing a non-volatile memory device, wherein the method includes: alternately stacking interlayer sacrificial layers and interlayer insulating layers on a substrate; forming a plurality of first openings that pass through the interlayer sacrificial layers and the interlayer insulating layers to expose a first portion of the substrate; forming a semiconductor region on a side wall and a lower surface of each of the first openings; forming an embedded insulating layer in each of the first openings; forming a first conductive layer on the embedded insulating layer inside each of the first openings; forming a second opening exposing a second portion of the substrate and forming an impurity region on the second portion; forming a metal layer to cover the first conductive layer and the impurity region; and forming the metal layer into a metal silicide layer.04-11-2013
20130164922METHODS OF MANUFACTURING A SEMICONDUCTOR DEVICE - Methods of manufacturing a semiconductor device are provided. The method may include forming an etch target layer on a substrate, forming a carbon layer doped with boron on the etch target layer, a top end portion of the carbon layer having a different boron concentration from a bottom end portion of the carbon layer, patterning the carbon layer to form at least one opening exposing the etch target layer, and etching the exposed etch target layer using the carbon layer as an etch mask.06-27-2013
20110287616Bottom anode schottky diode structure and method - This invention discloses a bottom-anode Schottky (BAS) diode that includes an anode electrode disposed on a bottom surface of a semiconductor substrate. The bottom-anode Schottky diode further includes a sinker dopant region disposed at a depth in the semiconductor substrate extending substantially to the anode electrode disposed on the bottom surface of the semiconductor and the sinker dopant region covered by a buried Schottky barrier metal functioning as a Schottky anode. The BAS diode further includes a lateral cathode region extended laterally from a cathode electrode near a top surface of the semiconductor substrate opposite the Schottky barrier metal wherein the lateral cathode region doped with an opposite dopant from the sinker dopant region and interfacing the sinker dopant region whereby a current path is formed from the cathode electrode to the anode electrode through the lateral cathode region and the sinker dopant region in applying a forward bias voltage and the sinker dopant region depleting the cathode region in applying a reverse bias voltage for blocking a leakage current.11-24-2011
20090197400METHOD FOR RECYCLING OF ION IMPLANTATION MONITOR WAFERS - A method of recycling monitor wafers. The method includes: (a) providing a semiconductor wafer which includes a dopant layer extending from a top surface of the wafer into the wafer a distance less than a thickness of the wafer, the dopant layer containing dopant species; after (a), (b) attaching an adhesive tape to a bottom surface of the wafer; after (b), (c) removing the dopant layer; and after (c), (d) removing the adhesive tape.08-06-2009
20090142910MANUFACTURING METHOD OF MULTI-LEVEL NON-VOLATILE MEMORY - A manufacturing method of a multi-level non-volatile memory includes following steps. First, a tunneling dielectric layer and a charge storage layer are sequentially formed on the substrate. At least two stacked layers are formed on the charge storage layer. Every two stacked layers include an inter-gate dielectric layer, a control gate, and a cap layer in sequence. Next, the charge storage layer between the two stacked layers is removed to form a first trench. After spacers are formed at the sidewalls of the two stacked layers and of the first trench, the charge storage layer outside the two stacked layers is removed. Thereafter, a dielectric layer is formed on the substrate. An assist gate is formed between the two stacked layers and a select gate is respectively formed on the sidewalls outside the two stacked layers. A doped region is then formed in the substrate outside the two stacked layers.06-04-2009
20090258479NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND MANUFACTURING METHOD THEREOF - A nonvolatile semiconductor memory device is provided in such a manner that a semiconductor layer is formed over a substrate, a charge accumulating layer is formed over the semiconductor layer with a first insulating layer interposed therebetween, and a gate electrode is provided over the charge accumulating layer with a second insulating layer interposed therebetween. The semiconductor layer includes a channel formation region provided in a region overlapping with the gate electrode, a first impurity region for forming a source region or drain region, which is provided to be adjacent to the channel formation region, and a second impurity region provided to be adjacent to the channel formation region and the first impurity region. A conductivity type of the first impurity region is different from that of the second impurity region.10-15-2009
20100151667DOPANT IMPLANTING METHOD AND DOPING APPARATUS - A dopant device includes: a dopant holder that holds Ge which is solid at normal temperature and liquefies the Ge near a surface of the semiconductor melt, the dopant holder including a communicating hole for delivering the liquefied Ge downwardly; a cover portion for covering the Ge held by the dopant holder; and a vent provided on the cover portion for communicating with the outside. A dopant injecting method is carried out using such a dopant device, the dopant injecting method including: loading Ge dopant in a solid state into the doping device; liquefying the solid Ge dopant loaded into the doping device while holding the doping device at a predetermined height from a surface of a semiconductor melt; and doping the semiconductor melt with the liquefied Ge that is flowed from the communicating hole.06-17-2010
20130137248Doping Carbon Nanotubes and Graphene for Improving Electronic Mobility - A method for doping a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility. The method includes selectively applying a dopant to a channel region of a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility of the field-effect transistor device.05-30-2013
20090087968METHOD FOR FABRICATING FINE PATTERN IN SEMICONDUCTOR DEVICE - A method for fabricating a fine pattern in a semiconductor device includes forming a first photoresist over a substrate where an etch target layer is formed, doping at least one impurity selected from group III elements and group V elements, of the periodic table, into the first photoresist, forming a photoresist pattern over the first photoresist, performing a dry etching process using the photoresist pattern to expose the first photoresist, etching the first photoresist by an oxygen-based dry etching to form a first photoresist pattern where a doped region is oxidized, and etching the etch target layer using the first photoresist pattern as an etch barrier.04-02-2009
20100055885METHOD OF MAKING LOW WORK FUNCTION COMPONENT - A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.03-04-2010
20100323507SUBSTRATE PROCESSING APPARATUS AND PRODUCING METHOD OF DEVICE - A substrate processor enables realization of a proper process by combining advantages of a remote plasma and a plasma generated in an entire processing chamber. The substrate processor includes a conductive member (12-23-2010
20100190323Modifying catalytic behavior of nanocrystals - The present invention provides a method of providing a desired catalyst electron energy level. The method includes providing a donor material quantum confinement structure (QCS) having a first Fermi level, and providing an acceptor QCS material having a second Fermi level, where the first Fermi level is higher than the second Fermi level. According to the method the acceptor is disposed proximal to the donor to alter an electronic structure of the donor and the acceptor materials to provide the desired catalyst electron energy level.07-29-2010
20120045887COMPOSITIONS OF DOPED, CO-DOPED AND TRI-DOPED SEMICONDUCTOR MATERIALS - Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.02-23-2012
20120220111INJECTION METHOD WITH SCHOTTKY SOURCE/DRAIN - An injection method for non-volatile memory cells with a Schottky source and drain is described. Carrier injection efficiency is controlled by an interface characteristic of silicide and silicon. A Schottky barrier is modified by controlling an overlap of a gate and a source/drain and by controlling implantation, activation and/or gate processes.08-30-2012
20130102136METHOD OF FORMING AN INTEGRATED CIRCUIT - A method of forming an integrated circuit is disclosed. A second material layer is formed on a first material layer. A patterned mask layer having a plurality of first features with a first pitch P04-25-2013
20130115762METHOD FOR DOPING A SEMICONDUCTOR MATERIAL - A feedstock of semiconductor material is placed in a crucible. A closed sacrificial recipient containing a dopant material is placed in the crucible. The content of the crucible is melted resulting in incorporation of the dopant in the molten material bath. The temperature increase is performed under a reduced pressure.05-09-2013
20130115761Methods of Forming a Semiconductor Device - Methods of forming a semiconductor device are provided. The methods may include forming first and second layers that are alternately and repeatedly stacked on a substrate, and forming an opening penetrating the first and second layers. The methods may also include forming a first semiconductor pattern in the opening. The methods may additionally include forming an insulation pattern on the first semiconductor pattern. The methods may further include forming a second semiconductor pattern on the insulation pattern. The methods may also include providing dopants in the first semiconductor pattern. Moreover, the methods may include thermally treating a portion of the first semiconductor pattern to form a third semiconductor pattern.05-09-2013
20080200015MULTI-STEP PLASMA DOPING WITH IMPROVED DOSE CONTROL - A method of multi-step plasma doping a substrate includes igniting a plasma from a process gas. A first plasma condition is established for performing a first plasma doping step. The substrate is biased so that ions in the plasma having the first plasma condition impact a surface of the substrate thereby exposing the substrate to a first dose. The first plasma condition transitions to a second plasma condition. The substrate is biased so that ions in the plasma having the second plasma condition impact the surface of the substrate thereby exposing the substrate to a second dose. The first and second plasma conditions are chosen so that the first and second doses combine to achieve a predetermined distribution of dose across at least a portion of the substrate.08-21-2008
20130189832SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device including a semiconductor substrate having a first conductive type layer; a first diffusion region which has the first conductive type and is formed in the first conductive type layer; a second diffusion region which has a second conductive type and an area larger than an area of the first diffusion region and overlaps the first diffusion region; and a PN junction formed at an interface between the first and the second diffusion regions. The second diffusion region includes a ring shaped structure or a guard ring includes an inverted region which has the second conductive type. According to such a configuration, it is possible to provide a semiconductor device having the required Zener characteristics with good controllability.07-25-2013