Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


HAVING METAL OXIDE OR COPPER SULFIDE COMPOUND SEMICONDUCTOR COMPONENT

Subclass of:

438 - Semiconductor device manufacturing: process

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20120184066SINTERED In-Ga-Zn-O-TYPE OXIDE - An oxide sintered body including In (indium element), Ga (gallium element) and Zn (zinc element), having a total content of In, Ga and Zn relative to total elements except for an oxygen element of 95 at % or more, and including a compound having a bixbyite structure represented by In07-19-2012
20100159640METHOD AND APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method and apparatus for manufacturing a semiconductor device is disclosed, which is capable of realizing an extension of a cleaning cycle for a processing chamber, the method comprising preheating a substrate; placing the preheated substrate onto a substrate-supporting unit provided in a susceptor while the preheated substrate is maintained at a predetermined height from an upper surface of the susceptor provided in a processing chamber; and forming a thin film on the preheated substrate, wherein a temperature of the preheated substrate is higher than a processing temperature for forming the thin film in the processing chamber.06-24-2010
20100159639METHOD FOR MANUFACTURING TRANSISTOR - A hydrogen barrier layer is selectively provided over an oxide semiconductor layer including hydrogen and hydrogen is selectively desorbed from a given region in the oxide semiconductor layer by conducting oxidation treatment, so that regions with different conductivities are formed in the oxide semiconductor layer. After that, a channel formation region, a source region, and a drain region can be formed with the use of the regions with different conductivities formed in the oxide semiconductor layer.06-24-2010
20120244658METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability, is provided. In a method for manufacturing a transistor including an oxide semiconductor film, an implantation step where rare gas ions are implanted to the oxide semiconductor film is performed, and the oxide semiconductor film to which rare gas ions are implanted is subjected to a heating step under reduced pressure, in a nitrogen atmosphere, or in a rare gas atmosphere, whereby hydrogen or water contained in the oxide semiconductor film to which rare gas ions are implanted is released; thus, the oxide semiconductor film is highly purified.09-27-2012
20130078761METHOD FOR MANUFACTURING A FLEXIBLE TRANSPARENT 1T1R STORAGE UNIT BASED ON A COMPLETELY LOW-TEMPERATURE PROCESS - The present invention belongs to the technical field of low temperature atomic layer deposition technology, and specifically relates to a method for manufacturing a flexible transparent 1T1R storage unit. In the present invention, a fully transparent 1T1R storage unit is developed on a flexible substrate through a completely low-temperature process, including an oxide layer dielectric, a transparent electrode and a transparent substrate which are deposited together through a low-temperature process, thus realizing a fully transparent device capable of achieving the functions of nontransparent devices. The present invention can be applied to the manufacturing of flexible low-temperature storage units in the future, as well as changing the packaging and existing modes of devices, which will make foldable and bendable portable storage units possible.03-28-2013
20130078762SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is, in a thin film transistor in which an oxide semiconductor is used as an active layer, to prevent change in composition, film quality, an interface, or the like of an oxide semiconductor region serving as an active layer, and to stabilize electrical characteristics of the thin film transistor. In a thin film transistor in which a first oxide semiconductor region is used as an active layer, a second oxide semiconductor region having lower electrical conductivity than the first oxide semiconductor region is formed between the first oxide semiconductor region and a protective insulating layer for the thin film transistor, whereby the second oxide semiconductor region serves as a protective layer for the first oxide semiconductor region; thus, change in composition or deterioration in film quality of the first oxide semiconductor region can be prevented, and electrical characteristics of the thin film transistor can be stabilized.03-28-2013
20130078760THIN FILM TRANSISTOR FABRICATING METHOD - A thin film transistor fabricating method is disclosed. The thin film transistor fabricating method comprises providing a substrate; forming an oxide semiconductor layer on an upper surface of the substrate; forming a gate insulating layer on an upper surface of the oxide semiconductor layer; masking a portion of the oxide semiconductor layer with the gate insulating layer; irradiating the oxide semiconductor layer with irradiating light having photon energy less than a band gap of the oxide semiconductor layer; forming a drain region and a source region at lateral portions of the oxide semiconductor layer exposed to the irradiating light, and forming a channel region in the portion of the oxide semiconductor layer masked by the gate insulating layer; and forming a gate electrode on an upper surface of the gate insulating layer.03-28-2013
20100267198FIELD EFFECT TRANSISTOR MANUFACTURING METHOD - Provided is a novel method for manufacturing a field effect transistor. Prior to forming an amorphous oxide layer on a substrate, ultraviolet rays are irradiated onto the substrate surface in an ozone atmosphere, plasma is irradiated onto the substrate surface, or the substrate surface is cleaned by a chemical solution containing hydrogen peroxide.10-21-2010
20100105162METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - In a method for manufacturing a semiconductor device including a channel-etched inverted-staggered thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. The etching step is performed by dry etching in which an etching gas is used.04-29-2010
20100041179Forming Substrate Structure by Filling Recesses with Deposition Material - A substrate structure is produced by forming a first material layer on a substrate having a recess, removing the first material layer from the portion of the substrate except for the recess using a second material that reacts with the first material, and forming a deposition film from the first material layer using a third material that reacts with the first material. A method of manufacturing a device may include the method of forming a substrate structure.02-18-2010
20090325341PRODUCTION METHOD OF THIN FILM TRANSISTOR USING AMORPHOUS OXIDE SEMICONDUCTOR FILM - A production method of a thin film transistor including an active layer including an amorphous oxide semiconductor film, wherein a step of forming the active layer includes a first step of forming the oxide film in an atmosphere having an introduced oxygen partial pressure of 1×1012-31-2009
20090124042ZnO BASED SEMICONDUCTOR DEVICE MANUFACTURE METHOD - A manufacture method for a ZnO based semiconductor device includes the steps of: (a) preparing a ZnO based semiconductor wafer including a ZnO based semiconductor substrate having a wurzeit structure with a +C plane on one surface and a −C plane on an opposite surface, a first ZnO based semiconductor layer having a first conductivity type epitaxially grown above the +C plane of the ZnO based semiconductor substrate, and a second ZnO based semiconductor layer having a second conductivity type opposite to the first conductivity type epitaxially grown above the first semiconductor layer; and (b) wet-etching the ZnO based semiconductor wafer with acid etching liquid to etch the −C plane of the ZnO based semiconductor substrate05-14-2009
20130045568SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Electric characteristics and reliability of a thin film transistor are impaired by diffusion of an impurity element into a channel region. The present invention provides a thin film transistor in which aluminum atoms are unlikely to be diffused to an oxide semiconductor layer. A thin film transistor including an oxide semiconductor layer including indium, gallium, and zinc includes source or drain electrode layers in which first conductive, layers including aluminum as a main component and second conductive layers including a high-melting-point metal material are stacked. An oxide semiconductor layer 02-21-2013
20130045567METHODS FOR MANUFACTURING A METAL-OXIDE THIN FILM TRANSISTOR - Disclosed herein is a method for manufacturing a metal-oxide thin film transistor. The method includes the steps of: (a1) forming a gate electrode on a substrate; (a2) forming a gate insulating layer over the gate electrode; (a3) forming a metal-oxide semiconductor layer having a channel region on the gate insulating layer; (a4) forming a source electrode and a drain electrode on the metal-oxide semiconductor layer, wherein the source electrode is spaced apart from the drain electrode by a gap exposing the channel region; (a5) forming a mobility-enhancing layer on the channel region, wherein the mobility-enhancing layer is not in contact with the source electrode and the drain electrode; and (a6) annealing the metal-oxide semiconductor layer and the mobility-enhancing layer in an environment at a temperature of about 200° C. to 350° C.02-21-2013
20130089950SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed.04-11-2013
20100003782Methods Of Forming A Non-Volatile Resistive Oxide Memory Cell And Methods Of Forming A Non-Volatile Resistive Oxide Memory Array - A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.01-07-2010
20130089949Method for Reducing Forming Voltage in Resistive Random Access Memory - Methods for producing RRAM resistive switching elements having reduced forming voltage include preventing formation of interfacial layers, and creating electronic defects in a dielectric film. Suppressing interfacial layers in an electrode reduces forming voltage. Electronic defects in a dielectric film foster formation of conductive pathways.04-11-2013
20090305461Semiconductor Device And Manufacturing Method Thereof - An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.12-10-2009
20110059576Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same - A nonvolatile memory device includes at least one switching device and at least one storage node electrically connected to the at least one switching device. The at least one storage node includes a lower electrode, one or more oxygen-deficient metal oxide layers, one or more data storage layers, and an upper electrode. At least one of the one or more metal oxide layers is electrically connected to the lower electrode. At least one of the one or more data storage layers is electrically connected to at least one of the one or more metal oxide layers. The upper electrode is electrically connected to at least one of the one or more data storage layers. A method of manufacturing the nonvolatile memory device includes preparing the at least one switching device and forming the lower electrode, one or more metal oxide layers, one or more data storage layers, and upper electrode.03-10-2011
20130059414COMPOSITIONS USED IN FORMATION OF OXIDE MATERIAL LAYERS, METHODS OF FORMING AN OXIDE MATERIAL LAYER USING THE SAME, AND METHODS OF FABRICATING A THIN FILM TRANSISTOR USING SAME - Methods of forming an oxide material layer are provided. The method includes mixing a precursor material with a peroxide material to form a precursor solution, coating the precursor solution on a substrate, and baking the coated precursor solution.03-07-2013
20110014745METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a method for manufacturing a highly reliable semiconductor device including a transistor with stable electric characteristics. A method for manufacturing a semiconductor device includes the steps of: forming a gate electrode over a substrate having an insulating surface; forming a gate insulating film over the gate electrode; forming an oxide semiconductor film over the gate insulating film; irradiating the oxide semiconductor film with an electromagnetic wave such as a microwave or a high frequency; forming a source electrode and a drain electrode over the oxide semiconductor film irradiated with the electromagnetic wave; and forming an oxide insulating film, which is in contact with part of the oxide semiconductor film, over the gate insulating film, the oxide semiconductor film, the source electrode, and the drain electrode.01-20-2011
20130183797METHOD FOR PREPARING P-TYPE ZnO-BASED MATERIAL - The present invention provides a method for preparing a p-type ZnO-based material, which method is conducted in a metal organic chemical vapor deposition system, including: cleaning the surface of a substrate and placing it in a growth chamber of the metal organic chemical vapor deposition system, vacuumizing the growth chamber to 1007-18-2013
20090269881MANUFACTURING METHOD OF THIN FILM TRANSISTOR INCLUDING LOW RESISTANCE CONDUCTIVE THIN FILMS - A manufacturing method of a thin film transistor includes forming a pair of source/drain electrodes on a substrate, such that the source/drain electrodes define a gap therebetween; forming low resistance conductive thin films, which define a gap therebetween, on the source/drain electrodes; and forming an oxide semiconductor thin film layer on upper surface of the low resistance conductive thin films and in the gap defined between the low resistance conductive thin films so that the oxide semiconductor thin film layer functions as a channel. The low resistance conductive thin films and the oxide semiconductor thin film layer are etched so that side surfaces of the resistance conductive thin films and corresponding side surfaces of the oxide semiconductor thin film layer coincide with each other in a channel width direction of the channel. A gate electrode is mounted over the oxide semiconductor thin film layer.10-29-2009
20090269880METHOD FOR MANUFACTURING THIN FILM TRANSISTOR - A method for manufacturing a thin film transistor containing an channel layer 10-29-2009
20090269879Metalorganic Chemical Vapor Deposition of Zinc Oxide - A method of metalorganic chemical vapor deposition includes converting a condensed matter source to provide a first gas, the source including at least one element selected from the group consisting of gold, silver and potassium. The method further includes providing a second gas comprising zinc and a third gas comprising oxygen, transporting the first gas, the second gas, and the third gas to a substrate, and forming a p-type zinc-oxide based semiconductor layer on the substrate.10-29-2009
20120225520SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to provide a transistor including an oxide semiconductor having favorable electrical characteristics and a manufacturing method thereof. A semiconductor device includes an oxide semiconductor film and an insulating film over a substrate. An end portion of the oxide semiconductor film is in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. The semiconductor device further includes a gate insulating film over and in contact with the oxide semiconductor film, a gate electrode with a sidewall insulating film over the gate insulating film, and a source electrode and a drain electrode in contact with the sidewall insulating film, the oxide semiconductor film, and the insulating film.09-06-2012
20120115276AMORPHOUS OXIDE SEMICONDUCTOR AND THIN FILM TRANSISTOR USING THE SAME - There is provided an amorphous oxide semiconductor including hydrogen and at least one element of indium (In) and zinc (Zn), the amorphous oxide semiconductor containing one of hydrogen atoms and deuterium atoms of 1×1005-10-2012
20090011537Semiconductor device and method for manufacturing same - The present invention is to obtain an MIS transistor which allows considerable reduction in threshold fluctuation for each transistor and has a low threshold voltage. First gate electrode material for nMIS and second gate electrode material for pMIS can be mutually converted to each other, so that a process can be simplified. Such a fact that a dependency of a work function on a doping amount is small is first disclosed, so that fluctuation in threshold voltage for each transistor hardly occurs.01-08-2009
20120142142METHOD OF MANUFACTURING A SEMICONDUCTOR STRUCTURE - A method of manufacturing a semiconductor structure is disclosed, which includes providing a substrate comprising a bottom surface and a growth surface opposite to the bottom surface; forming a buffer layer comprising a first surface which is not a C-plane substantially parallel with the bottom surface on the growth surface; forming a semiconductor structure on the buffer layer; forming at least one cavity in the buffer layer; extending the cavity along a main extending direction; separating the substrate and the semiconductor structure; wherein the main extending direction is substantially not parallel with the normal direction of the first surface.06-07-2012
20100035379METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.02-11-2010
20110097843BISTABLE RESISTANCE VALUE ACQUISITION DEVICE, MANUFACTURING METHOD THEREOF, METAL OXIDE THIN FILM, AND MANUFACTURING METHOD THEREOF - A ferroelectric layer (04-28-2011
20110300667ELECTRIC-FIELD-SENSITIVE ELEMENT AND DISPLAY DEVICE USING THE SAME - An electric-field-sensitive element (12-08-2011
20090075421Wet etching of zinc tin oxide thin films - A method of wet etching semiconductor zinc tin oxide includes submerging a semiconductor zinc tin oxide film in a bath solution. The film is partially covered with a pattern of protective material, and the bath solution etches semiconductor zinc tin oxide film not covered by the protective material. A system for wet etching semiconductor zinc tin oxide includes a bath containing a bath solution. The bath solution is effective to wet etch the semiconductor zinc tin oxide.03-19-2009
20110281394METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The method for manufacturing the semiconductor device is as follows: forming a gate electrode; forming a first insulating film over the gate electrode; performing halogen doping treatment on the first insulating film so that the first insulating film is supplied with a halogen atom; forming an oxide semiconductor film over the first insulating film so as to overlap with the gate electrode; performing heat treatment on the oxide semiconductor film so that a hydrogen atom is removed in the oxide semiconductor film; performing oxygen doping treatment on the oxide semiconductor film from which the hydrogen atom is removed so that the oxide semiconductor film is supplied with an oxygen atom; performing heat treatment on the oxide semiconductor film to which the oxygen atom is supplied; forming a source electrode and a drain electrode on and in contact with the oxide semiconductor film; forming a second insulating film.11-17-2011
20120108007SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.05-03-2012
20120108006SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.05-03-2012
20090081826PROCESS FOR MAKING DOPED ZINC OXIDE - The present invention relates to a process of making a zinc-oxide-based thin film semiconductor, for use in a transistor, comprising thin film deposition onto a substrate comprising providing a plurality of gaseous materials comprising first, second, and third gaseous materials, wherein the first gaseous material is a zinc-containing volatile material and the second gaseous material is reactive therewith such that when one of the first or second gaseous materials are on the surface of the substrate the other of the first or second gaseous materials will react to deposit a layer of material on the substrate, wherein the third gaseous material is inert and wherein a volatile indium-containing compound is introduced into the first reactive gaseous material or a supplemental gaseous material.03-26-2009
20110294259NONVOLATILE MEMORY ELEMENT, MANUFACTURING METHOD THEREOF, AND NONVOLATILE SEMICONDUCTOR APPARATUS USING THE NONVOLATILE MEMORY ELEMENT - A nonvolatile memory element comprises a first electrode layer (12-01-2011
20100105165MULTILEVEL-CELL MEMORY STRUCTURES EMPLOYING MULTI-MEMORY LAYERS WITH TUNGSTEN OXIDES AND MANUFACTURING METHOD - The present invention provides multilevel-cell memory structures with multiple memory layer structures where each memory layer structure includes a tungsten oxide region that defines different read current levels for a plurality of logic states. Each memory layer structure can provide two bits of information, which constitutes four logic states, by the use of the tungsten oxide region that provides multilevel-cell function in which the four logic states equate to four different read current levels. A memory structure with two memory layer structures would provide four bits of storage sites and 16 logic states. In one embodiment, each of the first and second memory layer structures includes a tungsten oxide region extending into a principle surface of a tungsten plug member where the outer surface of the tungsten plug is surrounded by a barrier member.04-29-2010
20100267197DOUBLE SELF-ALIGNED METAL OXIDE TFT - A method of fabricating metal oxide TFTs on transparent substrates includes the steps of positioning an opaque gate metal area on the front surface of the substrate, depositing transparent gate dielectric and transparent metal oxide semiconductor layers overlying the gate metal and a surrounding area, depositing transparent passivation material on the semiconductor material, depositing photoresist on the passivation material, exposing and developing the photoresist to remove exposed portions, etching the passivation material to leave a passivation area defining a channel area, depositing transparent conductive material over the passivation area, depositing photoresist over the conductive material, exposing and developing the photoresist to remove unexposed portions, and etching the conductive material to leave source and drain areas on opposed sides of the channel area.10-21-2010
20100099216METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.04-22-2010
20110201150Sputtering Apparatus, Thin-Film Forming Method, and Manufacturing Method for a Field Effect Transistor - [Object] To provide a sputtering apparatus, a thin-film forming method, and a manufacturing method for a field effect transistor, which are capable of reducing damage of a base layer.08-18-2011
20110201149METHODS FOR FORMING RESISTIVE SWITCHING MEMORY ELEMENTS - Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.08-18-2011
20100099217Semiconductor Device, Electronic Device, and Method of Manufacturing Semiconductor Device - Conductive layers having knots are adjacently formed with uniform distance therebetween. Droplets of the conductive layers are discharged to stagger centers of the droplets in a length direction of wirings so that the centers of the discharged droplets are not on the same line in a line width direction between the adjacent conductive layers. Since the centers of the droplets are staggered, parts of the conductive layers each having a widest line width (the widest width of knot) are not connected to each other, and the conductive layers can be formed adjacently with a shorter distance therebetween.04-22-2010
20110269266METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device including an oxide semiconductor with stable electric characteristics and high reliability is provided. An island-shaped oxide semiconductor layer is formed by using a resist mask, the resist mask is removed, oxygen is introduced (added) to the oxide semiconductor layer, and heat treatment is performed. The removal of the resist mask, introduction of the oxygen, and heat treatment are performed successively without exposure to the air. Through the oxygen introduction and heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor layer, whereby the oxide semiconductor layer is highly purified. Chlorine may be introduced to an insulating layer over which the oxide semiconductor layer is formed before formation of the oxide semiconductor layer. By introducing chlorine, hydrogen in the insulating layer can be fixed, thereby preventing diffusion of hydrogen from the insulating layer into the oxide semiconductor layer.11-03-2011
20090286351MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE INCLUDING ACTIVE LAYER OF ZINC OXIDE WITH CONTROLLED CRYSTAL LATTICE SPACING - A manufacturing method of a semiconductor device includes forming an oxide semiconductor thin film layer of zinc oxide, wherein at least a portion of the oxide semiconductor thin film layer in an as-deposited state includes lattice planes having a preferred orientation along a direction perpendicular to the substrate and a lattice spacing d11-19-2009
20090291523Method of Manufacturing High Quality ZnO Monocrystal Film on Silicon(111) Substrate - There is provided a method of manufacturing high quality ZnO manufacturing film on silicon (111) substrate, including the following steps: removing silicon oxide on the surface of silicon (111) substrate; depositing metal monocrystal film having 1-10 nm thickness, such as Mg, Ca, Sr, Cd etc, at low temperature; oxiding the metal film at low temperature to obstain metal oxide monocrystal layer; depositing ZnO buffer layer at low temperature; depositing ZnO epitaxial layer at high temperature. The ZnO film is suitable for fabrication of high performance of photoelectron device.11-26-2009
20090275169SEMICONDUCTOR DEVICES AND METHODS OF FORMING THE SAME - A semiconductor device which includes a reaction prevention layer between a resistive memory element and an insulating layer and a method of forming the same.11-05-2009
20090280600AMORPHOUS OXIDE AND THIN FILM TRANSISTOR - The present invention relates to an amorphous oxide and a thin film transistor using the amorphous oxide. In particular, the present invention provides an amorphous oxide having an electron carrier concentration less than 1011-12-2009
20100144088METHOD FOR FORMING METAL OXIDE AND METHOD FOR FORMING TRANSISTOR STRUCTURE WITH THE SAME - Provided is a method for forming a metal oxide. A method for forming a metal oxide according to embodiments of the present invention includes preparing a metal oxide precursor solution including a dopant chemical species, preparing an alcohol-based solution including a basic chemical species, reacting the alcohol-based solution with the metal oxide precursor solution to form a reactant, and purifying the reactant to form a metal oxide.06-10-2010
20100144090PHASE CHANGE MEMORY DEVICES HAVING DUAL LOWER ELECTRODES AND METHODS OF FABRICATING THE SAME - A semiconductor device includes a semiconductor substrate and a lower interlayer insulating layer disposed on the substrate. An opening passing through the lower interlayer insulating layer and exposing the substrate is included. A buried insulating pattern is disposed in the opening. First and second conductive layer patterns are sequentially stacked to surround the sidewall and bottom of the buried insulating pattern. A phase change material pattern is included, which is disposed on the lower interlayer insulating layer in contact with a top surface of the second conductive layer pattern, and spaced apart from the first conductive layer pattern. An upper interlayer insulating layer covering the lower interlayer insulating layer and the phase change material pattern is included. A conductive plug is included, which passes through the upper interlayer insulating layer and is electrically connected to the phase change material pattern. A method of fabricating the semiconductor device is also provided.06-10-2010
20090298225Doped Metal Oxide Films and Systems for Fabricating the Same - A method of fabricating a doped metal oxide film comprising the steps of: (a) providing a semiconductor substrate in a vacuum chamber; (b) generating plasma comprising at least metal (M) , oxygen (O) and dopant ions within said chamber in the presence of an inert carrier gas; (c) forming a doped metal oxide (MO) film on said substrate from said plasma; and (d) controlling, during step (c) , the amount of O ions relative to said dopant ions within said plasma to form at least one of an n-type MO film and a p-type MO film on said substrate. A system for fabricating the doped metal oxide is also disclosed.12-03-2009
20080233675METHOD OF FABRICATING NANO-WIRE ARRAY - Provided is a method of fabricating a nano-wire array, including the steps of: depositing a nano-wire solution, which contains nano-wires, on a substrate; forming a first etch region in a stripe shape on the substrate and then patterning the nano-wires; forming drain and source electrode lines parallel to each other with the patterned nano-wires interposed therebetween; forming a plurality of drain electrodes which have one end connected to the drain electrode line and contact at least one of the nano-wires, and forming a plurality of source electrodes, which have one end connected to the source electrode line and contact the nano-wires that contact the drain electrodes; forming a second etch region between pairs of the drain and source electrodes so as to prevent electrical contacts between the pairs of the drain and source electrodes; forming an insulating layer on the substrate; and forming a gate electrode between the drain and source electrodes contacting the nano-wires on the insulating layer. Accordingly, even in an unparallel structure of nano-wires to electrode lines, a large scale nano-wire array is practicable and applicable to an integrated circuit or display unit with nano-wire alignment difficulty, as well as to device applications using flexible substrates.09-25-2008
20080280391METHODS OF MANUFACTURING MOS TRANSISTORS WITH STRAINED CHANNEL REGIONS - In some methods of manufacturing transistors, a gate electrode and a gate insulation layer pattern are stacked on a substrate. Impurity regions are formed at portions of the substrate that are adjacent to the gate electrode by implanting Group III impurities into the portions of the substrate. A diffusion preventing layer is formed on the substrate and covering the gate electrode. A nitride layer is formed on the diffusion preventing layer. The substrate is thermally treated to form a strained silicon region in the substrate between the impurity regions and to activate the impurities in the impurity regions. A high performance PMOS transistor and/or CMOS transistor may thereby be manufactured on the substrate.11-13-2008
20080305575THIN FILM TRANSISTOR HAVING OXIDE SEMICONDUCTOR LAYER AND MANUFACTURING METHOD THEREOF - A thin film transistor has a semiconductor thin film including zinc oxide, a protection film formed on entirely the upper surface of the semiconductor thin film, a gate insulating film formed on the protection film, a gate electrode formed on the gate insulating film above the semiconductor thin film, and a source electrode and drain electrode formed under the semiconductor thin film so as to be electrically connected to the semiconductor thin film.12-11-2008
20120295398ION IMPLANT MODIFICATION OF RESISTIVE RANDOM ACCESS MEMORY DEVICES - An improved method of fabricating a resistive memory device is disclosed. A resistive memory includes a bottom electrode, a top electrode and a resistive material layer interposed therebetween. Interfaces are formed between the resistive material layer and the respective top and bottom electrodes. Ions are implanted in the device to change the characteristics of one or both of these interfaces, thereby improving the performance of the memory device. These ions may be implanted after the three layers are fabricated, during the fabrication of these layers, or at both times.11-22-2012
20100099218Method of fabricating a resistance based memory device and the memory device - Example embodiments relate to a method of fabricating a memory device and a memory device. The method of fabricating a memory device comprises forming a lower electrode and an oxide layer on a lower structure and radiating an energy beam on a region of the oxide layer. The memory device comprises a lower structure and an oxide layer and a lower structure formed on the lower structure, the oxide layer including an electron beam radiation region that received radiation from an electron beam source creating an artificially formed current path through the oxide layer to the lower electrode. A reset current of the memory device may be decreased and stabilized.04-22-2010
20080206923Oxide semiconductor target, method of forming the same, method of forming oxide semiconductor layer using the same and method of manufacturing semiconductor device using the same - Provided are a method of forming an oxide semiconductor layer and a method of manufacturing a semiconductor device using the method of forming an oxide semiconductor layer. The method may include mounting an oxide semiconductor target in a chamber; loading a substrate into the chamber; vacuuming the chamber; applying a direct current power to the oxide semiconductor target while injecting oxygen and a sputtering gas into the chamber; and forming an oxide semiconductor layer on a surface of the substrate by applying plasma of the sputtering gas onto the oxide semiconductor target. Here, the oxide semiconductor target may have a resistance of 1 kΩ or less. The oxide semiconductor target may have a composition of x(first oxide).y(second oxide).z(third oxide) where x, y and z are molar ratios. Each of the first through third oxides may be one of Ga08-28-2008
20100144089METHOD OF FABRICATING OXIDE SEMICONDUCTOR DEVICE - A method for fabricating a device using an oxide semiconductor, including a process of forming the oxide semiconductor on a substrate and a process of changing the conductivity of the oxide semiconductor by irradiating a predetermined region thereof with an energy ray.06-10-2010
20110269267ALD PROCESSING TECHNIQUES FOR FORMING NON-VOLATILE RESISTIVE-SWITCHING MEMORIES - ALD processing techniques for forming non-volatile resistive-switching memories are described. In one embodiment, a method includes forming a first electrode on a substrate, maintaining a pedestal temperature for an atomic layer deposition (ALD) process of less than 100° Celsius, forming at least one metal oxide layer over the first electrode, wherein the forming the at least one metal oxide layer is performed using the ALD process using a purge duration of less than 20 seconds, and forming a second electrode over the at least one metal oxide layer.11-03-2011
20090298226METHOD FOR PRODUCING SEMICONDUCTOR DEVICE - During a process of forming an active layer of a semiconductor device using a ZnO film, the ZnO film is laser-annealed with an ultraviolet pulsed laser to reduce the resistance of the film, and then oxidation treatment is applied to increase the specific resistance value at a channel portion of the ZnO film, which once has excessively low resistance after the laser annealing, to 1012-03-2009
20090186444Transistor, method of manufacturing transistor, and method of operating transistor - A transistor in which a physical property of its channel is changed according to an applied voltage, and methods of manufacturing and operating the same are provided. The transistor may include a first conductive layer on a substrate, a phase change layer and a second conductive layer which are sequentially stacked on the first conductive layer, a first current direction limiting unit and a second current direction limiting unit formed on the second conductive layer by being separated within a space, a third conductive layer and a fourth conductive layer formed on the first current direction limiting unit and the second current direction limiting unit, respectively, a word line connected to the third conductive layer, a bit line connected to the fourth conductive layer, and a voltage lowering unit connected to the word line.07-23-2009
20090186445SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To provide a semiconductor device in which a defect or fault is not generated and a manufacturing method thereof even if a ZnO semiconductor film is used and a ZnO film to which an n-type or p-type impurity is added is used for a source electrode and a drain electrode. The semiconductor device includes a gate insulating film formed by using a silicon oxide film or a silicon oxynitride film over a gate electrode, an Al film or an Al alloy film over the gate insulating film, a ZnO film to which an n-type or p-type impurity is added over the Al film or the Al alloy film, and a ZnO semiconductor film over the ZnO film to which an n-type or p-type impurity is added and the gate insulating film.07-23-2009
20090186443METHOD TO ENHANCE PERFORMANCE OF COMPLEX METAL OXIDE PROGRAMMABLE MEMORY - A method of incorporating oxygen vacancies near an electrode/oxide interface region of a complex metal oxide programmable memory cell which includes forming a first electrode of a metallic material which remains metallic upon oxidation, forming a second electrode facing the first electrode, forming an oxide layer in between the first and second electrodes, applying an electrical signal to the first electrode such that oxygen ions from the oxide layer are embedded in and oxidize the first electrode, and forming oxygen vacancies near the electrode/oxide interface region of the complex metal oxide programmable memory cell.07-23-2009
20130217180Low-Temperature Fabrication of Metal Oxide Thin Films and Nanomaterial-Derived Metal Composite Thin Films - Disclosed are new methods of fabricating metal oxide thin films and nanomaterial-derived metal composite thin films via solution processes at low temperatures (<400° C.). The present thin films are useful as thin film semiconductors, thin film dielectrics, or thin film conductors, and can be implemented into semiconductor devices such as thin film transistors and thin film photovoltaic devices.08-22-2013
20100248423DELIVERY DEVICE COMPRISING GAS DIFFUSER FOR THIN FILM DEPOSITION - A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material. A system capable of carrying out such a process is also disclosed.09-30-2010
20100248422METHOD OF MANUFACTURING NONVOLATILE MEMORY DEVICE - A method of manufacturing a nonvolatile memory device according to an embodiment of the present invention comprises: forming a metal film containing metal whose oxide functions as a variable resistive material and which reacts with silicon through heat treatment and forms metal silicide, on an interlayer insulating film having a silicon layer, which is patterned in a predetermined shape and connected to a first wire, with the surface thereof exposed, performing heat treatment to form a silicide layer on the surface of the silicon layer, oxidizing the silicide layer to form a variable resistive layer on an upper part of the silicon layer, and forming a second wire coupled to the variable resistive layer.09-30-2010
20090081827PROCESS FOR SELECTIVE AREA DEPOSITION OF INORGANIC MATERIALS - An atomic-layer-deposition process for forming a patterned thin film comprising providing a substrate, applying a deposition inhibitor material to the substrate, wherein the deposition inhibitor material is an organic compound or polymer; and patterning the deposition inhibitor material either after step (b) or simultaneously with applying the deposition inhibitor material to provide selected areas of the substrate effectively not having the deposition inhibitor material. An inorganic thin film material is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.03-26-2009
20090203166Zinc Oxide Materials and Methods for Their Preparation - A method for preparing p-type zinc oxide (ZnO) is described. The p-type ZnO is prepared by implanting low energy acceptor ions into an n-type ZnO substrate and annealing. In an alternative embodiment, the n-type ZnO substrate is pre-doped by implanting low energy donor ions. The p-type ZnO may have application in various optoelectronic devices, and a p-n junction formed from the p-type ZnO prepared as described above and a bulk n-type ZnO substrate is also described.08-13-2009
20090239335Semiconductor Device and Manufacturing Method Thereof - An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.09-24-2009
20090253229Method and Apparatus for Manufacturing Semiconductor Devices - A semiconductor device manufacturing method according to the present invention uses a first raw material gas containing Si, a second raw material gas containing a metal element M and an oxidation gas, in which a first step of supplying the oxidation gas onto a substrate to be treated, and a second step of supplying the first raw material gas are sequentially performed. The method further includes, after the first and second steps, a step of supplying the second raw material gas or gas mixture of the first raw material gas and the second raw material gas.10-08-2009
20100015758Nonvolatile Memory Device and Fabrication Method Thereof - A nonvolatile memory device and a method for its fabrication may ensure uniform operating characteristics of ReRAM. The ReRam may include a laminated resistance layer that determines phase of ReRAM on an upper edge of a lower electrode for obtaining a stable threshold drive voltage level.01-21-2010
20100167462METHOD FOR MANUFACTURING RESISTANCE RAM DEVICE - Manufacturing a resistance RAM device includes the steps of forming an insulation layer on a semiconductor substrate having a bottom electrode contact; etching the insulation layer to define a hole exposing the bottom electrode contact; depositing sequentially a bottom electrode material layer and a TMO material layer selectively within the hole; depositing a top electrode material layer within the hole and on the insulation layer in such a way as to completely fill the hole in which the bottom electrode material layer and the TMO material layer are formed; removing partial thicknesses of the top electrode material layer and the insulation layer to form a stack pattern comprising a bottom electrode, a TMO, and a top electrode.07-01-2010
20100167464SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to reduce a capacitance value of parasitic capacitance without decreasing driving capability of a transistor in a semiconductor device such as an active matrix display device. Further, another object is to provide a semiconductor device in which the capacitance value of the parasitic capacitance was reduced, at low cost. An insulating layer other than a gate insulating layer is provided between a wiring which is formed of the same material layer as a gate electrode of the transistor and a wiring which is formed of the same material layer as a source electrode or a drain electrode.07-01-2010
20100184254Method for Manufacturing Semiconductor Device - An object is to provide a method for manufacturing a semiconductor device, in which the number of photolithography steps can be reduced, the manufacturing process can be simplified, and manufacturing can be performed with high yield at low cost. A method for manufacturing a semiconductor device includes the following steps: forming a semiconductor film; irradiating a laser beam by passing the laser beam through a photomask including a shield for shielding the laser beam; subliming a region which has been irradiated with the laser beam through a region in which the shield is not formed in the photomask in the semiconductor film; forming an island-shaped semiconductor film in such a way that a region which is not irradiated with the laser beam is not sublimed because it is a region in which the shield is formed in the photomask; forming a first electrode which is one of a source electrode and a drain electrode and a second electrode which is the other one of the source electrode and the drain electrode; forming a gate insulating film; and forming a gate electrode over the gate insulating film.07-22-2010
20100184253PROCESS FOR MANUFACTURING THIN FILM TRANSISTOR - Disclosed is a process for manufacturing a thin film transistor, the process comprising the steps of providing an oxide semiconductor precursor solution for an oxide semiconductor layer in which an oxide semiconductor precursor is dissolved in a solvent, coating the oxide semiconductor precursor solution on a substrate to form an oxide semiconductor precursor layer, patterning the oxide semiconductor precursor layer so that the oxide semiconductor precursor layer remains at portions where the oxide semiconductor layer is to be formed, and heating the remaining oxide semiconductor precursor layer to form the oxide semiconductor layer.07-22-2010
20110059575MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - It is an object to provide a manufacturing method of a structure of a thin film transistor including an oxide semiconductor film, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible. A protective insulating layer is formed to cover a thin film transistor including an oxide semiconductor layer that is dehydrated or dehydrogenated by first heat treatment, and second heat treatment at a temperature that is lower than that of the first heat treatment, in which the increase and decrease in temperature are repeated plural times, is performed, whereby a thin film transistor including an oxide semiconductor layer, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible without depending on the channel length, can be manufactured.03-10-2011
20100159641Memory cell formation using ion implant isolated conductive metal oxide - Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnO06-24-2010
20100159642Methods of manufacturing oxide semiconductor thin film transistor - Provided is a method of manufacturing an oxide semiconductor thin film transistor using a transparent oxide semiconductor as a material for a channel. The method of manufacturing the oxide semiconductor thin film transistor includes forming a passivation layer on a channel layer and performing an annealing process for one hour or more at a temperature of about 100° C. or above.06-24-2010
20100240173SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - The manufacturing method of the present invention includes steps of selectively forming a photocatalyst material or a material including an amino group by discharging a composition including the photocatalyst material or the material including an amino group; immersing the photocatalyst material or the material including an amino group in a solution including a plating catalyst material so as to adsorb or deposit the plating catalyst material onto the photocatalyst material or the material including an amino group; and immersing the plating catalyst material in a plating solution including a metal material so as to form a metal film on a surface of the photocatalyst material or the material including an amino group adsorbing or depositing the plating catalyst material, thereby manufacturing a semiconductor device. The pH of the solution including the plating catalyst material is adjusted in a range of 3 to 6.09-23-2010
20100233847METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device including a semiconductor element which has favorable characteristics. A manufacturing method of the present invention includes the steps of: forming a first conductive layer which functions as a gate electrode over a substrate; forming a first insulating layer to cover the first conductive layer; forming a semiconductor layer over the first insulating layer so that part of the semiconductor layer overlaps with the first conductive layer; forming a second conductive layer to be electrically connected to the semiconductor layer; forming a second insulating layer to cover the semiconductor layer and the second conductive layer; forming a third conductive layer to be electrically connected to the second conductive layer; performing first heat treatment after forming the semiconductor layer and before forming the second insulating layer; and performing second heat treatment after forming the second insulating layer.09-16-2010
20130217179Nonvolatile Memory Device Having An Electrode Interface Coupling Region - Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.08-22-2013
20100210070METHOD OF MANUFACTURING A FIELD EFFECT TRANSISTOR HAVING AN OXIDE SEMICONDUCTOR - A method of manufacturing a field effect transistor, which has high alignment accuracy between a gate electrode and source and drain electrodes and can provide a transparent device at a low cost. Since a patterned light blocking film is formed on the rear side of a substrate and used as a photomask for forming a gate electrode pattern and a source and drain electrode pattern on the front side of the substrate, the number of photomasks is reduced, and self-alignment between the gate electrode and the source and drain electrodes is carried out, thereby improving the alignment accuracy of these electrodes. Thereby, a method of manufacturing a high-accuracy low-cost field effect transistor can be provided.08-19-2010
20100136743Semiconductor Device and Manufacturing Method Thereof - An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.06-03-2010
20120142143Methods for Forming Resistive Switching Memory Elements by Heating Deposited Layers - Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.06-07-2012
20100221869Semiconductor Wafer and Process For Its Production - A layered semiconductor wafer contains the following layers in the given order: 09-02-2010
20090148982Method of Manufacturing Compound Semiconductor Devices - A compound semiconductor device and method of manufacturing the same. The method includes coating a plurality of spherical balls on a substrate and selectively growing a compound semiconductor thin film on the substrate on which the spherical balls are coated. The entire process can be simplified and a high-quality compound semiconductor thin film can be grown in a short amount of time in comparison to an epitaxial lateral overgrowth (ELO) method.06-11-2009
20110117697Semiconductor Device and Manufacturing Method Thereof - An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.05-19-2011
20110117698METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.05-19-2011
20110237025METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - In a transistor including an oxide semiconductor film, a metal oxide film for preventing electrification which is in contact with the oxide semiconductor film and covers a source electrode and a drain electrode is formed. Then, oxygen is introduced (added) to the oxide semiconductor film through the metal oxide film and heat treatment is performed. Through these steps of oxygen introduction and heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor film, so that the oxide semiconductor film is highly purified. Further, by providing the metal oxide film, generation of a parasitic channel on a back channel side of the oxide semiconductor film can be prevented in the transistor.09-29-2011
20100304528METHOD OF FABRICATING OXIDE THIN FILM TRANSISTOR - According to a method of fabricating an oxide thin-film transistor, when a thin-film transistor is fabricated by using an amorphous zinc oxide (ZnO)-based semiconductor as an active layer, it may be possible to reduce a tact time as well as attain an enhanced element characteristic by depositing an insulation layer having an oxide characteristic in-situ through controlling oxygen (O12-02-2010
20130137213METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - In a semiconductor device including a transistor in which an oxide semiconductor layer, a gate insulating layer, and a gate electrode layer on side surfaces of which sidewall insulating layers are provided are stacked in this order, a source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor layer and the sidewall insulating layers. In a process for manufacturing the semiconductor device, a conductive layer and an interlayer insulating layer are stacked to cover the oxide semiconductor layer, the sidewall insulating layers, and the gate electrode layer. Then, parts of the interlayer insulating layer and the conductive layer over the gate electrode layer are removed by a chemical mechanical polishing method, so that a source electrode layer and a drain electrode layer are formed. Before formation of the gate insulating layer, cleaning treatment is performed on the oxide semiconductor layer.05-30-2013
20130137214METHOD FOR REMOVING RESIDUAL EXTRINSIC IMPURITIES IN AN N TYPE ZnO OR ZnMgO SUBSTRATE, FOR P-TYPE DOPING OF THIS SUBSTRATE - A method for purifying an n-type ZnO and/or ZnMgO substrate to reduce or eliminate the residual extrinsic impurities of the substrate with a view to p-doping of at least are part of the substrate, wherein a reactive species having strong chemical affinity for at least one of the residual extrinsic impurities, and/or being capable of creating crystalline defects, is introduced in at least one region of the substrate, the said reactive species being P, and whereby at least one region called a getter region capable of trapping the said residual extrinsic impurities and/or in which the residual extrinsic impurities are trapped is created in the substrate; annealing of the substrate is then carried out to cause diffusion of the residual extrinsic impurities towards the getter region and/or to outside the getter region, preferably towards at least one surface of the substrate.05-30-2013
20130143358METHOD FOR MANUFACTURING OXIDE THIN FILM TRANSISTOR - A method for manufacturing an oxide thin film transistor with leakage currents less than 1006-06-2013
20110111557METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to drive a semiconductor device at high speed or to improve the reliability of the semiconductor device. In a method for manufacturing the semiconductor device, in which a gate electrode is formed over a substrate with an insulating property, a gate insulating film is formed over the gate electrode, and an oxide semiconductor film is formed over the gate insulating film, the gate insulating film is formed by deposition treatment using high-density plasma. Accordingly, dangling bonds in the gate insulating film are reduced and the quality of the interface between the gate insulating film and the oxide semiconductor is improved.05-12-2011
20110008931METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics, and a manufacturing method thereof. In the manufacturing method of the semiconductor device which includes a thin film transistor where a semiconductor layer including a channel formation region is an oxide semiconductor layer, heat treatment which reduces impurities such as moisture to improve the purity of the oxide semiconductor layer and oxidize the oxide semiconductor layer (heat treatment for dehydration or dehydrogenation) is performed. Not only impurities such as moisture in the oxide semiconductor layer but also those existing in a gate insulating layer are reduced, and impurities such as moisture existing in interfaces between the oxide semiconductor layer and films provided over and under and in contact with the oxide semiconductor layer are reduced.01-13-2011
20110008930METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (for dehydration or dehydrogenation) is performed to improve the purity of the oxide semiconductor film and reduce impurities including moisture or the like. After that, slow cooling is performed under an oxygen atmosphere. Besides impurities including moisture or the like exiting in the oxide semiconductor film, heat treatment causes reduction of impurities including moisture or the like exiting in a gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor and in contact therewith.01-13-2011
20100178729Resistance-Type Random Access Memory Device Having Three-Dimensional Bit Line and Word Line Patterning - Provided is a resistance random access memory device and a method of fabricating, the same. The method includes forming a bit-line stack in which a plurality of local bit-lines are vertically stacked on a substrate, forming a word-line including a plurality of local word-lines that extend in a vertical direction toward a side of the bit-line stack and a connection line that extends in a horizontal direction to connect the plurality of local word-lines with one another, and forming a resistance memory thin film between the bit-line stack and the word-line. The present inventive concept can realize a highly dense memory array with 3D cross-point architecture by simplified processes.07-15-2010
20110033974METHOD FOR FABRICATING HOLLOW NANOTUBE STRUCTURE - A method for fabricating a hollow nanotube structure is disclosed. The method includes the steps of providing a substrate, developing a plurality of nanowires on the substrate with a predetermined size on the seed layer at relatively low temperature by a hydro-thermal growth method, forming an outer covering layer on the surfaces of the nanowires, selectively etching an upper end of the outer coating layer to expose an upper end of the nanowires and removing the nanowires to remain the hollow outer coating layer to form a plurality of hollow nanotubes. The method can simplify the nanotube manufacturing process, increase the dimension precision of the nanotubes and enhance the photoelectric properties of micro-electro-mechanical elements.02-10-2011
20110111558METHOD FOR MANUFACTURING SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR DEVICE, AND DEPOSITION APPARATUS - An object is to provide a deposition apparatus for forming a thin film which contains few impurities such as a hydrogen atom or a carbon atom. Further, an object is to provide a method for forming a thin film containing few impurities. Furthermore, an object is to provide a method for manufacturing a highly reliable semiconductor element including an oxide semiconductor film containing few impurities. A deposition apparatus can be provided for forming a thin film which contains few impurities such as a compound containing a hydrogen atom such as H05-12-2011
20110212570METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a highly reliable semiconductor device, a semiconductor device with low power consumption, a semiconductor device with high productivity, and a method for manufacturing such a semiconductor device. Impurities left remaining in an oxide semiconductor layer are removed without generating oxygen deficiency, and the oxide semiconductor layer is purified to have an extremely high purity. Specifically, after oxygen is added to the oxide semiconductor layer, heat treatment is performed on the oxide semiconductor layer to remove the impurities. In order to add oxygen, it is preferable to use a method in which oxygen having high energy is added by an ion implantation method, an ion doping method, or the like.09-01-2011
20110212569METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - In a transistor including an oxide semiconductor layer, an oxide insulating layer is formed so as to be in contact with the oxide semiconductor layer. Then, oxygen is introduced (added) to the oxide semiconductor layer through the oxide insulating layer, and heat treatment is performed. Through these steps of oxygen introduction and heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor layer, so that the oxide semiconductor layer is highly purified.09-01-2011
20120244660METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics. It is another object to manufacture a highly reliable semiconductor device at lower cost with high productivity. In a method for manufacturing a semiconductor device which includes a thin film transistor where a semiconductor layer having a channel formation region, a source region, and a drain region are formed using an oxide semiconductor layer, heat treatment (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor layer and reduce impurities such as moisture. Moreover, the oxide semiconductor layer subjected to the heat treatment is slowly cooled under an oxygen atmosphere.09-27-2012
20120244659METHOD FOR FORMING OXIDE SEMICONDUCTOR FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for forming an oxide semiconductor film having favorable semiconductor characteristics is provided. In addition, a method for manufacturing a semiconductor device having favorable electric characteristics, with use of the oxide semiconductor film is provided. A method for forming an oxide semiconductor film including the steps of forming an oxide semiconductor film, forming a hydrogen permeable film over and in contact with the oxide semiconductor film, forming a hydrogen capture film over and in contact with the hydrogen permeable film, and releasing hydrogen from the oxide semiconductor film by performing heat treatment. Further, in a method for manufacturing a semiconductor device, the method for forming an oxide semiconductor film is used.09-27-2012
20100055832METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To provide a method for manufacturing a thin film transistor in which contact resistance between an oxide semiconductor layer and source and drain electrode layers is small, the surfaces of the source and drain electrode layers are subjected to sputtering treatment with plasma and an oxide semiconductor layer containing In, Ga, and Zn is formed successively over the source and drain electrode layers without exposure of the source and drain electrode layers to air.03-04-2010
20110097842Method for preparing IGZO particles and method for preparing IGZO film by using the IGZO particles - A method for preparing IGZO particles and a method for preparing an IGZO thin film by using the IGZO particles are disclosed. The method for preparing the IGZO particles comprises the following steps: (A) providing a solution of metal acid salts, which contains a zinc salt, an indium salt, and a gallium salt; (B) mixing the solution of the metal acid salts with a basic solution to obtain an oxide precursor; and (C) heating the oxide precursor to obtain IGZO particles.04-28-2011
20110081747METHOD FOR REMOVING ELECTRICITY AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to suppress a significant change in electrical characteristics of thin film transistors and a deviation thereof from the designed range due to static electricity, and to improve the yield in manufacturing semiconductor devices. In order to prevent a substrate from being charged with static electricity by heat treatment or to favorably reduce static electricity with which a substrate is charged in a manufacturing process of a semiconductor device, heat treatment is performed with a substrate provided with a thin film transistor stored in a conductive container. In addition, a heating apparatus for performing the heat treatment is electrically connected to a ground potential, and the container and the substrate are also electrically connected to the ground potential.04-07-2011
20110081748METHODS FOR FORMING RESISTIVE-SWITCHING METAL OXIDES FOR NONVOLATILE MEMORY ELEMENTS - Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed from resistive-switching metal oxide layers. Metal oxide layers may be formed using sputter deposition at relatively low sputtering powers, relatively low duty cycles, and relatively high sputtering gas pressures. Dopants may be incorporated into a base oxide layer at an atomic concentration that is less than the solubility limit of the dopant in the base oxide. At least one oxidation state of the metal in the base oxide is preferably different than at least one oxidation sate of the dopant. The ionic radius of the dopant and the ionic radius of the metal may be selected to be close to each other. Annealing and oxidation operations may be performed on the resistive switching metal oxides. Bistable metal oxides with relatively large resistivities and large high-state-to-low state resistivity ratios may be produced.04-07-2011
20110097844METHOD OF FABRICATING A THIN-FILM DEVICE - A method of forming a thin-film device includes forming an oxide-semiconductor film formed on the first electrical insulator, and forming a second electrical insulator formed on the oxide-semiconductor film, the oxide-semiconductor film defining an active layer. The oxide-semiconductor film is comprised of a first interface layer located at an interface with the first electrical insulating insulator, a second interface layer located at an interface with the second electrical insulator, and a bulk layer other than the first and second interface layers. The method further includes oxidizing the oxide-semiconductor film to render a density of oxygen holes in at least one of the first and second interlayer layers is smaller than a density of oxygen holes in the bulk layer.04-28-2011
20110151618SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An oxide semiconductor layer with excellent crystallinity is formed to enable manufacture of transistors with excellent electrical characteristics for practical application of a large display device, a high-performance semiconductor device, etc. By first heat treatment, a first oxide semiconductor layer is crystallized. A second oxide semiconductor layer is formed over the first oxide semiconductor layer. By second heat treatment, an oxide semiconductor layer including a crystal region having the c-axis oriented substantially perpendicular to a surface is efficiently formed and oxygen vacancies are efficiently filled. An oxide insulating layer is formed over and in contact with the oxide semiconductor layer. By third heat treatment, oxygen is supplied again to the oxide semiconductor layer. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer. By fourth heat treatment, hydrogen is supplied at least to an interface between the second oxide semiconductor layer and the oxide insulating layer.06-23-2011
20120202318METHOD FOR THE PRODUCTION OF LAYERS CONTAINING INDIUM OXIDE - The present invention relates to a liquid phase process for producing indium oxide-containing layers from nonaqueous solution, in which an anhydrous composition containing at least one indium oxo alkoxide of the generic formula M08-09-2012
20100304529SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to provide a highly reliable semiconductor device including a thin film transistor having stable electric characteristics. In addition, another object is to manufacture a highly reliable semiconductor device at low cost with high productivity. In a method for manufacturing a semiconductor device including a thin film transistor including an oxide semiconductor layer as a channel formation region, the oxide semiconductor layer is heated under a nitrogen atmosphere to lower its resistance, thereby forming a low-resistance oxide semiconductor layer. Further, resistance of a region of the low-resistance oxide semiconductor layer, which is overlapped with a gate electrode layer, is selectively increased, thereby forming a high-resistance oxide semiconductor layer. Resistance of the oxide semiconductor layer is increased by forming a silicon oxide film in contact with the oxide semiconductor layer by a sputtering method.12-02-2010
20100105164METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a semiconductor device including an oxide semiconductor at low cost with high productivity in such a manner that a photolithography process is simplified by reducing the number of light-exposure masks. In a method for manufacturing a semiconductor device including a channel-etched inverted-stagger thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. The etching step is performed by wet etching in which an etching solution is used.04-29-2010
20100105163METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a semiconductor device including an oxide semiconductor at low cost with high productivity in such a manner that a photolithography process is simplified by reducing the number of light-exposure masks. In a method for manufacturing a semiconductor device including a channel-etched inverted-staggered thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. In etching steps, a first etching step is performed by dry etching in which an etching gas is used, and a second etching step is performed by wet etching in which an etchant is used.04-29-2010
20100003783SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To provide a semiconductor device in which a defect or fault is not generated and a manufacturing method thereof even if a ZnO semiconductor film is used and a ZnO film to which an n-type or p-type impurity is added is used for a source electrode and a drain electrode. The semiconductor device includes a gate insulating film formed by using a silicon oxide film or a silicon oxynitride film over a gate electrode, an Al film or an Al alloy film over the gate insulating film, a ZnO film to which an n-type Or p-type impurity is added over the Al film or the Al alloy film, and a ZnO semiconductor film over the ZnO film to which an n-type or p-type impurity is added and the gate insulating film.01-07-2010
20110151619METHOD OF FORMING METAL OXIDE FILM AND APPARATUS FOR FORMING METAL OXIDE FILM - A method of forming a metal oxide film, which can lower a temperature of a heat treatment of a substrate and also can form a metal oxide film having a low resistance value without limiting the kind of the metal oxide film to be formed. The method of forming a metal oxide film includes (A) converting a solution containing a metal into mist, (B) heating a substrate, and (C) supplying the solution converted into mist, and ozone to a first main surface of the substrate under heating.06-23-2011
20110151617Memory and methods of forming the same to enhance scalability of non-volatile two-terminal memory cells - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to scale memory elements, such as implemented in BEOL third dimensional memory technology, independent of operational characteristics. In at least some embodiments, a method to fabricate a non-volatile two-terminal memory device includes depositing a first electrode at a first temperature in a first region in relation to a substrate (e.g., a silicon wafer) that includes active circuitry that was previously fabricated FEOL on the substrate, fabricating a memory element coupled to the first electrode, and optionally, forming at least a portion of a non-ohmic device electrically coupled with the memory element. Further, the method can include depositing a second electrode at a second temperature in a second region in relation to the substrate. In some embodiments, the second temperature is approximately equal to or greater than the first temperature.06-23-2011
20090317943Alignment of Semiconducting Nanowires on Metal Electrodes - The present invention relates to a method for aligning semiconducting nanowires on a metal electrode (12-24-2009
20080213940Methods of forming metal oxide layers, methods of forming gate structures using the same, and methods of forming capacitors using the same - Provided herein are methods of forming a metal oxide layer that include providing an organometallic compound and an oxidizing agent to the substrate to form the metal oxide layer on the substrate. The organometallic compound may have the general formula of M(NR09-04-2008
20100279462FIELD EFFECT TRANSISTOR USING AMORPHOUS OXIDE FILM AS CHANNEL LAYER, MANUFACTURING METHOD OF FIELD EFFECT TRANSISTOR USING AMORPHOUS OXIDE FILM AS CHANNEL LAYER, AND MANUFACTURING METHOD OF AMORPHOUS OXIDE FILM - An amorphous oxide containing hydrogen (or deuterium) is applied to a channel layer of a transistor. Accordingly, a thin film transistor having superior TFT properties can be realized, the superior TFT properties including a small hysteresis, normally OFF operation, a high ON/OFF ratio, a high saturated current, and the like. Furthermore, as a method for manufacturing a channel layer made of an amorphous oxide, film formation is performed in an atmosphere containing a hydrogen gas and an oxygen gas, so that the carrier concentration of the amorphous oxide can be controlled.11-04-2010
20120122277SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE - An object is to provide favorable interface characteristics of a thin film transistor including an oxide semiconductor layer without mixing of an impurity such as moisture. Another object is to provide a semiconductor device including a thin film transistor having excellent electric characteristics and high reliability, and a method by which a semiconductor device can be manufactured with high productivity. A main point is to perform oxygen radical treatment on a surface of a gate insulating layer. Accordingly, there is a peak of the oxygen concentration at an interface between the gate insulating layer and a semiconductor layer, and the oxygen concentration of the gate insulating layer has a concentration gradient. The oxygen concentration is increased toward the interface between the gate insulating layer and the semiconductor layer.05-17-2012
20110027940Method for fabricating copper-containing ternary and quaternary chalcogenide thin films - An apparatus for depositing a solid film onto a substrate from a reagent solution includes reservoirs of reagent solutions maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solutions. The chilled solutions are dispensed through showerheads, one at a time, onto a substrate. One of the showerheads includes a nebulizer so that the reagent solution is delivered as a fine mist, whereas the other showerhead delivers reagent as a flowing stream. A heater disposed beneath the substrate maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solutions may be initiated. Each reagent solution contains at least one metal and either S or Se, or both. At least one of the reagent solutions contains Cu. The apparatus and its associated method of use are particularly suited to forming films of Cu-containing compound semiconductors.02-03-2011
20100285633NON VOLATILE MEMORY CELLS INCLUDING A FILAMENT GROWTH LAYER AND METHODS OF FORMING THE SAME - A non volatile memory cell that includes a first electrode; a variable resistive layer disposed on the first electrode; a filament growth layer disposed on the variable resistive layer, the filament growth layer including dielectric material and metal atoms; and a second electrode. In other embodiments, a memory array is disclosed that includes a plurality of non volatile memory cells, each non volatile memory cell including a first electrode; a variable resistive layer disposed on the first electrode; a filament growth layer disposed on the variable resistive layer, the filament growth layer including clusters of a first electrically conductive atomic component interspersed in an oxidized second atomic component; and a second electrode; at least one word line; and at least one bit line, wherein the word line is orthogonal to the bit line and each of the plurality of non volatile memory cells are operatively coupled to a word line and a bit line. In still other embodiments, methods are disclosed that include forming a non volatile memory cell include forming a first electrode; forming a variable resistive layer on the first electrode; depositing a two phase alloy layer on the variable resistive layer; converting the two phase alloy layer to a filament growth layer; and depositing a second electrode on the filament growth layer, thereby forming a non volatile memory cell.11-11-2010
20100285632TFT SUBSTRATE AND METHOD FOR MANUFACTURING TFT SUBSTRATE - An object of the invention is to provide a TFT substrate and a method for producing a TFT substrate which is capable of drastically reducing the production cost by decreasing the number of steps in the production process and improving production yield. A TFT substrate includes: a substrate; a gate electrode and a gate wire formed above the substrate; a gate insulating film formed above the gate electrode and the gate wire; a first oxide layer formed above the gate insulating film which is formed at least above the gate electrode; and a second oxide layer formed above the first oxide layer; wherein at least a pixel electrode is formed from the second oxide layer.11-11-2010
20100330738Oxide semiconductor target and manufacturing method of oxide semiconductor device by using the same - An oxide semiconductor target of a ZTO (zinc tin complex oxide) type oxide semiconductor material of an appropriate (Zn/(Zn+Sn)) composition having high mobility and threshold potential stability and with less restriction in view of the cost and the resource and with less restriction in view of the process, and an oxide semiconductor device using the same, in which a sintered Zn tin complex oxide with a (Zn/(Zn+Sn)) composition of 0.6 to 0.8 is used as a target, the resistivity of the target itself is at a high resistance of 1 Ωcm or higher and, further, the total concentration of impurities is controlled to 100 ppm or less.12-30-2010
20110189819Resistive Memory Structure with Buffer Layer - A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.08-04-2011
20110189818Method for forming oxide thin film transistor - A method for manufacturing oxide thin film transistors includes steps of: forming a gate, a drain electrode, a source electrode, and an oxide semiconductor layer respectively. The oxide semiconductor layer is formed on the gate electrode; the drain electrode and the source electrode are formed at two opposite sides of the oxide semiconductor layer. The method further includes a step of depositing a dielectric layer of silicon oxide, and a reacting gas for depositing the silicon oxide includes silane and nitrous oxide. A flow rate of nitrous oxide is in a range from 10 to 200 standard cubic centimeters per minute (SCCM). Oxide thin film transistors manufactured by above method has advantages of low leakage, high mobility, and other integrated circuit member can be directly formed on the thin film transistor array substrate of a display device.08-04-2011
20130122651MANUFACTURING METHOD OF NON-VOLATILE MEMORY DEVICE - Each of the step of forming a first variable resistance layer (05-16-2013
20130122650Method For Preparing P-Type Zinc Oxide ZnO or P-Type ZnMgO - Method for preparing p-type zinc oxide ZnO or p-type ZnMgO, comprising at least the sequence of the following two steps a) and b): 05-16-2013
20130122649METHOD FOR MANUFACTURING THIN FILM TRANSISTOR - Disclosed is a method for manufacturing a metal oxide thin film transistor. According to the method, an active layer having a high carrier concentration is formed, and then a channel region is oxidized by plasma having oxidbillity so that the channel region has a low carrier concentration while a source region and a drain region have high carrier concentrations. In addition, the threshold voltage of the transistor is controlled by the conditions under which the channel region of the transistor is subsequently oxidized by plasma having oxidbillity at a low temperature. Therefore, the controllability of the characteristics of the transistor is improved significantly, and the manufacturing process is simplified.05-16-2013
20120231581METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - In a process of manufacturing a transistor including an oxide semiconductor layer, an amorphous oxide semiconductor layer which includes a region containing excess oxygen as compared to a stoichiometric composition ratio of an oxide semiconductor in a crystalline state is formed over a silicon oxide film, an aluminum oxide film is formed over the amorphous oxide semiconductor layer, and then heat treatment is performed so that at least part of the amorphous oxide semiconductor layer is crystallized and an oxide semiconductor layer which includes a crystal having a c-axis substantially perpendicular to a surface of the oxide semiconductor layer is formed.09-13-2012
20110070691METHODS OF FABRICATING METAL OXIDE OR METAL OXYNITRIDE TFTS USING WET PROCESS FOR SOURCE-DRAIN METAL ETCH - The present invention generally relates to thin film transistors (TFTs) and methods of making TFTs. The active channel of the TFT may comprise one or more metals selected from the group consisting of zinc, gallium, tin, indium, and cadmium. The active channel may also comprise nitrogen and oxygen. To protect the active channel during source-drain electrode patterning, an etch stop layer may be deposited over the active layer. The etch stop layer prevents the active channel from being exposed to the plasma used to define the source and drain electrodes. The etch stop layer and the source and drain electrodes may be used as a mask when wet etching the active material layer that is used for the active channel.03-24-2011
20110070693METHOD FOR MANUFACTURING OXIDE SEMICONDUCTOR FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide an oxide semiconductor having stable electric characteristics and a semiconductor device including the oxide semiconductor. A manufacturing method of a semiconductor film by a sputtering method includes the steps of holding a substrate in a treatment chamber which is kept in a reduced-pressure state; heating the substrate at lower than 400° C.; introducing a sputtering gas from which hydrogen and moisture are removed in the state where remaining moisture in the treatment chamber is removed; and forming an oxide semiconductor film over the substrate with use of a metal oxide which is provided in the treatment chamber as a target. When the oxide semiconductor film is formed, remaining moisture in a reaction atmosphere is removed; thus, the concentration of hydrogen and the concentration of hydride in the oxide semiconductor film can be reduced. Thus, the oxide semiconductor film can be stabilized.03-24-2011
20110070692HEAT TREATMENT APPARATUS, HEAT TREATMENT METHOD AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a heat treatment apparatus in which a large-sized substrate can be rapidly heated and rapidly cooled with high uniformity, and a heat treatment method using the heat treatment apparatus. The heat treatment apparatus includes: a first chamber of which one side is opened; a second chamber of which one side is opened; a device for moving the first and the second chambers; a heating device; a gas introduction port; a gas exhaust port; and a jig for longitudinally fixing a substrate, in which the substrate is rapidly heated while the first and the second chambers are connected, and rapidly cooled by separating the chambers to move the substrate away from a heat storage portion of the heating device or the like. Further, the heat treatment method includes the heat treatment apparatus, and a method for manufacturing a semiconductor device using an oxide semiconductor is included.03-24-2011
20080286898Material composition having core-shell microstructure used for varistor - A material composition having a core-shell microstructure suitable for manufacturing a varistor having outstanding electrical properties, the core-shell microstructure of the material composition at least comprising a cored-structure made of a conductive or semi-conductive material and a shelled-structure made from a glass material to wrap the cored-structure, and electrical properties of the varistors during low temperature of sintering process can be decided and designated by precisely controlling the size of the grain of the cored-structure and the thickness and insulation resistance of the insulating layer of the shelled-structure of material composition.11-20-2008
20120040496PROGRAMMABLE RESISTIVE MEMORY CELL WITH OXIDE LAYER - Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.02-16-2012
20110306165METHOD FOR PRODUCING a-IGZO OXIDE THIN FILM - There is provided a method for producing an a-IGZO oxide thin film by sputtering, which can control the carrier density of the film to a given value with high reproducibility. The method is an amorphous In—Ga—Zn—O based oxide thin film production method including: providing a sintered oxide material consisting essentially of indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as constituent elements, wherein the ratio [In]/([In]+[Ga]) of the number of indium atoms to the total number of indium and gallium atoms is from 20% to 80%, the ratio [Zn]/([In]+[Ga]+[Zn]) of the number of zinc atoms to the total number of indium, gallium and zinc atoms is from 10% to 50%, and the sintered oxide material has a specific resistance of 1.0×1012-15-2011
20120302004METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a method for manufacturing a highly reliable semiconductor device including a transistor with stable electric characteristics. A method for manufacturing a semiconductor device includes the steps of: forming a gate electrode over a substrate having an insulating surface; forming a gate insulating film over the gate electrode; forming an oxide semiconductor film over the gate insulating film; irradiating the oxide semiconductor film with an electromagnetic wave such as a microwave or a high frequency; forming a source electrode and a drain electrode over the oxide semiconductor film irradiated with the electromagnetic wave; and forming an oxide insulating film, which is in contact with part of the oxide semiconductor film, over the gate insulating film, the oxide semiconductor film, the source electrode, and the drain electrode.11-29-2012
20120302003DOUBLE SELF-ALIGNED METAL OXIDE TFT - A method of fabricating MOTFTs on transparent substrates includes positioning opaque gate metal on the front surface of a transparent substrate and depositing transparent gate dielectric, transparent metal oxide semiconductor material, and passivation material on the gate metal and the surrounding area. Portions of the passivation material are exposed from the rear surface of the substrate. Exposed portions are removed to define a channel area overlying the gate area. A relatively thick conductive metal material is selectively deposited on the exposed areas of the semiconductor material to form thick metal source/drain contacts. The selective deposition includes either plating or printing and processing a metal paste.11-29-2012
20100120197METHODS OF MAKING THIN FILM TRANSISTORS COMPRISING ZINC-OXIDE-BASED SEMICONDUCTOR MATERIALS - A thin film transistor comprises a zinc-oxide-containing semiconductor material. Such transistors can further comprise spaced apart first and second contact means or electrodes in contact with said material. Further disclosed is a process for fabricating a thin film transistor device, wherein the substrate temperature is no more than 300° C. during fabrication.05-13-2010
20100035378ETCHING METHOD, PATTERN FORMING PROCESS, THIN-FILM TRANSISTOR FABRICATION PROCESS, AND ETCHING SOLUTION - An etching method is provided in which selective etching can be carried out for an amorphous oxide semiconductor film including at least one of gallium and zinc, and indium. In the etching method, the selective etching is performed using an alkaline etching solution. The alkaline etching solution contains especially ammonia in a specific concentration range.02-11-2010
20120040495MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A transistor with superior electric characteristics is manufactured. An oxide insulating film is formed over a substrate, an oxide semiconductor film is formed over the oxide insulating film, heat treatment is then conducted at a temperature at which hydrogen contained in the oxide semiconductor film is desorbed and part of oxygen contained in the oxide insulating film is desorbed, then the heated oxide semiconductor film is etched into a predetermined shape to form an island-shaped oxide semiconductor film, a pair of electrodes is formed over the island-shaped oxide semiconductor film, a gate insulating film is formed over the pair of electrodes and the island-shaped oxide semiconductor film, and a gate electrode is formed over the gate insulating film.02-16-2012
20120171813SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Electric characteristics and reliability of a thin film transistor are impaired by diffusion of an impurity element into a channel region. The present invention provides a thin film transistor in which aluminum atoms are unlikely to be diffused to an oxide semiconductor layer. A thin film transistor including an oxide semiconductor layer including indium, gallium, and zinc includes source or drain electrode layers in which first conductive, layers including aluminum as a main component and second conductive layers including a high-melting-point metal material are stacked. An oxide semiconductor layer 07-05-2012
20120208318SEMICONDUCTOR DEVICE HAVING A METAL OXIDE CHANNEL - A semiconductor device includes a metal oxide channel and methods for forming the same. The metal oxide channel includes indium, gallium, and zinc.08-16-2012
20120058597 FABRICATION METHOD FOR THIN-FILM FIELD-EFFECT TRANSISTORS - A thin-film field-effect transistor is formed by forming a dielectric layer adjacent a gate, forming a source region and a drain region, and forming a semiconductor layer on the dielectric layer. The semiconductor layer is deposited by spray pyrolysis and comprises a material selected from a group comprising: oxides; oxide-based materials; mixed oxides; metallic type oxides; group I-IV, II-VI, III-VI, IV-VI, V-VI and VIII-VI binary chalcogenides; and group I-II-VI, II-II-VI, II-III-VI, II-VI-VI and V-II-VI ternary chalcogenides.03-08-2012
20120058600SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to increase field effect mobility of a thin film transistor including an oxide semiconductor. Another object is to stabilize electrical characteristics of the thin film transistor. In a thin film transistor including an oxide semiconductor layer, a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor is formed over the oxide semiconductor layer, whereby field effect mobility of the thin film transistor can be increased. Further, by forming a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor between the oxide semiconductor layer and a protective insulating layer of the thin film transistor, change in composition or deterioration in film quality of the oxide semiconductor layer is prevented, so that electrical characteristics of the thin film transistor can be stabilized.03-08-2012
20120058601THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING SAME, DISPLAY DEVICE, AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor includes: an insulating layer; a gate electrode provided on the insulating layer; a gate insulating film provided on the gate electrode; a semiconductor layer provided on the gate insulating film, the semiconductor layer being formed of oxide; source and drain electrodes provided on the semiconductor layer; and a channel protecting layer provided between the source and drain electrodes and the semiconductor layer. The source electrode is opposed to one end of the gate electrode. The drain electrode is opposed to another end of the gate electrode. The another end is opposite to the one end. The drain electrode is apart from the source electrode. The channel protecting layer covers at least a part of a side face of a part of the semiconductor layer. The part of the semiconductor layer is not covered with the source and drain electrodes above the gate electrode.03-08-2012
20120058599SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The semiconductor device includes a thin film transistor which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, a source electrode layer and a drain electrode layer over the gate insulating layer, a buffer layer over the source electrode layer and the drain electrode layer, and a semiconductor layer over the buffer layer. A part of the semiconductor layer overlapping with the gate electrode layer is over and in contact with the gate insulating layer and is provided between the source electrode layer and the drain electrode layer. The semiconductor layer is an oxide semiconductor layer containing indium, gallium, and zinc. The buffer layer contains a metal oxide having n-type conductivity. The semiconductor layer and the source and drain electrode layers are electrically connected to each other through the buffer layer.03-08-2012
20120058598METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Electrical characteristics of transistors using an oxide semiconductor are greatly varied in a substrate, between substrates, and between lots, and the electrical characteristics are changed due to heat, bias, light, or the like in some cases. In view of the above, a semiconductor device using an oxide semiconductor with high reliability and small variation in electrical characteristics is manufactured. In a method for manufacturing a semiconductor device, hydrogen in a film and at an interface between films is removed in a transistor using an oxide semiconductor. In order to remove hydrogen at the interface between the films, the substrate is transferred under a vacuum between film formations. Further, as for a substrate having a surface exposed to the air, hydrogen on the surface of the substrate may be removed by heat treatment or plasma treatment.03-08-2012
20120064665DEPOSITION APPARATUS, APPARATUS FOR SUCCESSIVE DEPOSITION, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An oxide semiconductor layer is formed with a deposition apparatus including a transfer mechanism for a substrate, a first deposition chamber in which an oxide semiconductor is deposited, and a first heating chamber in which first heat treatment is performed. The first deposition chamber and the first heating chamber are sequentially provided along a path of the substrate transferred by the transfer mechanism. The substrate is held so that an angle formed by a deposition surface of the substrate and the vertical direction is in a range of greater than or equal to 1° and less than or equal to 30°. Without exposure to the air, the first heat treatment can be performed after a first film is formed over the substrate.03-15-2012
20120064664METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.03-15-2012
20110092017SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THE SAME - An object is to provide a method for manufacturing a highly reliable semiconductor device including thin film transistors which have stable electric characteristics and are formed using an oxide semiconductor. A method for manufacturing a semiconductor device includes the steps of: forming an oxide semiconductor film over a gate electrode with a gate insulating film interposed between the oxide semiconductor film and the gate electrode, over an insulating surface; forming a first conductive film including at least one of titanium, molybdenum, and tungsten, over the oxide semiconductor film; forming a second conductive film including a metal having lower electronegativity than hydrogen, over the first conductive film; forming a source electrode and a drain electrode by etching of the first conductive film and the second conductive film; and forming an insulating film in contact with the oxide semiconductor film, over the oxide semiconductor film, the source electrode, and the drain electrode.04-21-2011
20110092016METHOD OF TREATING SEMICONDUCTOR ELEMENT - In a method of treating a semiconductor element which at least includes a semiconductor, a threshold voltage of the semiconductor element is changed by irradiating the semiconductor with light with a wavelength longer than an absorption edge wavelength of the semiconductor. The areal density of in-gap states in the semiconductor is 1004-21-2011
20110065237APPARATUS AND METHOD FOR MANUFACTURING MULTI-COMPONENT OXIDE HETEROSTRUCTURES - Certain embodiments disclosed herein relate to the formation of multi-component oxide heterostructures (MCOH) using surface nucleation to pattern the atomic layer deposition (ALD) of perovskite material followed by patterned etch and metallization to produce ultra-high density MCOH nano-electronic devices. Applications include ultra-high density MCOH memory and logic, as well as electronic functionality based on single electrons, for example a novel flash memory cell Floating-Gate (FG) transistor with LaAlO03-17-2011
20110065236Method for maintaining a smooth surface of crystallizable material - A method for maintaining a smooth surface of crystallizable material is disclosed. First, a substrate is provided. A target material layer is then formed on the substrate, with the target material being a crystallizable material. A protecting layer is subsequently formed on the target material layer. Next, an annealing treatment is implemented, with the surface of the target material layer, facing the protecting layer, being maintained in its original smooth state by the pressure and/or adhesion of the protecting layer. Finally, the protecting layer is removed to leave an open and smooth surface of the processed crystallizable material.03-17-2011
20120252160METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - In a method for manufacturing a transistor including an oxide semiconductor layer, a gate electrode is formed and then an aluminum oxide film, a silicon oxide film, and the oxide semiconductor film are successively formed in an in-line apparatus without being exposed to the air and are subjected to heating and oxygen adding treatment in the in-line apparatus. Then, the transistor is covered with another aluminum oxide film and is subjected to heat treatment, so that the oxide semiconductor film from which impurities including hydrogen atoms are removed and including a region containing oxygen at an amount exceeding that in the stoichiometric composition ratio. The transistor including the oxide semiconductor film is a transistor having high reliability in which the amount of change in threshold voltage of the transistor by the bias-temperature stress (BT test) can be reduced.10-04-2012
20110104851Semiconductor Device and Manufacturing Method Thereof - An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.05-05-2011
20110183463THIN FILM TRANSITOR SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a thin film transistor (“TFT”) substrate includes forming a first conductive pattern group including a gate electrode on a substrate, forming a gate insulating layer on the first conductive pattern group, forming a semiconductor layer and an ohmic contact layer on the gate insulating layer by patterning an amorphous silicon layer and an oxide semiconductor layer, forming a second conductive pattern group including a source electrode and a drain electrode on the ohmic contact layer by patterning a data metal layer, forming a protection layer including a contact hole on the second conductive pattern group, and forming a pixel electrode on the contact hole of the protection layer. The TFT substrate including the ohmic contact layer formed of an oxide semiconductor is further provided.07-28-2011
20100210069Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition - Disclosed is a solution composition for forming a thin film transistor including a zinc-containing compound, an indium-containing compound, and a compound including at least one metal or metalloid selected from the group consisting of hafnium (Hf), magnesium (Mg), tantalum (Ta), cerium (Ce), lanthanum (La), silicon (Si), germanium (Ge), vanadium (V), niobium (Nb), and yttrium (Y). A method of forming a thin film by using the solution composition, and a method of manufacturing thin film transistor including the thin film are also disclosed.08-19-2010
20120315725SURFACE TREATMENT TO IMPROVE RESISTIVE-SWITCHING CHARACTERISTICS - This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.12-13-2012
20120214276SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiO08-23-2012
20120220077THIN FILM TRANSISTOR, METHOD OF MANUFACTURING THE SAME AND FLAT PANEL DISPLAY DEVICE HAVING THE SAME - A thin film transistor, a method of manufacturing the thin film transistor, and a flat panel display device including the thin film transistor. The thin film transistor includes: a gate electrode formed on a substrate; a gate insulating film formed on the gate electrode; an activation layer formed on the gate insulating film; a passivation layer including a compound semiconductor oxide, formed on the activation layer; and source and drain electrodes that contact the activation layer.08-30-2012
20120135563PROCESS FOR PRODUCING MULTILAYER CHIP ZINC OXIDE VARISTOR CONTAINING PURE SILVER INTERNAL ELECTRODES AND FIRING AT ULTRALOW TEMPERATURE - A low-temperature firing process is available for cost saving to produce a multilayer chip ZnO varistor containing pure silver (Ag) formed as internal electrodes and calcined at ultralow firing temperature of 850-900° C., which process comprises: 05-31-2012
20120220078METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device having stable electric characteristics in which an oxide semiconductor is used. An oxide semiconductor layer is subjected to heat treatment for dehydration or dehydrogenation treatment in a nitrogen gas or an inert gas atmosphere such as a rare gas (e.g., argon or helium) or under reduced pressure and to a cooling step for treatment for supplying oxygen in an atmosphere of oxygen, an atmosphere of oxygen and nitrogen, or the air (having a dew point of preferably lower than or equal to −40° C., still preferably lower than or equal to −50° C.) atmosphere. The oxide semiconductor layer is thus highly purified, whereby an i-type oxide semiconductor layer is formed. A semiconductor device including a thin film transistor having the oxide semiconductor layer is manufactured.08-30-2012
20120178210METHOD OF FABRICATING A RESISTIVE NON-VOLATILE MEMORY DEVICE - A method of fabricating a memory cell includes forming a bottom electrode on a substrate, a variable resistive material layer on the bottom electrode, and a top electrode on the variable resistive material layer. A first metal oxide layer interposes the top electrode and the variable resistive material layer. In an embodiment, the first metal oxide layer is a self-formed layer provided by the oxidation of a portion of the top electrode. In an embodiment, a second metal oxide layer is provided interposing the first metal oxide layer and the variable resistive material layer. The second metal oxide may be a self-formed layer formed by the reduction of the variable resistive material layer.07-12-2012
20120238055METHOD FOR MANUFACTURING NONVOLATILE SEMICONDUCTOR MEMORY ELEMENT - An object of the present invention is to provide a method for manufacturing a variable resistance nonvolatile semiconductor memory element which can operate at a low voltage and high speed when initial breakdown is caused, and inhibit oxidization of a contact plug. The method for manufacturing the variable resistance nonvolatile semiconductor memory element, which includes a bottom electrode, a variable resistance layer, and a top electrode which are formed above a contact plug, includes oxidizing to insulate an end portion of the variable resistance layer prior to forming a bottom electrode by patterning a first conductive film.09-20-2012
20090061559MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER - A manufacture method for a ZnO-containing compound semiconductor layer has the steps of: (a) preparing a substrate; and (b) growing a ZnO-containing semiconductor layer above the substrate by supplying at the same time at least Zn and O as source gases and S as surfactant. There is provided the manufacture method for the ZnO-containing compound semiconductor layer with improved flatness.03-05-2009
20120329209METHOD FOR FORMING PATTERN OF METAL OXIDE AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR USING THE SAME - Disclosed are a method for forming a metal oxide pattern and a method of manufacturing a thin film transistor using the patterned metal oxide. The method for forming a metal oxide pattern includes: preparing an ink composition including at least one metal oxide precursor or metal oxide nanoparticle, and a solvent; ejecting the ink composition on a substrate to form a pattern on the substrate; and photosintering the formed pattern. Herein, the metal oxide precursor is ionic.12-27-2012
20110124153METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device having stable electric characteristics in which an oxide semiconductor is used. An oxide semiconductor layer is subjected to heat treatment for dehydration or dehydrogenation treatment in a nitrogen gas or an inert gas atmosphere such as a rare gas (e.g., argon or helium) or under reduced pressure and to a cooling step for treatment for supplying oxygen in an atmosphere of oxygen, an atmosphere of oxygen and nitrogen, or the air (having a dew point of preferably lower than or equal to −40° C., still preferably lower than or equal to −50° C.) atmosphere. The oxide semiconductor layer is thus highly purified, whereby an i-type oxide semiconductor layer is formed. A semiconductor device including a thin film transistor having the oxide semiconductor layer is manufactured.05-26-2011
20110124152METHOD OF MANUFACTURING SEMICONDUCTOR FOR TRANSISTOR AND METHOD OF MANUFACTURING THE TRANSISTOR - A method of manufacturing a semiconductor for a transistor that includes forming a precursor layer by coating a surface of an insulation substrate with a precursor solution for an oxide semiconductor, forming an oxide semiconductor by oxidizing a portion of the precursor layer, and removing a remaining precursor layer except for the oxide semiconductor.05-26-2011
20120231580METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - In a manufacturing process of a transistor including an oxide semiconductor film, oxygen doping treatment is performed on the oxide semiconductor film, and then heat treatment is performed on the oxide semiconductor film and an aluminum oxide film provided over the oxide semiconductor film. Consequently, an oxide semiconductor film which includes a region containing more oxygen than a stoichiometric composition is formed. The transistor formed using the oxide semiconductor film can have high reliability because the amount of change in the threshold voltage of the transistor by a bias-temperature stress test (BT test) is reduced.09-13-2012
20080299703Film growth system and method - An apparatus for depositing a solid film onto a substrate from a reagent solution includes a reservoir of reagent solution maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solution. The reagent solution contains multiple ligands to further control temperature stability and shelf life. The chilled solution is dispensed through a showerhead onto a substrate. The substrate is positioned in a holder that has a raised structure peripheral to the substrate to retain or impound a controlled volume (or depth) of reagent solution over the exposed surface of the substrate. The reagent solution is periodically or continuously replenished from the showerhead so that only the part of the solution directly adjacent to the substrate is heated. A heater is disposed beneath the substrate and maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solution may be initiated. The showerhead may also dispense excess chilled reagent solution to cool various components within the apparatus and minimize nucleation of solids in areas other than on the substrate. The apparatus and its associated method of use are particularly suited to forming films of II-VI semiconductors.12-04-2008
20080299702METHOD OF MANUFACTURING ZnO-BASED THIN FILM TRANSISTOR - A ZnO-based thin film transistor (TFT) is provided herein. Also provided is a method for manufacturing the TFT. The ZnO-based TFT is very sensitive to the oxygen concentration present in a channel layer. In order to prevent damage to a channel layer of a bottom gate TFT, and to avoid a deep negative threshold voltage resulting from damage to the channel layer, the method for manufacturing the ZnO-based TFT comprises formation of an etch stop layer or a passivation layer comprising unstable or incompletely bonded oxygen, and annealing the layers to induce an interfacial reaction between the oxide layer and the channel layer and to reduce the carrier concentration.12-04-2008
20110003430MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - An object is to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, impurities such as moisture existing in the gate insulating layer are reduced before formation of the oxide semiconductor film, and then heat treatment (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor film and reduce impurities such as moisture. After that, slow cooling is performed in an oxygen atmosphere. Besides impurities such as moisture existing in the gate insulating layer and the oxide semiconductor film, impurities such as moisture existing at interfaces between the oxide semiconductor film and upper and lower films provided in contact therewith are reduced.01-06-2011
20110003429METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Disclosed is a method to manufacture a thin film transistor having an oxide semiconductor as a channel formation region. The method includes; forming an oxide semiconductor layer over a gate insulating layer; forming a source and drain electrode layers over and in contact with the oxide semiconductor layer so that at least portion of the oxide semiconductor layer is exposed; and forming an oxide insulating film over and in contact with the oxide semiconductor layer. The exposed portion of the oxide semiconductor may be exposed to a gas containing oxygen in the presence of plasma before the formation of the oxide insulating film. The method allows oxygen to be diffused into the oxide semiconductor layer, which contributes to the excellent characteristics of the thin film transistor.01-06-2011
20110003428METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics. It is another object to manufacture a highly reliable semiconductor device at lower cost with high productivity. In a method for manufacturing a semiconductor device which includes a thin film transistor where a semiconductor layer having a channel formation region, a source region, and a drain region are formed using an oxide semiconductor layer, heat treatment (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor layer and reduce impurities such as moisture. Moreover, the oxide semiconductor layer subjected to the heat treatment is slowly cooled under an oxygen atmosphere.01-06-2011
20110003427METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics. It is another object to manufacture a highly reliable semiconductor device at lower cost with high productivity. In a method for manufacturing a semiconductor device which includes a thin film transistor where a semiconductor layer including a channel formation region using an oxide semiconductor layer, a source region, and a drain region are formed using an oxide semiconductor layer, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor layer.01-06-2011
20110039369PROCESS FOR PRODUCING SEMICONDUCTIVE PORCELAIN COMPOSITION/ELECTRODE ASSEMBLY - A semiconductive porcelain composition/electrode assembly which is low in room temperature resistivity of 100 Ω·cm or less and is reduced in change with the passage of time due to energization with regard to the semiconductive porcelain composition in which a part of Ba of BaTiO02-17-2011
20100203674METHODS OF FABRICATING NANOSTRUCTURED ZnO ELECTRODES FOR EFFICIENT DYE SENSITIZED SOLAR CELLS - The present invention provides methods of forming metal oxide semiconductor nanostructures and, in particular, zinc oxide (ZnO) semiconductor nanostructures, possessing high surface area, plant-like morphologies on a variety of substrates. Optoelectronic devices, such as photovoltaic cells, incorporating the nanostructures are also provided.08-12-2010
20100203673METHOD FOR MANUFACTURING FIELD-EFFECT TRANSISTOR - A method for manufacturing a field-effect transistor is provided. The field-effect transistor includes on a substrate a source electrode, a drain electrode, an oxide semiconductor layer, an insulating layer and a gate electrode. The method includes, after forming the insulating layer on the oxide semiconductor layer, an annealing step of increasing the electrical conductivity of the oxide semiconductor layers by annealing in an atmosphere containing moisture. The steam pressure at the annealing step is higher than the saturated vapor pressure in the atmosphere at the annealing temperature.08-12-2010
20100233849Methods of Forming Resistive Memory Devices - Methods of forming a resistive memory device include forming an insulation layer on a semiconductor substrate including a conductive pattern, forming a contact hole in the insulation layer to expose the conductive pattern, forming a lower electrode in the contact hole, forming a variable resistive oxide layer in the contact hole on the lower electrode, forming a middle electrode in the contact hole on the variable resistive oxide layer, forming a buffer oxide layer on the middle electrode and the insulation layer, and forming an upper electrode on the buffer oxide layer. Related resistive memory devices are also disclosed.09-16-2010
20100233848SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE - If an oxide semiconductor layer is crystallized by heat treatment without being covered with an inorganic insulating film, surface unevenness and the like are formed due to the crystallization, which may cause variation in electrical characteristics. Steps are performed in the following order: a second insulating film is formed on an oxide semiconductor layer over a substrate and then heat treatment is performed, instead of performing heat treatment during a period immediately after formation of the oxide semiconductor layer and immediately before formation of an inorganic insulating film including silicon oxide on the oxide semiconductor layer. The density of hydrogen included in the inorganic insulating film including silicon oxide is 5×1009-16-2010
20120088328NON-VOLATILE RESISTIVE-SWITCHING MEMORIES - Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm04-12-2012
20120329210Methods of Forming Diodes - Some embodiments include methods of forming diodes in which a first electrode is formed to have a pedestal extending upwardly from a base. At least one layer is deposited along an undulating topography that extends across the pedestal and base, and a second electrode is formed over the least one layer. The first electrode, at least one layer, and second electrode together form a structure that conducts current between the first and second electrodes when voltage of one polarity is applied to the structure, and that inhibits current flow between the first and second electrodes when voltage having a polarity opposite to said one polarity is applied to the structure. Some embodiments include diodes having a first electrode that contains two or more projections extending upwardly from a base, having at least one layer over the first electrode, and having a second electrode over the at least one layer.12-27-2012
20110287580METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object of an embodiment of the present invention is to provide a semiconductor device including a normally-off oxide semiconductor element whose characteristic variation is small in the long term. A cation containing one or more elements selected from oxygen and halogen is added to an oxide semiconductor layer, thereby suppressing elimination of oxygen, reducing hydrogen, or suppressing movement of hydrogen. Accordingly, carriers in the oxide semiconductor can be reduced and the number of the carriers can be kept constant in the long term. As a result, the semiconductor device including the normally-off oxide semiconductor element whose characteristic variation is small in the long term can be provided.11-24-2011
20100216279METHOD OF A MULTI-LEVEL CELL RESISTANCE RANDOM ACCESS MEMORY WITH METAL OXIDES - A method and structure of a bistable resistance random access memory comprise a plurality of programmable resistance random access memory cells where each programmable resistance random access memory cell includes multiple memory members for performing multiple bits for each memory cell. The bistable RRAM includes a first resistance random access member connected to a second resistance random access member through interconnect metal liners and metal oxide strips. The first resistance random access member has a first resistance value Ra, which is determined from the thickness of the first resistance random access member based on the deposition of the first resistance random access member. The second resistance random access member has a second resistance value Rb, which is determined from the thickness of the second resistance random access member based on the deposition of the second resistance random access member.08-26-2010
20120288994THIN FILM TRANSISTORS USING MULTIPLE ACTIVE CHANNEL LAYERS - Embodiments disclosed herein generally relate to TFTs and methods of fabricating the TFTs. In TFTs, the active channel carries the current between the source and drain electrodes. By tailoring the composition of the active channel, the current can be controlled. The active channel may be divided into three layers, a gate control layer, a bulk layer, and an interface control layer. The separate layers may have different compositions. Each of the gate control, bulk and interface control layers may additionally comprise multiple layers that may have different compositions. The composition of the various layers of the active channel comprise oxygen, nitrogen, and one or more elements selected from the group consisting of zinc, indium, cadmium, tin, gallium and combinations thereof. By varying the composition among the layers, the mobility, carrier concentration and conductivity of the various layers may be controlled to produce a TFT having desired properties.11-15-2012
20120288993SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - To establish a processing technique in manufacture of a semiconductor device including an In—Sn—Zn—O-based semiconductor. An In—Sn—Zn—O-based semiconductor layer is selectively etched by dry etching with the use of a gas containing chlorine such as Cl11-15-2012
20100167463Method for Fabricating Resistive Memory Device - A method for fabricating a resistive memory device includes forming a lower electrode including a metal nitride layer over a substrate, forming a metal oxide layer used as a variable resistance material by oxidizing a part of the metal nitride layer, and forming an upper electrode on the metal oxide layer.07-01-2010
20130011961SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to provide a semiconductor device having excellent characteristics, in which a channel layer includes an oxide semiconductor with high crystallinity. In addition, a semiconductor device including a base film with improved planarity is provided. CMP treatment is performed on the base film of the transistor and plasma treatment is performed thereon after the CMP treatment, whereby the base film can have a center line average roughness Ra01-10-2013
20130011963PROCESS FOR PRODUCING ZINC OXIDE VARISTOR - A process for producing zinc oxide varistors possessed a property of breakdown voltage (V1mA) ranging from 230 to 1,730 V/mm is to perform the doping of zinc oxide and the sintering of zinc oxide grains with a high-impedance sintered powder through two independent procedures, so that the doped zinc oxide and the high-impedance sintered powder are well mixed in a predetermined ratio and then used to make the zinc oxide varistors through conventional technology by low-temperature sintering (lower than 900° C.); the resultant zinc oxide varistors may use pure silver as inner electrode and particularly possess breakdown voltage ranging from 230 to 1,730 V/mm.01-10-2013
20130011962SPUTTERING TARGET, METHOD FOR MANUFACTURING SPUTTERING TARGET, AND METHOD FOR FORMING THIN FILM - There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.01-10-2013
20120149147SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.06-14-2012
20130017648METHODS OF MANUFACTURING THIN FILM TRANSISTOR DEVICES - Embodiments of the disclosure provide methods of fabricating a thin film transistor device with good profile control of peripheral sidewall of an active layer formed in the thin film transistor devices. In one embodiment, a method for manufacturing a thin film transistor device includes providing a substrate having a source-drain metal electrode layer disposed on an active layer formed thereon, wherein the active layer is a metal oxide layer, performing a back-channel-etching process to form a channel in the source-drain metal electrode layer, and performing an active layer patterning process after the back-channel-etching process.01-17-2013
20130023085METHOD FOR FORMING METAL OXIDES AND SILICIDES IN A MEMORY DEVICE - Embodiments of the invention generally relate to memory devices and methods for fabricating such memory devices. In one embodiment, a method for fabricating a resistive switching memory device includes depositing a metallic layer on a lower electrode disposed on a substrate and exposing the metallic layer to an activated oxygen source while heating the substrate to an oxidizing temperature within a range from about 300° C. to about 600° C. and forming a metal oxide layer from an upper portion of the metallic layer during an oxidation process. The lower electrode contains a silicon material and the metallic layer contains hafnium or zirconium. Subsequent to the oxidation process, the method further includes heating the substrate to an annealing temperature within a range from greater than 600° C. to about 850° C. while forming a metal silicide layer from a lower portion of the metallic layer during a silicidation process.01-24-2013
20130023087METHOD FOR PROCESSING OXIDE SEMICONDUCTOR FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To provide an oxide semiconductor film including a low-resistance region, which can be applied to a transistor. To provide a transistor including the oxide semiconductor film, which can perform at high speed. To provide a high-performance semiconductor device including the transistor including the oxide semiconductor film, which can perform at high speed, with high yield. A film having a reducing property is formed over the oxide semiconductor film. Next, part of oxygen atoms are transferred from the oxide semiconductor film to the film having a reducing property. Next, an impurity is added to the oxide semiconductor film through the film having a reducing property and then, the film having a reducing property is removed, so that a low-resistance region is formed in the oxide semiconductor film.01-24-2013
20130023086ACTIVE MATRIX SUBSTRATE, DISPLAY PANEL PROVIDED WITH SAME, AND METHOD FOR MANUFACTURING ACTIVE MATRIX SUBSTRATE - An active matrix substrate includes a plurality of pixel electrodes (P) provided in a matrix, and a plurality of TFTs (01-24-2013
20080254569Semiconductor Device - One exemplary embodiment includes a semiconductor device. The semiconductor device can include a channel including one or more of a metal oxide including zinc-gallium, cadmium-gallium, cadmium-indium.10-16-2008
20130171771MANUFACTURING METHOD FOR SEMICONDUCTOR DEVICE - A method for producing a semiconductor device according to the present invention includes a step of sputtering a target (07-04-2013
20130178014METHOD FOR MANUFACTURING A GATE-CONTROL DIODE SEMICONDUCTOR MEMORY DEVICE - This invention belongs to semiconductor device manufacturing field and discloses a method for manufacturing a gate-control diode semiconductor storage device. When the floating gate voltage is relatively high, the channel under the floating gate is of n type and a simple gate-control pn junction structure is configured; by controlling effective n-type concentration of the ZnO film through back-gate control, inverting the n-type ZnO into p-type through a floating gate and using NiO as a p-type semiconductor, an n-p-n-p doping structure is formed while the quantity of charges in the floating gate determines the device threshold voltage, thus realizing memory functions. This invention features capacity of manufacturing gate-control diode memory devices able to reduce the chip power consumption through advantages of high driving current and small sub-threshold swing. This invention is applicable to semiconductor devices manufacturing based on flexible substrate and flat panel displays and floating gate memories, etc.07-11-2013
20130178015METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (for dehydration or dehydrogenation) is performed to improve the purity of the oxide semiconductor film and reduce impurities including moisture or the like. After that, slow cooling is performed under an oxygen atmosphere. Besides impurities including moisture or the like exiting in the oxide semiconductor film, heat treatment causes reduction of impurities including moisture or the like exiting in a gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor and in contact therewith.07-11-2013
20130178012METHOD FOR MANUFACTURING A GATE-CONTROL DIODE SEMICONDUCTOR DEVICE - This invention belongs to semiconductor device manufacturing field and discloses a method for manufacturing a gate-control diode semiconductor device. When the gate voltage is relatively high, the channel under the gate is of n-type and the device is of a simple gate-control pn junction structure; by way of controlling the effective n-type concentration of the ZnO film through back-gate control, inverting the n-type ZnO into p-type through the gate, and using NiO as a p-type semiconductor, an n-p-n-p doping structure is formed. The method features capacity of manufacturing gate-control diode devices able to reduce chip power consumption through the advantages of high driving current and small sub-threshold swing. The present invention using a low temperature process production is especially applicable to the manufacturing of semiconductor devices based on flexible substrates and reading & writing devices that have a flat panel display and phase change memory.07-11-2013
20130178013METHOD FOR MANUFACTURING A GATE-CONTROL DIODE SEMICONDUCTOR DEVICE - This invention belongs to semiconductor device manufacturing field and discloses a method for manufacturing a gate-control diode semiconductor device. When the gate voltage is relatively high, the channel under the gate has an n type and the device has a simple gate-control pn junction structure; by way of controlling the effective n-type concentration of the ZnO film through back-gate control, inverting the n-type ZnO into p-type through the gate and using NiO as a p-type semiconductor, an n-p-n-p doping structure is formed. The present invention features capacity of manufacturing gate-control diode devices able to reduce the chip power consumption through the advantages of a high driving current and small sub-threshold swing, is especially applicable to the manufacturing of reading & writing devices having flat panel displays & phase change memory, and semiconductor devices based on flexible substrates.07-11-2013
20130095606Fabrication Method for ZnO Thin Film Transistors Using Etch-stop Layer - A method is provided for fabricating a thin film transistor. A plurality of layers is deposited on a substrate. The plurality of layers includes a conductive gate contact layer, a gate insulator layer, an undoped channel layer, an etch-stop layer, and a conductive contact layer. The etch-stop layer is positioned between the conductive contact layer and the undoped channel layer. A portion of the conductive contact layer is selectively removed while removal of a portion of the undoped channel layer is prevented by the etch-stop layer during the selective removal. A portion of the etch-stop layer is selectively removed and an exposed portion of the etch-stop layer is converted from a conductor to an insulator by oxidizing the exposed portion of the etch-stop layer in air. A portion of remaining layers of the plurality of layers is selectively removed to form the thin film transistor.04-18-2013
20130115733ETCHANT COMPOSITION AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR USING THE SAME - Provided is an etchant composition. The etchant composition according to an exemplary embodiment of the present invention includes ammonium persulfate ((NH05-09-2013
20130130437SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to provide a semiconductor device having a structure in which parasitic capacitance between wirings can be efficiently reduced. In a bottom gate thin film transistor using an oxide semiconductor layer, an oxide insulating layer used as a channel protection layer is formed above and in contact with part of the oxide semiconductor layer overlapping with a gate electrode layer, and at the same time an oxide insulating layer covering a peripheral portion (including a side surface) of the stacked oxide semiconductor layer is formed. Further, a source electrode layer and a drain electrode layer are formed in a manner such that they do not overlap with the channel protection layer. Thus, a structure in which an insulating layer over the source electrode layer and the drain electrode layer is in contact with the oxide semiconductor layer is provided.05-23-2013
20130130438SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - In a thin film transistor which uses an oxide semiconductor, buffer layers containing indium, gallium, zinc, oxygen, and nitrogen are provided between the oxide semiconductor layer and the source and drain electrode layers.05-23-2013
20100279461Method of Fabricating Zinc Oxide Film Having Matching Crystal Orientation to Silicon Substrate - A zinc oxide (ZnO) film is fabricated. Metal-organic chemical vapor deposition (MOCVD) is used to obtain the film with few defects, high integrity and low cost through an easy procedure. The ZnO film above a silicon substrate has a matching crystal orientation to the substrate. Thus, the ZnO film is fit for ultraviolet light-emitting diodes (UV LED), solar cells and related laser devices.11-04-2010
20110212571SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.09-01-2011
20130149813SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THE SAME - An object is to manufacture and provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which a semiconductor layer including a channel formation region serves as an oxide semiconductor film, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed after an oxide insulating film serving as a protective film is formed in contact with an oxide semiconductor layer. Then, the impurities such as moisture, which exist not only in a source electrode layer, in a drain electrode layer, in a gate insulating layer, and in the oxide semiconductor layer but also at interfaces between the oxide semiconductor film and upper and lower films which are in contact with the oxide semiconductor layer, are reduced.06-13-2013
20130149814THIN FILM TRANSISTOR ARRAY PANEL AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor substrate according to an embodiment of the present invention includes: an insulation substrate; a gate line formed on the insulation substrate; a first interlayer insulating layer formed on the gate line; a data line and a gate electrode formed on the first interlayer insulating layer; a gate insulating layer formed on the data line and gate electrode; a semiconductor formed on the gate insulating layer and overlapping the gate electrode; a second interlayer insulating layer formed on the semiconductor; a first connection formed on the second interlayer insulating layer and electrically connecting the gate line and the gate electrode to each other; a drain electrode connected to the semiconductor; a pixel electrode connected to the drain electrode; and a second connection connecting the data line and the semiconductor to each other.06-13-2013
20130149815NONVOLATILE MEMORY ELEMENT MANUFACTURING METHOD AND NONVOLATILE MEMORY ELEMENT - A method of manufacturing a nonvolatile memory element includes: forming a first conductive film above a substrate; forming, above the first conductive film, a first metal oxide layer and a second metal oxide layer having different degrees of oxygen deficiency and a second conductive film; forming a second electrode by patterning the second conductive film; forming a variable resistance layer by patterning the first metal oxide layer and the second metal oxide layer; removing a side portion of the variable resistance layer in a surface parallel to a main surface of the substrate to a position that is further inward than an edge of the second electrode; and forming a first electrode by patterning the first conductive film after or during the removing.06-13-2013
20100291731METHOD OF FIELD-CONTROLLED DIFFUSION AND DEVICES FORMED THEREBY - A technique for creating high quality Schottky barrier devices in doped (e.g., Li11-18-2010
20130157411METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics. It is another object to manufacture a highly reliable semiconductor device at lower cost with high productivity. In a method for manufacturing a semiconductor device which includes a thin film transistor where a semiconductor layer having a channel formation region, a source region, and a drain region are formed using an oxide semiconductor layer, heat treatment (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor layer and reduce impurities such as moisture. Moreover, the oxide semiconductor layer subjected to the heat treatment is slowly cooled under an oxygen atmosphere.06-20-2013
20120282734OXIDE THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - An oxide thin film transistor and a method of manufacturing the oxide TFT are provided. The oxide thin film transistor (TFT) including: a gate; a channel formed to correspond to the gate, and a capping layer having a higher work function than the channel; a gate insulator disposed between the gate and the channel; and a source and drain respectively contacting either side of the capping layer and the channel and partially on a top surface of the capping layer.11-08-2012
20120282733METHOD FOR BAND GAP TUNING OF METAL OXIDE SEMICONDUCTORS - A method for band gap tuning of metal oxide semiconductors is provided, comprising: placing a metal oxide semiconductor in a plasma chamber; (a1) treating the metal oxide semiconductor with an oxygen plasma for oxidizing the metal oxide semiconductor to decrease band gap thereof; and (a2) treating the metal oxide semiconductor with a hydrogen plasma for reducing the metal oxide semiconductor to increase band gap thereof; or (b1) treating the metal oxide semiconductor with an oxygen plasma for oxidizing the metal oxide semiconductor to increase band gap thereof; and (b2) treating the metal oxide semiconductor with a hydrogen plasma for reducing the metal oxide semiconductor to decrease band gap thereof.11-08-2012
20110312127METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a method for manufacturing a semiconductor device including an oxide semiconductor and having improved electric characteristics. The semiconductor device includes an oxide semiconductor film, a gate electrode overlapping the oxide semiconductor film, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. The method includes the steps of forming a first insulating film including gallium oxide over and in contact with the oxide semiconductor film; forming a second insulating film over and in contact with the first insulating film; forming a resist mask over the second insulating film; forming a contact hole by performing dry etching on the first insulating film and the second insulating film; removing the resist mask by ashing using oxygen plasma; and forming a wiring electrically connected to at least one of the gate electrode, the source electrode, and the drain electrode through the contact hole.12-22-2011
20110318875SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An embodiment is to include a staggered (top gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. The buffer layer having higher carrier concentration than the semiconductor layer is provided intentionally between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.12-29-2011
20130196468METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To improve productivity of a transistor that includes an oxide semiconductor and has good electrical characteristics. In a top-gate transistor including a gate insulating film and a gate electrode over an oxide semiconductor film, a metal film is formed over the oxide semiconductor film, oxygen is added to the metal film to form a metal oxide film, and the metal oxide film is used as a gate insulating film. After an oxide insulating film is formed over the oxide semiconductor film, a metal film may be formed over the oxide insulating film. Oxygen is added to the metal film to form a metal oxide film and added also to the oxide semiconductor film or the oxide insulating film.08-01-2013
20130196469Low-Temperature Fabrication of Metal Oxide Thin Films and Nanomaterial-Derived Metal Composite Thin Films - Disclosed are new methods of fabricating metal oxide thin films and nanomaterial-derived metal composite thin films via solution processes at low temperatures (<400° C.). The present thin films are useful as thin film semiconductors, thin film dielectrics, or thin film conductors, and can be implemented into semiconductor devices such as thin film transistors and thin film photovoltaic devices.08-01-2013
20120295399OXIDE-BASED THIN FILM TRANSISTOR, METHOD OF FABRICATING THE SAME, ZINC OXIDE ETCHANT, AND A METHOD OF FORMING THE SAME - Provided is a zinc (Zn) oxide-based thin film transistor that may include a gate, a gate insulating layer on the gate, a channel including zinc oxide and may be on a portion of the gate insulating layer, and a source and drain contacting respective sides of the channel. The zinc (Zn) oxide-based thin film transistor may further include a recession in the channel between the source and the drain, and a zinc oxide-based etchant may be used to form the recession.11-22-2012
20120295397METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Stable electrical characteristics and high reliability are provided to a semiconductor device including an oxide semiconductor. In a process of manufacturing a transistor including an oxide semiconductor film, an amorphous oxide semiconductor film is formed, and oxygen is added to the amorphous oxide semiconductor film, so that an amorphous oxide semiconductor film containing excess oxygen is formed. Then, an aluminum oxide film is formed over the amorphous oxide semiconductor film, and heat treatment is performed thereon to crystallize at least part of the amorphous oxide semiconductor film, so that a crystalline oxide semiconductor film is formed.11-22-2012
20130203214METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To improve productivity of a transistor that includes an oxide semiconductor and has good electrical characteristics. In a top-gate transistor including a gate insulating film and a gate electrode over an oxide semiconductor film, a metal film is formed over the oxide semiconductor film, oxygen is added to the metal film to form a metal oxide film, and the metal oxide film is used as a gate insulating film. After an oxide insulating film is formed over the oxide semiconductor film, a metal film may be formed over the oxide insulating film. Oxygen is added to the metal film to form a metal oxide film and added also to the oxide semiconductor film or the oxide insulating film.08-08-2013
20120094434ENHANCED SPONTANEOUS SEPARATION METHOD FOR PRODUCTION OF FREE-STANDING NITRIDE THIN FILMS, SUBSTRATES, AND HETEROSTRUCTURES - The present invention provides a superior method for the removal of nitride semiconductor thin films, thick films, heterostructures, and bulk material from initial substrates and/or templates. The method utilizes specially patterned mask layers between the initial substrates/templates and the nitride semiconductors to decrease adhesion between the nitride semiconductor and underlying material. Thermal stresses generated upon cooling the nitride semiconductor from its deposition temperature trigger spontaneous separation of the nitride semiconductor from the initial substrate or template at the mask layer. The invention dies deficiencies in the prior art by providing a simple, reproducible, and effective means of removing initial substrates and templates from a variety of nitride semiconductor layers and structures.04-19-2012
20120094433METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a method for manufacturing a semiconductor device so as not expose a semiconductor layer to moisture and the number of masks is reduced. For example, a first conductive film, a first insulating film, a semiconductor film, a second conductive film, and a mask film are formed. The first mask film is processed to form a first mask layer. Dry etching is performed on the first insulating film, the semiconductor film, and the second conductive film with the use of the first mask layer to form a thin film stack body, so that a surface of the first conductive film is at least exposed. Sidewall insulating layers covering side surfaces of the thin film stack body are formed. The first conductive film is side-etched to form a first electrode. A second electrode layer is formed with the second mask layer.04-19-2012
20130210193ReRAM STACKS PREPARATION BY USING SINGLE ALD OR PVD CHAMBER - Systems and methods for preparing resistive switching memory devices such as resistive random access memory (ReRAM) devices wherein both oxide and nitride layers are deposited in a single chamber are provided. Various oxide and nitride based layers in the ReRAM device such as the switching layer, current-limiting layer, and the top electrode (and optionally the bottom electrode) are deposited in the single chamber. By fabricating the ReRAM device in a single chamber, throughput is increased and cost is decreased. Moreover, processing in a single chamber reduces device exposure to air and to particulates, thereby minimizing device defects.08-15-2013

Patent applications in class HAVING METAL OXIDE OR COPPER SULFIDE COMPOUND SEMICONDUCTOR COMPONENT