Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


By electromagnetic irradiation (e.g., electron, laser, etc.)

Subclass of:

438 - Semiconductor device manufacturing: process

438460000 - SEMICONDUCTOR SUBSTRATE DICING

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20090215246METHOD FOR BREAKING ADHESIVE FILM MOUNTED ON BACK OF WAFER - A method for breaking an adhesive film mounted on the back of a wafer having a plurality of streets formed in a lattice pattern on the face of the wafer, and having devices formed in a plurality of regions demarcated by the plurality of streets, the devices being divided individually, is adapted to break the adhesive film along the outer peripheral edges of the individual devices, with the adhesive film being stuck to the surface of a dicing tape mounted on an annular frame. The method comprises: a laser processing step of projecting a laser beam with a pulse width of 100 picoseconds or less onto the adhesive film through gaps between the individually divided devices to form deteriorated layers in the adhesive film along the outer peripheral edges of the individual devices; and an adhesive film breaking step of exerting external force on the adhesive film having the deteriorated layers formed therein, to break the adhesive film along the deteriorated layers.08-27-2009
20080261382WAFER DICING USING A FIBER MOPA - Silicon wafer dicing apparatus includes a master oscillator power amplifier (MOPA) arrangement wherein the master oscillator includes a continuous wave (CW) laser the output of which modulated by an external modulator to provide optical pulses to be amplified in the power amplifier. In one example of the apparatus the power amplifier includes at least one amplification stage including an optical fiber gain-medium.10-23-2008
20100159672METHOD AND DEVICE FOR CLEANING ELECTRONIC COMPONENTS PROCESSED WITH A LASER BEAM - The present invention relates to a method for processing with a laser beam and cleaning electronic components, wherein at least one new boundary surface is formed on an electronic component with the laser beam. The invention also relates to a device for processing and cleaning electronic components, comprising at least: a laser source for generating a laser beam, and at least one carrier for supporting an assembly of unseparated electronic components, wherein the carrier and the laser beam are displaceable relative to each other.06-24-2010
20090191692Wafer processing method - A method of processing a wafer having a plurality of devices which are composed of a laminate consisting of an insulating film and a functional film on the front surface of a substrate, along streets for sectioning the plurality of devices, the method comprising a first blocking groove forming step for forming a first blocking groove for dividing the laminate in a one-side portion in the width direction of a street of the wafer held on a chuck table by moving the chuck table in a first direction in the processing-feed direction while activating a first laser beam application means; and a second blocking groove and dividing groove forming step for forming a second blocking groove which divides the laminate in the other-side portion in the width direction of the street of the wafer which has undergone the first blocking groove forming step by moving the chuck table in a second direction in the processing-feed direction while activating the first laser beam application means and at the same time, forming a dividing groove in the laminate and the substrate along an intermediate portion between the first blocking groove and the second blocking groove formed in the street of the wafer by activating second laser beam application means.07-30-2009
20090155984Backside protection film, method of forming the same and method of manufacturing a semiconductor package using the same - A method of forming a backside protection film includes forming a first coating layer on a first heterogeneous film, the first coating layer being at a C-stage state, forming a second coating layer on a second heterogeneous film, the second coating layer being at a B-stage state, separating the first coating layer from the first heterogeneous film, and attaching the first coating layer to the second coating layer, the second coating layer being between the second heterogeneous film and the first coating layer, and each of the first and second heterogeneous films being formed by coating a first material layer with a second material.06-18-2009
20090155983INHIBITION OF METAL DIFFUSION ARISING FROM LASER DICING - Method of inhibiting metal diffusion arising from laser dicing is provided. The method includes dividing a wafer into at least one chip. The chip includes internal metallic features. The dividing deposits at least one metallic substance on the outer surface of the chip. After so dividing the chip, the method exposes the chip to a heated ambient environment having a given pressure (e.g., less than one atmosphere). The environment includes a chemical agent capable of bonding with the metallic substance. Additionally, wet chemical etch may be performed on the chip.06-18-2009
20100041210METHOD OF PROCESSING OPTICAL DEVICE WAFER - A method of dividing an optical device wafer includes: a laser beam processing step of performing laser beam processing on the face side of an optical device wafer so as to form breakage starting points along streets; a protective plate bonding step of bonding the face side of the optical device wafer to a surface of a highly rigid protective plate with a bonding agent permitting peeling; a back side grinding step of grinding the back side of the optical device wafer so as to form the optical device wafer to a finished thickness of optical devices; a dicing tape adhering step of adhering the back-side surface of the optical device wafer to a dicing tape; a cut groove forming step of cutting the protective plate bonded to the optical device wafer along the streets so as to form cut grooves; and a wafer dividing step of exerting an external force on the optical device wafer through the protective plate, so as to break up the optical device wafer along the breakage starting points formed along the streets, thereby dividing the optical device wafer into the individual optical devices.02-18-2010
20090124063METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device by which a wafer with devices formed in a plurality of regions demarcated by a plurality of streets formed in a grid pattern in the face-side surface of the wafer is divided along the streets into individual devices, and an adhesive film for die bonding is attached to the back-side surface of each of the devices. The adhesive film is attached to the back-side surface of the wafer divided into individual devices by exposing cut grooves formed along the streets by a dicing-before-grinding method, and thereafter the adhesive film is irradiated with a laser beam along the cut grooves through the cut grooves from the side of a protective tape adhered to the face-side surface of the wafer, so as to fusion-cut the adhesive film along the cut grooves.05-14-2009
20130089969Method for Slicing a Substrate Wafer - A method for slicing a monocrystalline semiconductor layer (04-11-2013
20090042369METHOD AND STRUCTURE USING SELECTED IMPLANT ANGLES USING A LINEAR ACCELERATOR PROCESS FOR MANUFACTURE OF FREE STANDING FILMS OF MATERIALS - A method for fabricating free standing thickness of materials using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. In a specific embodiment, the present method includes providing a semiconductor substrate having a surface region and a thickness. The method includes subjecting the surface region of the semiconductor substrate to a first plurality of high energy particles provided at a first implant angle generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature. In a specific embodiment, the method includes subjecting the surface region of the semiconductor substrate to a second plurality of high energy particles at a second implant angle generated using the linear accelerator, the second plurality of high energy particles being provided to increase a stress level of the cleave region from a first stress level to a second stress level. In a preferred embodiment, the semiconductor substrate is maintained at a second temperature, which is higher than the first temperature. The method frees the thickness of detachable material using a cleaving process, e.g., controlled cleaving process.02-12-2009
20100099239LASER MACHINING - A method of laser machining a feature in a substrate includes machining the substrate with a pulsed laser along a scan line so that the successive pulses 04-22-2010
20110021004METHOD OF CUTTING A SUBSTRATE, METHOD OF CUTTING A WAFER-LIKE OBJECT, AND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.01-27-2011
20120115308FABRICATION METHOD FOR DICING OF SEMICONDUCTOR WAFERS USING LASER CUTTING TECHNIQUES - A fabrication method for dicing semiconductor wafers using laser cutting techniques, which can effectively prevent the devices on semiconductor die units from the phenomenon of etching undercut caused by the sequential steps after laser cutting, comprises following steps: covering the wafer surface with a protection layer; dicing the wafer by laser and separating the die units from each other; removing the laser cutting residues on the devices on the die units by wet etching; removing the protection layer and cleaning the devices on the die units. The selection of materials for the protection layer must consider the following factors: where (1) the materials for the protection layer must have relatively good properties for adhering and covering on the wafer; (2) and the materials for the protection layer must be corrosion-resistant to the acidic or basic solution for etching residues.05-10-2012
20090011572Wafer Working Method - A wafer working method is provided which is capable of feeding a wafer diced by a laser dicing apparatus to a subsequent step without breaking up the wafer. The wafer working method comprises: a first machining step of grinding a reverse side of a wafer W and then polishing the reverse side of the wafer thus ground to a thickness T01-08-2009
20090011571WAFER WORKING METHOD - A wafer working method is provided which is capable of feeding a wafer diced by a laser dicing apparatus to a subsequent step without breaking up the wafer. The wafer working method comprises: a first machining step of grinding a reverse side of a wafer W and then polishing the reverse side of the wafer thus ground to a thickness T2 which is larger than a finally worked wafer thickness T1 by 50 μm to 150 μm; a modified region forming step of irradiating laser light to the wafer thus subjected to the first machining to form a modified region inside the wafer; and a second machining step of grinding the reverse side of the wafer thus formed with the modified region and then polishing the reverse side of the wafer thus ground to the finally worked wafer thickness T1.01-08-2009
20090004828LASER BEAM MACHINING METHOD FOR WAFER - A laser beam machining method for a wafer, wherein an operation of irradiating the inside of a wafer with a laser beam L along each of planned dividing lines is repeated a plural number of times from a position proximate to a back-side surface of the wafer toward a face-side surface of the wafer so that a plurality of composite layers each including a denatured layer and a cracked layer extending from the denatured layer toward the face-side surface are formed stepwise at intervals (first laser beam irradiation step). Subsequently, each of some of non-cracked layers between the composite layers is irradiated with the laser beam L so as to extend the cracked layer of a given one of the composite layers and to cause the cracked layer to reach the denatured layer of the composite layer which is adjacent to the given one composite layer. The denatured layers and the cracked layers which are sufficient for enabling the wafer to be split are formed by a reduced number of laser beam irradiation operations.01-01-2009
20110300692METHOD FOR DIVIDING A SEMICONDUCTOR FILM FORMED ON A SUBSTRATE INTO PLURAL REGIONS BY MULTIPLE LASER BEAM IRRADIATION - The present invention relates to a method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation using a sequence of at least two laser beam treatments affecting essentially a same area of said film. Except of a final laser beam treatment, the treatments of said sequence of at least two laser beam treatments are used for a conditioning of the treated film area which is to be removed. Said final laser beam treatment is applied to actually remove material in order to form a groove. Further, the invention relates to an arrangement for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation using a sequence of at least two laser beam treatments affecting essentially a same area of said film. Said arrangement comprises a first conditioning laser for the treatments of said sequence of at least two laser beam treatments except of a final laser beam treatment and it comprises a second laser for said final laser beam treatment.12-08-2011
20120108035Method of Fabricating Semiconductor Device - A method of fabricating a semiconductor device includes preparing a semiconductor wafer having a top surface and a bottom surface. The semiconductor wafer is loaded onto a wafer chuck, and the bottom surface of the loaded semiconductor wafer faces the wafer chuck. A groove is formed in the top surface of the loaded semiconductor wafer by irradiating a second laser onto the top surface, and a reforming region is formed in the loaded semiconductor wafer under the groove by irradiating a first laser through wafer chuck and bottom surface of the semiconductor wafer into a region in which the first laser is focused. The semiconductor wafer is unloaded from the wafer chuck. The bottom surface of the semiconductor wafer is ground to decrease a thickness of the semiconductor wafer. The semiconductor wafer is separated along the groove and the reforming region, thereby forming a plurality of unit chips.05-03-2012
20090042370METHOD OF CUTTING PCBS - The present invention relates to a method of cutting PCB module using a laser. The method includes steps of: providing a coverlay film, the coverlay film including at least one opening defined therein; attaching the coverlay film onto the PCB module such that the through holes of the PCB module are covered by the coverlay film and the laser cutting area thereof is exposed via the at least one opening; applying a laser beam to the exposed laser cutting area of the PCB module to cutt the PCB module; and removing the coverlay film. A high positioning precision of the PCB module and better cutting result can be obtained.02-12-2009
20090298263DIVIDING METHOD FOR WAFER HAVING FILM ON THE FRONT SIDE THEREOF - A wafer dividing method for dividing a wafer having a film on the front side thereof. The wafer dividing method includes a modified layer forming step of applying a laser beam having a transmission wavelength to the substrate of the wafer from the front side thereof along the streets so that a focal point of the laser beam is set inside the substrate, thereby forming a modified layer in the substrate along each street, a film dividing step of applying a laser beam having an absorption wavelength to the film from the front side of the wafer along each street to thereby form a laser processed groove for dividing the film along each street, a back grinding step of grinding the back side of the substrate of the wafer to thereby reduce the thickness of the wafer to a predetermined thickness, a wafer supporting step of attaching the wafer to a dicing tape supported to an annular frame, and a wafer breaking step of applying an external force to the wafer by expanding the dicing tape to thereby break the wafer along each street.12-03-2009
20100136766WORKING METHOD FOR CUTTING - An object to be processed is reliably cut along a line to cut. An object to be processed is irradiated with laser light while locating a converging point at the object, so as to form a modified region in the object along a line to cut. The object formed with the modified region is subjected to an etching process utilizing an etching liquid exhibiting a higher etching rate for the modified region than for an unmodified region, so as to etch the modified region. This can etch the object selectively and rapidly along the line to cut by utilizing a higher etching rate in the modified region.06-03-2010
20100055876Laser processing method and laser processing apparatus - A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.03-04-2010
20100035408METHOD OF PROCESSING OPTICAL DEVICE WAFER - A method of dividing an optical device wafer includes: a laser beam processing step of performing laser beam processing to provide an optical device wafer with breakage starting points along streets on the face side of the optical device wafer; a protective plate bonding step of bonding the face side of the optical device wafer to a surface of a highly rigid protective plate with a bonding agent permitting peeling; a back side grinding step of grinding the back side of the optical device wafer so as to form the optical device wafer to a finished thickness of the optical devices; a wafer supporting step of adhering the back-side surface of the optical device wafer to a surface of a dicing tape, and peeling the protective plate adhered to the face side of the optical device wafer; and a wafer dividing step of exerting an external force on the optical device wafer so as to break up the optical device wafer along the streets along which the breakage starting points have been formed, thereby dividing the optical device wafer into the individual optical devices.02-11-2010
20090203193LASER PROCESSING METHOD - A laser processing method including a first step of forming a first groove and a second step of forming a second groove on the workpiece. In the first step, the laser beam is intermittently applied to the first street except the intersections between the first street and the second street, thereby forming a discontinuous groove as the first groove in such a manner that each intersection is not grooved. In the second step, the laser beam is continuously applied to the second street, thereby forming a continuous groove as the second groove intersecting the first groove in such a manner that each intersection is grooved by the second groove. In the second step, heat generated at a portion immediately before each intersection is passed through the intersection to be dissipated forward, thereby suppressing overheating at this portion.08-13-2009
20090170289WAFER DIVIDING METHOD - A laser beam is applied to an intersection area of each second street of a wafer by using a dicing apparatus to thereby form a first modified layer along the intersection area. Thereafter, the wafer is divided along each first street intersecting each second street at right angles to obtain a plurality of wafer strips. Thereafter, the laser beam is applied along the remaining area of each second street other than the intersection area to form a second modified layer along the remaining area of each second street. Thereafter, an external force is applied to each wafer strip in which the first and second modified layers have been formed along each second street, thereby dividing each wafer strip along each second street to obtain a plurality of devices.07-02-2009
20090311848OPTICAL DEVICE WAFER DIVIDING METHOD - An optical device wafer dividing method includes a rear surface grinding step for grinding a rear surface of the optical device wafer; a dicing tape sticking step for sticking the front surface of the optical device wafer bonded with the reinforcing substrate to the front surface of a dicing tape; a laser processing step for emitting a laser beam along the streets formed on the optical device wafer from the rear surface of the reinforcing substrate to perform laser processing on the reinforcing substrate along the streets to form fracture starting points; and a wafer dividing step for applying an external force along the fracture starting points of the reinforcing substrate to fracture the reinforcing substrate along the fracture starting points to fracture the optical device wafer along the streets.12-17-2009
20120190175LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS - A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.07-26-2012
20120190174LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS - There is provided a laser processing method of a sapphire substrate including preparing a sapphire substrate on which plural stacked portions spaced from each other are formed, irradiating a short pulse laser beam from a laser light source, making the laser beam irradiated from the laser light source pass through a beam shaping module, adjusting a position of a light concentrating unit or the sapphire substrate such that the laser beam is concentrated to the inside of the sapphire substrate through the light concentrating unit, and forming a phase transformation area within the sapphire substrate by irradiating the laser beam into the sapphire substrate. The laser beam is introduced into the sapphire substrate while avoiding an area where the stacked portions are formed on the sapphire substrate, so that the phase transformation area is formed within the sapphire substrate.07-26-2012
20100120228SEMICONDUTOR MANUFACTURING METHOD - A manufacturing method for semiconductor devices having a metal support is provided. The method in one aspect includes growing a semiconductor film on a growth substrate; forming a metal support on a surface of said semiconductor film opposite to the growth substrate; thereafter removing said growth substrate from said semiconductor film; forming a street groove reaching said metal support in the said semiconductor film; radiating a first laser beam onto said metal support to form a first dividing groove having a substantially flat bottom in said metal support; and radiating a second laser beam onto said metal support to form a second dividing groove that penetrates though a portion of said metal support that remains where the first divining groove is formed.05-13-2010
20100099238Laser-assisted chemical singulation of a wafer - The present invention discloses an apparatus including: a laser beam directed at a wafer held by a chuck mounted on a stage inside a process chamber; a focusing mechanism for the laser beam; a steering mechanism for the laser beam; an optical scanning mechanism for the laser beam; a mechanical scanning system for the stage; an etch chemical induced by the laser beam to etch the wafer and form volatile byproducts; a gas feed line to dispense the etch chemical towards the wafer; and a gas exhaust line to remove any excess of the etch chemical and the volatile byproducts.04-22-2010
20090291544WAFER LASER PROCESSING METHOD AND APPARATUS - A wafer laser processing method for forming deteriorated layers along a plurality of streets in the inside of a wafer having a device area where a plurality of areas are sectioned by the plurality of streets arranged in a lattice pattern on the front surface and devices are formed in the sectioned areas and having a peripheral excess area surrounding the device area, the surface of the device area being formed to be higher than the surface of the peripheral excess area, by applying a laser beam to the front surface of the wafer along the streets with its focal point set to the inside of the wafer, comprising a first deteriorated layer forming step for forming a deteriorated layer along the streets in the insides of the peripheral excess area and the device area by applying a laser beam to the peripheral excess area and the device area along the streets with its focal point set to the insides of the peripheral excess area and the device area from the front surface side of the wafer; and a second deteriorated layer forming step for forming a deteriorated layer along the streets in the inside of the device area by applying a laser beam to the device area along the streets with its focal point set to the inside of the device area without applying the laser beam to the peripheral excess area when the focal point of the laser beam is positioned near the front surface of the peripheral excess area.11-26-2009
20120289027DEVICE PROCESSING METHOD - In a device processing method, a laser beam is applied to a wafer along division lines from the back side of the wafer, thereby forming a division start point inside the wafer along the division lines at a depth not reaching the finished thickness of each device. A protective member is attached to the front side of the wafer before or after performing the division start points are formed. An external force is applied through the protective member to the wafer, thereby dividing the wafer along the division lines to obtain the individual devices. The back side of the wafer is ground to remove the modified layers, and a silicon nitride film is formed on at least the side surface of each device. The silicon nitride film has a gettering effect and is formed on the side surface of each device, which surface is formed by a cleavage plane.11-15-2012
20100297831LASER PROCESSING METHOD FOR SEMICONDUCTOR WAFER - A laser processing method for a semiconductor wafer including a groove forming step of applying a pulsed laser beam having an absorption wavelength to the semiconductor wafer along a division line formed on the semiconductor wafer to thereby form a laser processed groove along the division line on the semiconductor wafer, wherein the pulse width of the pulsed laser beam to be applied in the groove forming step is set to 2 ns or less, and the peak energy density per pulse of the pulsed laser beam is set less than or equal to an inflection point where the depth of the laser processed groove steeply increases with an increase in the peak energy density.11-25-2010
20080293220Wafer dividing method - A method of dividing a wafer having a plurality of dividing lines which are formed in a lattice pattern on the front surface, into individual chips along the dividing lines, the method comprising a wafer affixing step for affixing the front surface of the wafer to the front surface of a holding plate having stiffness through an adherent layer; a grinding step for grinding the rear surface of the wafer affixed to the holding plate to a predetermined thickness; a deteriorated layer forming step for applying a pulse laser beam of a wavelength having permeability for the wafer from the rear surface of the wafer which is affixed to the holding plate and has undergone the grinding step to form a deteriorated layer in the inside of the wafer along the dividing lines; a wafer transfer step for putting the rear surface of the wafer which has undergone the deteriorated layer forming step on an adherent tape mounted on an annular frame and removing the holding plate from the front surface of the wafer; and a wafer dividing step for exerting external force to the wafer put on the adherent tape to divide the wafer along the dividing lines.11-27-2008
20080242054Dicing and drilling of wafers - Methods and apparatus to dicing and/or drilling of wafers are described. In one embodiment, an electromagnetic radiation beam (e.g., a relatively high intensity, ultra-short laser beam) may be used to dice and/or drill a wafer. Other embodiments are also described.10-02-2008
20080268619Wafer dividing method - A method of dividing a wafer having devices which are formed in a plurality of areas sectioned by a plurality of streets formed in a lattice pattern on the front surface of a substrate and a protective film which covers the front surfaces of the devices into individual devices along the streets, comprising the steps of:10-30-2008
20080305616Die Singulation Methods - Some embodiments include methods in which a front side region of a semiconductor substrate is placed against a surface. While the front side region is against the surface, the semiconductor substrate is thinned, and then cut into a plurality of dice. The surface may be a pliable material, and may be stretched after the cutting to increase separation between at least some of the dice. While the pliable surface is stretched, at least some of the dice may be picked from the surface. In some embodiments, the semiconductor substrate is retained to the surface with a radiation-curable material. The material is in an uncured and tacky form during the thinning of the substrate, and is subsequently cured into a less tacky form prior to the picking of dice from the surface.12-11-2008
20080286945Controlled process and resulting device - A technique for forming a film of material (11-20-2008
20090162994LASER PROCESSING METHOD - A laser processing method which can securely prevent particles from attaching to chips obtained by cutting a planar object is provided. When applying a stress to an object to be processed 06-25-2009
20090142906METHOD OF DIVIDING WAFER - A method of dividing a wafer includes: a denatured layer forming step of forming a denatured layer in the inside of the wafer along streets; a first feeding step in which the whole area of the wafer's back-side surface is suction held, and the wafer is mounted on a support base of a tape adhering unit, with the wafer's back-side surface on the upper side; a dicing tape adhering step of adhering a dicing tape to the wafer's back-side surface and an annular frame; a wafer reversing step of reversing the wafer and the annular frame face side back; a second feeding step of feeding said wafer and said annular frame to a tape expanding unit whole holding them by suction; a protective tape peeling step of peeling off a protective tape adhered to the wafer's face-side surface; and a wafer dividing step of expanding the dicing tape so as to divide the wafer along the streets along which the denatured layer has been formed.06-04-2009
20100248451Method for Laser Singulation of Chip Scale Packages on Glass Substrates - An improved method for singulation of compound electronic devices is presented. Compound electronic devices are manufactured by combining two or more substrates into an assembly containing multiple devices. Presented are methods for singulation of compound electronic devices using laser processing. The methods presented provide fewer defects such as cracking or chipping of the substrates while minimizing the width of the kerf and maintaining system throughput.09-30-2010
20090081851Laser processing method - A laser processing method is provided, which, when cutting an object to be processed comprising a substrate and a multilayer part, formed on a front face of the substrate, including a functional device, can cut the multilayer part with a high precision in particular.03-26-2009
20090191693Wafer processing method - A method of processing a wafer having a plurality of devices which are composed of a laminate consisting of an insulating film and a functional film laminated on the front surface of a substrate, along streets for sectioning the plurality of devices, comprising a first trip blocking groove forming step for activating a first laser beam application means to form a blocking groove for dividing the laminate along a street of the wafer while moving the chuck table in a first direction in the processing-feed direction; a second trip blocking groove and dividing groove forming step for activating the first laser beam application means to form a blocking groove for dividing the laminate along a street next to the street which has undergone the first trip blocking groove forming step and also to form a dividing groove along the blocking groove formed by the first trip blocking groove forming step while moving the chuck table in a second direction in the processing-feed direction; and a first trip blocking groove and dividing groove forming step for activating the first laser beam application means to form a blocking groove for dividing the laminate along a street next to the street which has undergone the second trip blocking groove and dividing groove forming step and also, to form a dividing groove along the blocking groove formed by the second trip blocking groove and dividing groove forming step while moving the chuck table in a first direction in the processing-feed direction.07-30-2009
20090117711Method for Laterally Cutting Through a Semiconductor Wafer and Optoelectronic Component - In a method for laterally dividing a semiconductor wafer (05-07-2009
20090053877METHOD FOR PRODUCING A MULTILAYER STRUCTURE COMPRISING A SEPARATING LAYER - Process for producing a multilayer structure that includes, within the depth thereof, a separating layer, including: producing an initial multilayer structure comprising a base substrate, a surface substrate and, between the base substrate and the surface substrate, an absorbent layer that can absorb a light power flux in at least one zone and a liquefiable intermediate layer that includes, in at least one zone, impurities having a coefficient of segregation relative to the material constituting this intermediate layer of less than unity; and in subjecting, for a defined time and in the form of at least one pulse, said initial structure to said light power flux, this flux being regulated so as to liquefy at least one portion of said intermediate layer under the effect of the propagation of the thermal energy, in such a way that it results, thanks to the initial presence of said impurities, in a modification of at least one characteristic and/or of at least one property of said intermediate layer arising from the at least partial solidification of said intermediate layer, such that this intermediate layer at least partially constitutes a separating layer.02-26-2009
20090117712LASER PROCESSING METHOD - A laser processing method for preventing particles from occurring from cut sections of chips obtained by cutting a silicon wafer is provided. An irradiation condition of laser light L for forming modified regions 05-07-2009
20090215245Wafer dividing method - A method of dividing a wafer having a plurality of streets, which are formed in a lattice pattern on the front surface, and having devices, which are formed in a plurality of areas sectioned by the plurality of streets, into individual devices along the streets, comprising: a protective member-affixing step for affixing a protective member for protecting devices onto the front surface of the wafer; a deteriorated layer-forming step for applying a laser beam of a wavelength having permeability for the wafer from the rear surface side of the wafer along the streets to form a deteriorated layer along the streets in an area where it does not reach the final thickness of each device from the front surface of the wafer and the rear surface of the wafer in the inside of the wafer; a groove-forming step for cutting areas corresponding to the streets from the rear surface side of the wafer where the deteriorated layer has been formed along the streets to form a groove reaching the deteriorated layer; a dividing the wafer into individual devices along the streets where the deteriorated layer and the groove have been formed by exerting external force to the wafer; and a grinding the rear surface of the wafer which has been divided into individual devices until the final thickness of each device is achieved.08-27-2009
20100015782Wafer Dicing Methods - Semiconductor wafer dicing methods are disclosed. These methods include forming etch patterns between adjacent semiconductor dice to be separated. Various etch processes can be used to form the etch patterns. The etch patterns generally reach a pre-determined depth into the wafer substrate significantly beyond the wafer top layer where pre-fabricated semiconductor dice are embedded. Semiconductor dice may be separated from a post-etch, large-sized, frangible wafer through wafer grinding, mechanical cleaving, and laser dicing approaches. Preferred embodiments result in reduced wafer-dicing related device damage and improved product yield.01-21-2010
20100015783METHOD OF CUTTING AN OBJECT TO BE PROCESSED - A method of cutting an object which can accurately cut the object is provided. An object to be processed 01-21-2010
20100197116LASER-BASED MATERIAL PROCESSING METHODS AND SYSTEMS - Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and/or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse repetition rate sufficiently high so that material is efficiently removed from the region and a quantity of unwanted material within the region, proximate to the region, or both is reduced relative to a quantity obtainable at a lower repetition rate. In at least one embodiment, an ultrashort pulse laser system may include at least one of a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a semiconductor substrate. Workpiece materials may also include metals, inorganic or organic dielectrics, or any material to be micromachined with femtosecond and/or picosecond pulses, and in some embodiments with pulse widths up to a few nanoseconds.08-05-2010
20120196427LASER WORKING METHOD, LASER WORKING APPARATUS, AND ITS MANUFACTURING METHOD - An object is irradiated with a laser light modulated by a reflection type spatial light modulator such that aberration of the laser light converged inside the object becomes a predetermined aberration or less. Therefore, aberration of the laser light generated at a position on which a converging point of the laser light is located is made as small as possible, to enhance the energy density of the laser light at that position, which makes it possible to form a modified region with a high function as a starting point for cutting. In addition, because the reflection type spatial light modulator is used, it is possible to improve the utilization efficiency of the laser light as compared with a transmissive type spatial light modulator.08-02-2012
20100227453LASER PROCESSING METHOD - A laser processing method which can securely prevent particles from attaching to chips obtained by cutting a planar object is provided. When applying a stress to an object to be processed 09-09-2010
20090149002METHOD OF FORMING A MODIFIED LAYER IN A SUBSTRATE - First, mapping data storing interrupted areas is obtained. In a first modified-layer forming step, before a stacked article is stacked on a front surface of a substrate, a laser beam is directed to the interrupted areas based on the mapping data to form modified layers only at the interrupted areas. After the stacked articles have been stacked on the substrate, in a second modified-layer forming step, the laser beam is directed at least to the predetermined dividing line formed with no modified layer in the first modified-layer forming step to form a modified layer.06-11-2009
20100304551PROTECTIVE FILM AGENT FOR LASER DICING AND WAFER PROCESSING METHOD USING THE PROTECTIVE FILM AGENT - A protective film agent for laser dicing according to the present invention comprises a solution having, dissolved therein, a water-soluble resin and at least one laser light absorber selected from the group consisting of a water-soluble dye, a water-soluble coloring matter, and a water-soluble ultraviolet absorber. The protective film agent is coated on a surface of a wafer, which is to be processed, and is then dried to form a protective film. Laser dicing through the protective film produces chips from the wafer. As a result, deposition of debris can be effectively prevented on the entire face of the chips, including their peripheral edge portions.12-02-2010
20100311225WAFER PROCESSING METHOD - A wafer processing method for dividing a wafer into individual devices along streets. The wafer processing method includes the steps of forming a division groove on the front side of the wafer along each street, attaching the front side of the wafer to the front side of a rigid plate having a plurality of grooves by using an adhesive resin, applying ultraviolet radiation to the adhesive resin to thereby increase the holding force of the adhesive resin, grinding the back side of the wafer to expose the division grooves to the back side of the wafer, attaching an adhesive tape to the back side of the wafer, immersing the wafer and the rigid plate in hot water to swell the adhesive resin, thereby decreasing the holding force of the adhesive resin, and removing the rigid plate from the front side of the wafer.12-09-2010
20110034007DIVIDING METHOD FOR PLATELIKE WORKPIECE - A dividing method for a platelike workpiece having a two-layer structure such that a solder layer (metal layer) is formed on the back side of a wafer (substrate). First, a modified layer is formed in the wafer along each division line formed on the front side of the wafer. Thereafter, the workpiece is bent along each division line to thereby divide the wafer along each division line from the corresponding modified layer as a starting point and simultaneously form a weak portion in the solder layer along each division line. Thereafter, an expandion tape attached to the solder layer is expanded to apply an external force to the solder layer, thereby dividing the solder layer along each division line from the corresponding weak portion as a starting point. Thus, the workpiece is completely divided.02-10-2011
20110244659WAFER CUTTING METHOD AND A SYSTEM THEREOF - A method for cutting a semiconductor wafer by generating a crack within the wafer, and a system thereof, are provided. The method comprises irradiating a laser beam towards a surface of the wafer and converging the laser beam to form a focal point so that a focal volume defined by the focal point and a boundary of the laser beam within the wafer is formed. Energy encompassed within the focal volume causes the wafer located at the periphery of the focal volume to contract faster than the wafer located within the focal volume, thereby generating a crack within the wafer.10-06-2011
20090098713OBJECT CUTTING METHOD - An object cutting method which can reliably remove particles remaining on cut sections of chips is provided. An expandable tape 04-16-2009
20100184271LASER PROCESSING METHOD AND CHIP - An object to be processed can be cut highly accurately along a line to cut.07-22-2010
20100055875METHOD FOR MANUFACTURING SEMICONDUCTOR CHIP AND METHOD FOR PROCESSING SEMICONDUCTOR WAFER - In a laser processing step S03-04-2010
20110250734SPECIMEN PROCESSING APPARATUS AND METHOD THEREOF - An apparatus and a method of processing a specimen includes a final analysis specimen that is manufactured by sequentially performing specimen processing processes using a laser beam with respect to an initial laminate specimen loaded on a stage. As a result, the final specimen manufacturing time may be reduced and the quality of the final specimen may be improved.10-13-2011
20110081769METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A chip provided with a layer for separation of a surface region and a hydrophilic surface is manufactured. One or both of a hydrophilic region and a hydrophobic region are formed on a substrate surface where the chip is placed. Liquid is dropped onto the hydrophilic region on the substrate surface, and the chip is placed thereon. The substrate and the chip are heated while being pressure-bonded so that the chip is fixed on the substrate surface, and then the surface region of the chip is separated. By providing a liquid layer in a position where the chip is placed, the chip can be placed on the substrate with high accuracy and thus productivity can be increased.04-07-2011
20080242056SYSTEM AND METHOD FOR CUTTING USING A VARIABLE ASTIGMATIC FOCAL BEAM SPOT - A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.10-02-2008
20080242055WAFER LASER PROCESSING METHOD AND LASER PROCESSING EQUIPMENT - A wafer laser processing method for forming a groove in a wafer having a plurality of areas which are sectioned by streets formed in a lattice pattern on the front surface of a substrate, a device being formed in each of the plurality of areas, and an insulating film being formed on the surfaces of the devices, by applying a pulse laser beam along the streets, the method comprising a heating step for applying a first pulse laser beam set to an output for preheating the insulating film so as to soften it to the insulating film and a processing step for applying a second pulse laser beam set to an output for processing the insulating film and the substrate to the spot position of the first pulse laser beam applied in the heating step, the heating step and the processing step being carried out along the streets alternately.10-02-2008
20080305615Method of Scribing and Breaking Substrate Made of a Brittle Material and System for Scribing and Breaking Substrate - An object of the present invention is to provide a method of scribing and breaking a substrate made of a brittle material by which good-quality cutting surface of the substrate can be obtained without any defects such as chippings on the substrate.12-11-2008
20110027972METHOD OF CUTTING A SUBSTRATE AND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.02-03-2011
20090197395METHOD OF MANUFACTURING DEVICE - A method of manufacturing a device includes: a laser beam-machined groove forming step of irradiating a wafer with a laser beam from the back side of the wafer along planned dividing lines so as to form laser beam-machined grooves along the planned dividing lines; an etching step of etching a back-side surface of the wafer having been subjected to the laser beam-machined groove forming step, so as to remove denatured layers formed at processed surfaces of the laser beam-machined grooves; an adhesive film attaching step of attaching an adhesive film to the back-side surface of the wafer having been subjected to the etching step, and adhering the adhesive film side of the wafer to a surface of a dicing tape; and an adhesive film rupturing step of expanding the dicing tape so as to rupture the adhesive film along individual devices.08-06-2009
20110263097METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - According to one embodiment, a method for manufacturing semiconductor device can include forming a groove with a depth shallower than a thickness of a wafer. The method can include attaching a surface protection tape via a first bonding layer provided in the surface protection tape. The method can include grinding a surface of the wafer to divide the wafer into a plurality of semiconductor elements. The method can include forming an element bonding layer by attaching a bonding agent and turning the attached bonding agent into a B-stage state. The method can include attaching a dicing tape via a second bonding layer provided in the dicing tape. The method can include irradiating the first bonding layer with a first active energy ray. The method can include removing the surface protection tape. The method can include irradiating the second bonding layer with a second active energy ray.10-27-2011
20100022071METHOD OF MANUFACTURING SEMICONDUCTOR CHIP - An object is to provide a semiconductor chip manufacturing method capable of removing test patterns in a higher efficiency in simple steps, while a general-purpose characteristic can be secured.01-28-2010
20110008947APPARATUS AND METHOD FOR PERFORMING MULTIFUNCTION LASER PROCESSES - Embodiments of the present invention generally relate to a system used to form solar cell devices using processing modules adapted to perform one or more processes in the formation of the solar cell devices. In one embodiment, the system is adapted to form thin film solar cell devices by accepting a large unprocessed substrate and performing multiple deposition, material removal, cleaning, bonding, testing, and sectioning processes to form one or more complete, functional, and tested solar cell devices in custom sizes and/or shapes that can then be shipped to an end user for installation in a desired location to generate electricity. In one embodiment, the system is adapted to form one or more BIPV panels in custom sizes and/or shapes from a single large substrate for shipment to an end user.01-13-2011
20120009763SEMICONDUCTOR CHIP MANUFACTURING METHOD - A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: a) arranging the wafer on a surface of an elastic film stretched on a first support frame having dimensions much greater than the wafer dimensions, so that, in top view, a ring-shaped film portion separates this outer contour from the inner contour of the frame; b) performing manufacturing operations by using equipment capable of receiving the first frame; c) arranging, on the ring-shaped film portion, a second frame of outer dimensions smaller than the inner dimensions of the first frame; d) cutting the film between the outer contour of the second frame and the inner contour of the first frame and removing the first frame; and e) performing manufacturing operations by using equipment capable of receiving the second frame.01-12-2012
20120208349Support for Wafer Singulation - A support substrate or chuck 08-16-2012
20120135585METHOD FOR MANUFACTURING CHIP - A method for manufacturing a chip constituted by a functional device formed on a substrate comprises a functional device forming step of forming the functional device on one main face of a sheet-like object to be processed made of silicon; a first modified region forming step of converging a laser light at the object so as to form a first modified region along the one main face of the object at a predetermined depth corresponding to the thickness of the substrate from the one main face; a second modified region forming step of converging the laser light at the object so as to form a second modified region extending such as to correspond to a side edge of the substrate as seen from the one main face on the one main face side in the object such that the second modified region joins with the first modified region along the thickness direction of the object; and an etching step of selectively advancing etching along the first and second modified regions after the first and second modified region forming steps so as to cut out a part of the object and form the substrate.05-31-2012
20100048000METHOD OF MANUFACTURING SEMICONDUCTOR CHIPS - A semiconductor wafer is prepared. The wafer has a first and a second surface opposite to each other, and has a recess portion and a rim portion. The semiconductor wafer has semiconductor elements formed on the first surface. The rim portion surrounds the recess portion. The recess portion and the rim portion are composed of the first and second surfaces. The recess portion is formed so as to recede toward the first surface. A tape is adhered to the second surface of the semiconductor wafer. At least the recess portion of the semiconductor wafer is placed on a stage. The tape is sandwiched between the recess portion and the stage. Laser beam is irradiated to the recess portion from the side of the first surface and along predetermined dicing lines. The recess portion is cut off to divide the semiconductor wafer into chips.02-25-2010
20100047999WORKING METHOD FOR AN OPTICAL DEVICE WAFER - A dividing method for an optical device wafer includes a protective plate adhering step of releasably adhering the surface of an optical device wafer to the surface of a protective plate, a reverse face grinding step of grinding the reverse face of the optical device wafer, a dicing tape sticking step of sticking the reverse face of the optical device wafer on the surface of a dicing tape, a protective plate grinding step of grinding the reverse face of the protective plate adhered to the optical device wafer stuck on the dicing tape so as to have a predetermined thickness, a laser working step of irradiating a laser beam upon the protective plate along the streets formed on the optical device wafer to carry out laser working, which forms break starting points along the streets, for the protective plate, and a wafer dividing step of applying external force to the protective plate to break the protective plate along the break starting points to break the optical device wafer along the streets thereby to divide the optical device wafer into the individual optical devices.02-25-2010
20100273313MANUFACTURING METHOD OF LASER PROCESSED PARTS, AND PRESSURE-SENSITIVE ADHESIVE SHEET FOR LASER PROCESSING USED FOR THE SAME - A manufacturing method of laser processed parts in which at least a pressure-sensitive adhesive layer is provided on a base material as a pressure-sensitive adhesive sheet for laser processing, using a material having specified physical properties. This method comprises adhering the pressure-sensitive adhesive sheet for laser processing to the laser beam exit side of the work by way of the pressure-sensitive adhesive layer, processing the work by irradiating the work with a laser beam of within 2 times of the irradiation intensity for forming a through-hole in the work, at higher than the irradiation intensity of threshold for inducing ablation of the work, and peeling the pressure-sensitive adhesive sheet for laser processing from the work after the machining. Therefore, contamination of the work surface by decomposition products can be effectively suppressed, and laser processed parts can be manufactured easily and at high production efficiency.10-28-2010
20120329248METHOD OF CUTTING SEMICONDUCTOR SUBSTRATE - Multiphoton absorption is generated, so as to form a part which is intended to be cut 12-27-2012
20080299745WAFER SEPARATING METHOD - A wafer separating method including a laminated member removing step for partially removing a laminated member of a wafer along streets by applying a laser beam to the wafer along the streets, and a cutting step for cutting a substrate of the wafer along the streets after the laminated member removing step. The laminated member removing step includes a first laser processing step for applying a first laser beam along two parallel lines spaced apart from each other in each street, the first laser beam being capable of passing through the laminated member and having an absorption wavelength to the substrate, thereby heating the substrate to generate two cracks in the laminated member by thermal shock so that the two cracks extend along the two parallel lines in each street; and a second laser processing step for applying a second laser beam to a region between the two cracks in the laminated member, the second laser beam having an energy density higher than that of the first laser beam, thereby removing the region between the two cracks in the laminated member to expose the substrate along each street.12-04-2008
20100203707SUBSTRATE DIVIDING METHOD - A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 08-12-2010
20120088354WORKPIECE DIVIDING METHOD - In a semiconductor wafer with a supporting tape attached to the back side of the wafer, a coating member having a refractive index close to that of the supporting tape is formed on a pear-skin surface of the supporting tape to thereby planarize the pear-skin surface. Thereafter, a pulsed laser beam is applied from the upper side of the coating member to the semiconductor wafer in the condition where the focal point of the pulsed laser beam is set at a predetermined depth in the semiconductor wafer. Accordingly, the pulsed laser beam can be sufficiently focused inside the semiconductor wafer to thereby well form a modified layer inside the semiconductor wafer.04-12-2012
20120100696WORKPIECE DIVIDING METHOD - A workpiece has a substrate and a film formed on the front side of the substrate. A first laser beam applied to the film from the front side of the workpiece along streets formed on the film, thereby forming a plurality of laser processed grooves along the streets. An adhesive tape is attached to the front side of the workpiece. Thereafter, a second laser beam is applied to the substrate from the back side of the workpiece along the streets, with the focal point of the second laser beam set inside the substrate, forming a plurality of modified layers along the streets. Thereafter, the adhesive tape is expanded to divide the substrate along the streets, thereby obtaining a plurality of individual devices. The back side of the substrate of each device is then ground to remove the modified layers and reduce the thickness of each device to a predetermined thickness.04-26-2012
20120100695MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A manufacturing method of a semiconductor device according to one embodiment includes attaching a front-side protecting member to a first main surface of a semiconductor wafer having an element region formed therein; laser-dicing the semiconductor wafer by applying a laser beam from a second main surface opposite to the first main surface of the semiconductor wafer; forming a backside metal film on the second main surface of the semiconductor wafer; and pressing a spherical surface against the front-side protecting member to expand the front-side protecting member and form individually divided semiconductor chips having the backside metal film attached thereto.04-26-2012
20100129984WAFER SINGULATION IN HIGH VOLUME MANUFACTURING - The present invention discloses an apparatus including: a laser beam directed at a wafer held by a chuck in a process chamber; a focusing mechanism for the laser beam; a steering mechanism for the laser beam; an optical scanning mechanism for the laser beam; a mechanical scanning system for the chuck; an etch chemical induced by the laser beam to etch the wafer and form volatile byproducts; a gas feed line to dispense the etch chemical towards the wafer; and a gas exhaust line to remove any excess of the etch chemical and the volatile byproducts.05-27-2010
20130017670LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS - A laser processing method comprising a step of irradiating an object to be processed with laser light elliptically polarized with an ellipticity of other than 1 such that a light-converging point of the laser light is located within the object along the major axis of an ellipse indicative of the elliptical polarization of laser light, along a line which the object is intended to be cut, to form a modified region caused by multiphoton absorption within the object, along the line which the object is intended to be cut.01-17-2013
20080242053INTEGRATED CIRCUIT SYSTEM WITH A DEBRIS TRAPPING SYSTEM - An integrated circuit system including: providing an integrated circuit wafer having an integrated circuit side and a backside; mounting a protective adhesive on the integrated circuit side of the integrated circuit wafer; removing material from the backside of the integrated circuit wafer; and dicing the integrated circuit wafer through the protective adhesive to form an integrated circuit die.10-02-2008
20080233715METHOD AND APPARATUS FOR THE LASER SCRIBING OF ULTRA LIGHTWEIGHT SEMICONDUCTOR DEVICES - A system for the laser scribing of semiconductor devices includes a laser light source operable to selectably deliver laser illumination at a first wavelength and at a second wavelength which is shorter than the first wavelength. The system further includes a support for a semiconductor device and an optical system which is operative to direct the laser illumination from the light source to the semiconductor device. The optical system includes optical elements which are compatible with the laser illumination of the first wavelength and the laser illumination of the second wavelength. In specific instances, the first wavelength is long wavelength illumination such as illumination of at least 1000 nanometers, and the second wavelength is short wavelength illumination which in specific instances is 300 nanometers or shorter. By the use of the differing wavelengths, specific layers of the semiconductor device may be scribed without damage to subjacent layers. Also disclosed are specific scribing processes.09-25-2008
20080220590Thin wafer dicing using UV laser - In a method and system for dicing a wafer (09-11-2008
20130115756PROCESSING METHOD FOR SEMICONDUCTOR WAFER HAVING PASSIVATION FILM ON THE FRONT SIDE THEREOF - A semiconductor wafer processing method forms a plurality of wafer dividing grooves respectively along a plurality of crossing streets formed on the front side of a semiconductor substrate of a semiconductor wafer to thereby partition a plurality of regions where a plurality of devices are respectively formed. The semiconductor wafer has a passivation film formed on the front side of the semiconductor substrate so as to cover the devices and the streets. A first laser beam is applied to the passivation film along each street to thereby form a film dividing groove in the passivation film along each street. A second laser beam is applied to the semiconductor substrate along the film dividing groove formed in the passivation film, thereby forming the wafer dividing groove in the semiconductor substrate along each street.05-09-2013
20130102127MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A manufacturing method of a semiconductor device having an ohmic electrode is disclosed. The manufacturing method includes: forming a metal thin film on a rear surface of a semiconductor substrate; forming an ohmic electrode by laser annealing by irradiating the metal thin film with laser beam; and dicing the semiconductor substrate into chips by cutting at a dicing region of the semiconductor substrate. In forming the ohmic electrode, laser irradiation of the metal thin film is performed on a chip-by-chip basis while the dicing region is not being irradiated with the laser beam.04-25-2013
20130143389CONTROLLED PROCESS AND RESULTING DEVICE - A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.06-06-2013
20080200012Wafer processing method and laser processing apparatus - In a wafer processing method for penetrating a wafer by use of a laser processing apparatus including a chuck table for holding the wafer, laser beam irradiation means for irradiating the wafer held on the chuck table with a laser beam, and imaging means for imaging the wafer held on the chuck table, the chuck table includes a chuck table main body, a holding member disposed on an upper surface of the chuck table main body and having a holding surface for holding an entire surface of the wafer, the holding member comprising a transparent or translucent member, and a light emitting body disposed laterally of a side of the holding member opposite to the holding surface. The wafer processing method comprises irradiating a predetermined processing region of the wafer held on the chuck table with the laser beam to perform the penetration in a predetermined manner, then lighting the light emitting body, with the wafer being held on the chuck table, imaging the processing region by the imaging means, and determining acceptance or rejection of the penetration based on whether or not light has passed through the processing region.08-21-2008
20130122688PRESSURE-SENSITIVE ADHESIVE SHEET FOR DICING AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE USING PRESSURE-SENSITIVE ADHESIVE SHEET FOR DICING - An object of the present invention is to provide a pressure-sensitive adhesive sheet for dicing that is capable of preventing scratching of an adsorption stage when laser-scribing a semiconductor wafer. Provided is a pressure-sensitive adhesive sheet for dicing having a base and a pressure-sensitive adhesive layer provided on the base, in which 0.02 to 5 parts by weight of an ultraviolet absorber is contained in the pressure-sensitive adhesive layer with respect to 100 parts by weight of resin solid content, and in which the light transmittance at a wavelength of 355 nm of the pressure-sensitive adhesive sheet for dicing is 30% to 80%.05-16-2013
20110275193METHOD AND APPARATUS FOR DIVIDING THIN FILM DEVICE INTO SEPARATE CELLS - A method and apparatus for dividing a thin film device having a first layer which is a lower electrode layer, a second layer which is an active layer and a third layer which is an upper electrode layer, the layers each being continuous over the device, into separate cells which are electrically interconnected in series. The dividing of the cells and the electrical connection between adjacent cells are carried out in a single pass of a process head across the device, the process head performing the following steps in the single pass: a) making a first cut through the first, second and third layers; b) making a second cut through the second and third layers, the second cut being adjacent to the first cut; c) making a third cut through the third layer the third cut being adjacent to the second cut and on the opposite side of the second cut to the first cut; d) using a first ink jet print head to deposit a non-conducting material into the first cut; and e) using a second ink jet print head to apply conducting material to bridge the non-conducting material in the first cut and either fully or partially fill the second cut such to form an electrical connection between the first layer and the third layer, wherein step (a) precedes step (d), step (d) precedes step (e) and step (b) precedes step (e), (otherwise the steps may be carried out in any order in the single pass of the process head across the device). The thin film device may be a solar panel, a lighting panel or a battery.11-10-2011
20100317172LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD - A laser processing apparatus including a laser beam applying unit. The laser beam applying unit includes a laser beam generating unit, a focusing unit, and an optical system for guiding a laser beam from the laser beam generating unit to the focusing unit. The optical system includes a first polarization beam splitter for splitting the laser beam generated from the laser beam generating unit into a first laser beam and a second laser beam, a half-wave plate inserted between the laser beam generating unit and the first polarization beam splitter, a first mirror for reflecting the first laser beam transmitted through the first polarization beam splitter to an optical path parallel to the optical path of the second laser beam, a second mirror for reflecting the second laser beam in a direction perpendicular to the direction of incidence of the second laser beam, and a second polarization beam splitter located at a position where the first laser beam reflected by the first mirror intersects the second laser beam reflected by the second mirror.12-16-2010
20130183811WAFER PROCESSING METHOD - A wafer processing method of dividing a wafer along streets. The wafer processing method includes a protective tape attaching step of attaching a protective tape to the front side of the wafer, a modified layer forming step of holding the wafer through the protective tape on a chuck table of a laser processing apparatus under suction and next applying a laser beam having a transmission wavelength to the wafer from the back side of the wafer along the streets, thereby forming a modified layer inside the wafer along each street, and a wafer dividing step of canceling suction holding of the wafer by the chuck table and next applying an air pressure to the wafer now placed on the holding surface in the condition where horizontal movement of the wafer is limited, thereby dividing the wafer along each street where the modified layer is formed, thus obtaining individual devices.07-18-2013
20110312158METHOD AND APPARATUS FOR DIVIDING THIN FILM DEVICE INTO SEPARATE CELLS - A method and apparatus for dividing a thin film device having a first layer which is a lower electrode layer, a second layer which is an active layer and a third layer which is an upper electrode layer, the layers each being continuous over the device, into separate cells which are electrically interconnected in series. The dividing of the cells and the electrical connection between adjacent cells are carried out in a single pass of a process head across the device, the process head performing the following steps in the single pass: 12-22-2011
20120289028WAFER DIVIDING METHOD - A wafer dividing method including a step of applying a laser beam to a wafer along division lines with the focal point of the laser beam set inside the wafer, thereby forming modified layers inside the wafer along the division lines; a step of attaching an adhesive tape to the wafer, the adhesive tape having a base sheet and an adhesive layer; a dividing step of applying an external force to the wafer by expanding the adhesive tape, thereby dividing the wafer along the division lines to obtain a plurality of device chips; and a debris catching step of heating the adhesive tape to thereby soften the adhesive layer such that it enters the space between any adjacent ones of the device chips obtained by the dividing step, thereby catching debris generated on the side surface of each device chip in the dividing step to the adhesive layer by adhesion.11-15-2012
20120058624METHOD AND STRUCTURE FOR FABRICATING SOLAR CELLS USING A THICK LAYER TRANSFER PROCESS - A method includes providing a donor substrate comprising single crystal silicon and having a surface region, a cleave region, and a thickness of material to be removed between the surface region and the cleave region. The method also includes introducing through the surface region a plurality of hydrogen particles within a vicinity of the cleave region using a high energy implantation process. The method further includes applying compressional energy to cleave the semiconductor substrate and remove the thickness of material from the donor substrate.03-08-2012

Patent applications in class By electromagnetic irradiation (e.g., electron, laser, etc.)