Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Responsive to electromagnetic radiation

Subclass of:

438 - Semiconductor device manufacturing: process

438048000 - MAKING DEVICE OR CIRCUIT RESPONSIVE TO NONELECTRICAL SIGNAL

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
438069000 Including integrally formed optical element (e.g., reflective layer, luminescent layer, etc.) 374
438098000 Contact formation (i.e., metallization) 193
438073000 Making electromagnetic responsive array 178
438064000 Packaging (e.g., with mounting, encapsulating, etc.) or treatment of packaged semiconductor 171
438093000 Compound semiconductor 169
438059000 Having diverse electrical device 65
438096000 Amorphous semiconductor 55
438087000 Graded composition 46
438061000 Continuous processing 43
438097000 Polycrystalline semiconductor 37
438068000 Substrate dicing 36
438084000 Having selenium or tellurium elemental semiconductor component 31
438085000 Having metal oxide or copper sulfide compound semiconductive component 28
438082000 Having organic semiconductor component 23
438058000 Gettering of substrate 18
438089000 Fusion or solidification of semiconductor region 14
438063000 Particulate semiconductor component 11
438088000 Direct application of electric current 6
438090000 Including storage of electrical charge in substrate 2
20100203669SOLID STATE IMAGING DEVICE, METHOD OF MANUFACTURING THE SAME, AND IMAGING APPARATUS - A solid state imaging device having a light sensing section that performs photoelectric conversion of incident light includes: an insulating layer formed on a light receiving surface of the light sensing section; a layer having negative electric charges formed on the insulating layer; and a hole accumulation layer formed on the light receiving surface of the light sensing section.08-12-2010
20120282729METHODS FOR MANUFACTURING SEMICONDUCTOR APPARATUS AND CMOS IMAGE SENSOR - A method for manufacturing a semiconductor apparatus includes the first step of forming a silicon oxide film including a main portion on a second portion and a sub portion between a first portion and a silicon nitride film, the second step of forming a first conductivity type impurity region under the silicon oxide film, and the third step of forming a semiconductor element including a second conductivity type impurity region having an opposite conductivity to the first conductivity type impurity region in the first portion. In the second step, angled ion implantation is performed into a region under the sub portion at an implantation angle using the silicon nitride film as a mask.11-08-2012
438091000 Avalanche diode 2
20100279457METHOD FOR MANUFACTURING A SEMICONDUCTOR LIGHT-RECEIVING DEVICE - Disclosed is a method for manufacturing a semiconductor light-receiving device having high reproducibility and reliability. Specifically disclosed is a semiconductor light-receiving device 11-04-2010
20120156826METHOD OF FABRICATING AVALANCHE PHOTODIODE - A method includes: forming an epitaxy wafer by growing a light absorbing layer, a grading layer, an electric field buffer layer, and an amplifying layer on the front surface of a substrate in sequence; forming a diffusion control layer on the amplifying layer; forming a protective layer for protecting the diffusion control layer on the diffusion control layer; forming an etching part by etching from the protective layer to a predetermined depth of the amplifying layer; forming a first patterning part by patterning the protective layer; forming a junction region and a guardring region at the amplifying layer by diffusing a diffusion material to the etching part and the first patterning part; removing the diffusion control layer and the protective layer and forming a first electrode connected to the junction region on the amplifying layer; and forming a second electrode on the rear surface of the substrate.06-21-2012
438083000 Forming point contact 1
20110039367MASKED ION IMPLANT WITH FAST-SLOW SCAN - An improved method of producing solar cells utilizes a mask which is fixed relative to an ion beam in an ion implanter. The ion beam is directed through a plurality of apertures in the mask toward a substrate. The substrate is moved at different speeds such that the substrate is exposed to an ion dose rate when the substrate is moved at a first scan rate and to a second ion dose rate when the substrate is moved at a second scan rate. By modifying the scan rate, various dose rates may be implanted on the substrate at corresponding substrate locations. This allows ion implantation to be used to provide precise doping profiles advantageous for manufacturing solar cells.02-17-2011
438092000 Schottky barrier junction 1
20110143494SCHOTTKY BARRIER DIODES FOR MILLIMETER WAVE SiGe BICMOS APPLICATIONS - A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (F06-16-2011
Entries
DocumentTitleDate
20130040414METHOD FOR MANUFACTURING A THIN-FILM SOLAR CELL - Disclosed is a method for manufacturing a thin-film solar cell using plasma between a couple of parallel electrodes. In the method, a base member is placed in a chamber between a first electrode and a second electrode facing each other. A hydrogen gas is heated, and thus heated hydrogen gas and a silicon-based gas are introduced into a space between the first electrode and the second electrode. A ratio of a flow rate of the heated hydrogen gas to that of the silicon-based gas is at least 25 and no more than 58. A plasma is generated between the first electrode and the second electrode by applying high-frequency power to the second electrode while a pressure in the chamber is 1000 Pa or higher, and an optically active layer containing crystalline silicon is deposited on the base material.02-14-2013
20100009487ONO Spacer Etch Process to Reduce Dark Current - A method of forming a CMOS image sensor device. The method includes providing a semiconductor substrate having a P-type impurity characteristic. The semiconductor substrate includes a surface region. The method includes forming a gate oxide layer overlying the surface region and forming a first gate structure overlying a first portion of the gate oxide layer, the first gate structure has a top surface region and at least a side region. The method forms an N-type impurity region in a portion of the semiconductor substrate to form a photodiode device region from the N-type impurity region and the P-type impurity. The method includes forming a blanket spacer layer including an oxide on nitride on oxide structure overlying at least the first gate structure; and forming one or more spacer structures using the blanket spacer layer for the first gate structure while maintaining a portion of the oxide layer from the oxide on nitride on oxide overlying at least the photo-diode device region01-14-2010
20100112744Silicon Production with a Fluidized Bed Reactor Utilizing Tetrachlorosilane to Reduce Wall Deposition - Silicon deposits are suppressed at the wall of a fluidized bed reactor by a process in which an etching gas is fed near the wall of the reactor. The etching gas includes tetrachlorosilane. A Siemens reactor may be integrated into the process such that the vent gas from the Siemens reactor is used to form a feed gas and/or etching gas fed to the fluidized bed reactor.05-06-2010
20100075453SYSTEM ARCHITECTURE AND METHOD FOR SOLAR PANEL FORMATION - A method and apparatus for forming solar panels from n-doped silicon, p-doped silicon, intrinsic amorphous silicon, and intrinsic microcrystalline silicon using a cluster tool is disclosed. The cluster tool comprises at least one load lock chamber and at least one transfer chamber. When multiple clusters are used, at least one buffer chamber may be present between the clusters. A plurality of processing chambers are attached to the transfer chamber. As few as five and as many as thirteen processing chambers can be present.03-25-2010
20120244655BACKGRIND PROCESS FOR INTEGRATED CIRCUIT WAFERS - An integrated circuit is formed by coating a top surface of a wafer that has been processed through all integrated circuit chip manufacturing steps prior to backgrind with photoresist, applying backgrind tape over a top surface of the photoresist, backgrinding a back surface of the wafer to a specified thickness, removing the backgrind tape from the top surface of the photoresist, and removing the photoresist. The surface of the integrated circuit and any devices that may be bonded to the surface of the integrated circuit are protected by the photoresist layer during removal of the backgrind tape.09-27-2012
20130084668TEMPORARY ARC INDUCEMENT OF GLASS SUBSTRATE DURING DIFFUSIVE TRANSPORT DEPOSITION - Apparatus for vapor deposition of a sublimated source material as a thin film on a photovoltaic module substrate is generally provided. The apparatus can include a deposition head; a distribution plate disposed below said distribution manifold and above an upper surface of a substrate transported through said apparatus and defining a pattern of passages therethrough; and, a carrying mechanism configured to transport the substrate in a machine direction under the distribution plate such that an upper surface of the substrate defines an arc in a cross-direction that is substantially perpendicular to the machine direction. Processes are also generally provided for vapor deposition of a sublimated source material to form thin film on a photovoltaic module substrate.04-04-2013
20130078754Light Induced Plating of Metals on Silicon Photovoltaic Cells - A method and composition for plating metal contacts on photovoltaic solar cells is described. The cell is immersed in an aqueous bath containing platable metal ions and a solubilizing agent for aluminum or aluminum alloy ions from the back side of the solar cell. The cell is then exposed to light, causing the two sides of the cell to become oppositely charged. The metal ions are plated without requiring an external electrical contact.03-28-2013
20090124036METHOD OF PRODUCTION OF SEMICONDUCTOR DEVICE AND METHOD OF PRODUCTION OF SOLID-STATE IMAGING DEVICE - A method of production of a semiconductor device includes: forming a pattern having open element isolation regions on a first insulating film situated on a semiconductor substrate; forming trenches at the element isolation regions on the semiconductor substrate; forming a second insulating film on the first insulating film and inside the trenches; forming holes in the second insulating film in active regions sectioned by the element isolation regions; and leaving the second insulating film inside the trenches only. An interval between an outer perimeter of each the active regions and an outer perimeter of each of the holes in each of the active regions is set such that the interval in the first circuit region, in which a total area of the active regions is relatively large, is smaller than the interval in the second circuit region, in which the total area of the active regions is relatively small.05-14-2009
20130045558DEVICE AND METHOD FOR PRECIPITATING A LAYER ON A SUBSTRATE - A device for depositing a layer containing at least two components on an object, including: a deposition chamber; a source containing a material to be deposited; and a control device, which controls the deposition process, implemented such that a concentration of the component of the material can be modified in its gas phase prior to deposition on the object by selective binding a specified quantity of the component, wherein the selectively bound quantity of the component is controlled by modifying a control parameter that is actively coupled to a binding rate or the component, and wherein the control device contains a gettering element containing a reactive material containing copper and/or molybdenum. Also, a method for depositing a layer containing at least two components on an object, wherein a selectively bound quantity of a component is controlled by modifying a binding rate of the component of the control device.02-21-2013
20130089942METHOD FOR PRODUCING A SOLAR CELL - A method for producing a solar cell from a silicon substrate, which has a first main surface, used in normal application as an incident light side and a second main surface, used as the back surface, having a passivating layer on the second main surface, includes the steps: applying an oxygen-containing layer onto the second main surface of the silicon substrate, and heating the silicon substrate to a temperature of at least 800° C. to densify the oxide-containing layer and for the oxidation of the boundary surface between the oxide-containing layer and the second main surface of the silicon substrate to form a thermal oxide, an oxygen source giving off oxygen for the oxidation.04-11-2013
20130065346RETICLE AND MANUFACTURING METHOD OF SOLID-STATE IMAGE SENSOR - A reticle includes a repetition pattern and a peripheral pattern, one of which has a first side in a first direction and the other a second side in the first direction. The first side has a first length that is n times the second length of the second side, where n is an integer equal to or larger than 1. The first pattern has at least one of first misalignment measurement patterns provided at positions distant by a third length and ((the third length)+(n−1).times.(the second length)) from an upper end of the first pattern. The third length is equal to or smaller than the second length. The second pattern has a second misalignment measurement pattern provided at a position distant by the third length from an upper end of the second pattern.03-14-2013
20130065345PHOTOVOLTAIC DEVICES WITH METAL SEMICONDUCTOR ALLOY METALLIZATION - A photovoltaic device, such as a solar cell, having improved performance is provided. In one embodiment, the photovoltaic device includes a multimetal semiconductor alloy layer located on exposed portions of a front side surface of a semiconductor substrate. The multimetal semiconductor alloy layer includes at least a first elemental metal that forms an alloy with a semiconductor material, and a second elemental metal that differs from the first elemental metal and that does not form an alloy with a semiconductor material at the same temperature as the first elemental metal. The photovoltaic device further includes a copper-containing layer located atop the multimetal semiconductor alloy layer.03-14-2013
20090233396FLOATING SHEET PRODUCTION APPARATUS AND METHOD - This sheet production apparatus comprises a vessel defining a channel configured to hold a melt. The melt is configured to flow from a first point to a second point of the channel. A cooling plate is disposed proximate the melt and is configured to form a sheet on the melt. A spillway is disposed at the second point of the channel. This spillway is configured to separate the sheet from the melt.09-17-2009
20120238049Method for Removing at least Sections of a Layer of a Layer Stack - In a method for removing at least sections of at least one semiconductor layer (09-20-2012
20120238048METHOD OF MANUFACTURING A SOLAR CELL MODULE AND APPARATUS OF MANUFACTURING A SOLAR CELL MODULE - A method of manufacturing a solar cell, which includes an edge deletion step using a laser beam, and a manufacturing apparatus which is used in such a method, the method and the apparatus being capable of preventing a shunt and cracks from being generated are provided. By radiating a first laser beam to a multilayer body, which includes a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer sequentially formed on a transparent substrate, from a side of the transparent substrate, the photoelectric conversion layer and the back electrode layer in a first region are removed, and by radiating a second laser beam into the region such that the second laser beam is spaced from a peripheral rim of the region, the transparent electrode layer in a second region is removed.09-20-2012
20120270356METHOD FOR MANUFACTURING A SOLAR CELL - The present invention provides a method for manufacturing a solar cell. The method for manufacturing a solar cell comprises: forming via holes in a silicon wafer; forming a shallow emitter on the front surface and the rear surface of the wafer, connecting the inner walls of the via holes and the via holes; and selectively forming an emitter through the heavy doping of a dopant to provide a plurality of regions along a direction linking the via holes of the shallow emitter with a certain concentration or higher. Accordingly, the present invention can selectively form an emitter on an MWT solar cell by performing laser doping or etching on a region contacting a front surface electrode having a certain width and height.10-25-2012
20100323468METHOD OF FABRICATING IMAGE SENSOR PHOTODIODES USING A MULTI-LAYER SUBSTRATE AND CONTACT METHOD AND THE STRUCTURE THEREOF - The present invention relates to a photodiode of an image sensor using a three-dimensional multi-layer substrate, and more particularly, to a method of implementing a buried type photodiode and a structure thereof, and a trench contact method for connecting a photodiode in a multi-layer substrate and a transistor for signal detection.12-23-2010
20100167445METHOD FOR MANUFACTURING BACK SIDE ILLUMINATION IMAGE SENSOR - Disclosed is a method for manufacturing a back side illumination image sensor. The method includes defining a pixel area by forming a first isolation area in a first substrate; forming a photo detecting unit buried in the pixel area; forming an ion implantation layer on the photo detecting unit; growing a second substrate on the first substrate having the ion implantation layer; forming a logic unit electrically connected to the first substrate on the second substrate; forming an insulting layer and an interconnection on the second substrate; and exposing the photo detecting unit by grinding a backside of the first substrate.07-01-2010
20100120188METHOD FOR MANUFACTURING PHOTOVOLTAIC DEVICE - Provided is a method for manufacturing a photovoltaic device which is capable of easily forming a texture having an aspect ratio larger than 0.5. The method for manufacturing a photovoltaic device include the steps of: forming an etching-resistant film on a silicon substrate; forming a plurality of fine holes in the etching-resistant film with an irradiated laser beam which has a focal depth adjusted to 10 μm or more to expose a surface of the silicon substrate which is a base layer; and etching the exposed surface of the silicon substrate, in which the step of exposing the surface of the silicon substrate includes forming a fine recess at a concentric position to each of the fine holes in the surface of the silicon substrate which lies under the etching-resistant film.05-13-2010
20110281390SILICON/GERMANIUM OXIDE PARTICLE INKS AND PROCESSES FOR FORMING SOLAR CELL COMPONENTS AND FOR FORMING OPTICAL COMPONENTS - Highly uniform silica nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silican particles can be surface modified to form the dispersions. The silica nanoparticles can be doped to change the particle properties and/or to provide dopant for subsequent transfer to other materials. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to selectively dope semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.11-17-2011
20110318862System and method for creating electric isolation between layers comprising solar cells - Methods for forming a patterned layer from common layer in a photovoltaic application are provided. The patterned layer is configured to form one or more portions of one or more solar cells on a rigid substrate. A first pass is made with a first laser beam over an area on the common layer. A second pass is made with a second laser beam over approximately the same area on the common layer. The first pass provides a first level of electrical isolation between a first portion and a second portion of the common layer. The second pass provides a second level of electrical isolation between the first portion and the second portion of the common layer. The second level of electrical isolation is greater than the first level of electrical isolation.12-29-2011
20110143478MODULAR SYSTEM AND PROCESS FOR CONTINUOUS DEPOSITION OF A THIN FILM LAYER ON A SUBSTRATE - A process and associated system for vapor deposition of a thin film layer on a photovoltaic (PV) module substrate is includes establishing a vacuum chamber and introducing the substrates individually into the vacuum chamber. The substrates are pre-heated as they are conveyed through the vacuum chamber, and are then conveyed in serial arrangement through a vapor deposition apparatus in the vacuum chamber wherein a thin film of a sublimed source material is deposited onto an upper surface of the substrates. The substrates are conveyed through the vapor deposition apparatus at a controlled constant linear speed such that leading and trailing sections of the substrate in a conveyance direction are exposed to the same vapor deposition conditions within the vapor deposition apparatus. The vapor deposition apparatus may be supplied with source material in a manner so as not to interrupt the vapor deposition process or non-stop conveyance of the substrates through the vapor deposition apparatus.06-16-2011
20110287568METHOD OF MANUFACTURING THIN FILM SOLAR CELL - A method of manufacturing a thin film solar cell includes a bonding step of bonding a bus bar on a back face electrode layer of a solar cell string including a transparent conductive film, a photoelectric conversion layer and the back face electrode layer formed on a light-transmitting insulating substrate. The bonding step includes a first step of bonding conductive tape on the bonding surface of the bus bar that is to be bonded to the back face electrode layer, and a second step of bonding the bus bar to which the conductive tape has been bonded to the back face electrode layer of the solar cell string.11-24-2011
20110027931Method for making solar cells with sensitized quantum dots in the form of nanometer metal particles - There is disclosed a method for making solar cells with sensitized quantum dots in the form of nanometer metal crystals. Firstly, a first substrate is provided. Then, a silicon-based film is grown on a side of the first substrate. A pattern mask process is executed to etch areas of the silicon-based film. Nanometer metal particles are provided on areas of the first substrate exposed from the silicon-based film. A metal electrode is attached to an opposite side of the first substrate. A second substrate is provided. A transparent conductive film is grown on the second substrate. A metal catalytic film is grown on the transparent conductive film. The second substrate, the transparent conductive film and the metal catalytic film together form a laminate. The laminate is inverted and provided on the first substrate. Finally, electrolyte is provided between the first substrate and the metal catalytic film.02-03-2011
20100015746Method of Manufacturing Image Sensor - Provided is a method in which a photodiode layer is formed on a metal interconnection layer, and a hard mask layer is formed on the photodiode layer. Then, a photoresist pattern is formed on the hard mask layer to define a contact hole region, and a first hole is formed in the hard mask layer through an etching process. Next, an ion implantation etching layer is formed in the photodiode layer using the photoresist pattern as an ion implantation mask, and a second hole is formed by etching the ion implantation etching layer. A third hole is formed to expose the metal interconnection by etching a region of the metal interconnection layer corresponding to the second hole.01-21-2010
20110217806RADIOFREQUENCY PLASMA REACTOR AND METHOD FOR MANUFACTURING VACUUM PROCESS TREATED SUBSTRATES - An electrode (09-08-2011
20110263063SEAL CONFIGURATION FOR A SYSTEM FOR CONTINUOUS DEPOSITION OF A THIN FILM LAYER ON A SUBSTRATE - An apparatus and associated method of operation is provided for vapor deposition of a sublimated source material, such as CdTe, as a thin film on discrete photovoltaic (PV) module substrates that are conveyed in a continuous, non-stop manner through the apparatus. The apparatus includes a deposition head configured for receipt and sublimation of the source material. The deposition head has a distribution plate at a defined distance above a horizontal conveyance plane of an upper surface of the substrates conveyed through a deposition area within the apparatus. The sublimated source material moves through the distribution plate and deposits onto the upper surface of the substrates as they are conveyed through the deposition area. The substrates move into and out of the deposition area through entry and exit slots that are defined by transversely extending entrance and exit seals. The seals are disposed at a gap distance above the upper surface of the substrates that is less than the distance or spacing between the upper surface of the substrates and the distribution plate. The seals have a ratio of longitudinal length (in the direction of conveyance of the substrates) to gap distance of from about 10:1 to about 100:1.10-27-2011
20110151610WORKPIECE PATTERNING WITH PLASMA SHEATH MODULATION - Methods to texture or fabricate workpieces are disclosed. The workpiece may be, for example, a solar cell. This texturing may involve etching or localized sputtering using a plasma where a shape of a boundary between the plasma and the plasma sheath is modified with an insulating modifier. The workpiece may be rotated in between etching or sputtering steps to form pyramids. Regions of the workpiece also may be etched or sputtered with ions formed from a plasma adjusted by an insulating modifier and doped. A metal layer may be formed on these doped regions.06-23-2011
20120190149CATALYTIC CVD EQUIPMENT, METHOD FOR FORMATION OF FILM, PROCESS FOR PRODUCTION OF SOLAR CELL, AND SUBSTRATE HOLDER - In a catalytic CVD equipment, a holder includes an antireflective structure for preventing reflection of a radiant ray that is ejected from the catalytic wire toward the side of the substrate.07-26-2012
20090305449Methods and Devices For Processing A Precursor Layer In a Group VIA Environment - Methods and devices for high-throughput printing of a precursor material for forming a film of a group IB-IIIA-chalcogenide compound are disclosed. In one embodiment, the method comprises forming a precursor layer on a substrate, the precursor is subsequently processed in a VIA environment.12-10-2009
20120034725METHOD FOR TEXTURING SILICON WAFERS, TREATMENT LIQUID THEREFOR, AND USE - In a method for the treatment of silicon wafers in the production of solar cells, a treatment liquid is applied to the surface of the silicon wafers for the purpose of texturization thereof. The treatment liquid contains, as additive, ethyl hexanol or cyclohexanol in an amount ranging from 0.5% to 3%, by weight.02-09-2012
20090239326METHOD FOR MANUFACTURING MICROCRYSTALLINE SILICON SOLAR CELL - A method for manufacturing a microcrystalline silicon solar cell comprises forming a zinc oxide transparent electrode with a textured surface on an insulation substrate by chemical vapor deposition, etching the zinc oxide transparent electrode with acid water solution and depositing a microcrystalline silicon thin film on the zinc oxide transparent electrode with the textured surface.09-24-2009
20100190286METHOD FOR MANUFACTURING SOLAR CELL - Disclosed is a method for manufacturing a solar cell, which includes the steps of: applying a first diffusing agent containing n-type impurities and a second diffusing agent containing p-type impurities onto a semiconductor substrate; forming a protective layer covering at least one of the first diffusing agent and the second diffusing agent; and diffusing at least one of the n-type impurities and the p-type impurities in a surface of the semiconductor substrate by heat treatment of the semiconductor substrate having the protective layer formed thereon.07-29-2010
20090162964METHODS OF FORMING DOUBLE PINNED PHOTODIODES - A pinned photodiode, which is a double pinned photodiode having increased electron capacitance, and a method for forming the same are disclosed. The invention provides a pinned photodiode structure comprising a substrate base over which is a first layer of semiconductor material. There is a base layer of a first conductivity type, wherein the base layer of a first conductivity type is the substrate base or is a doped layer over the substrate base. At least one doped region of a second conductivity type is below the surface of said first layer, and extends to form a first junction with the base layer. A doped surface layer of a first conductivity type is over the at least one region of a second conductivity type and forms a second junction with said at least one region of a second conductivity type.06-25-2009
20100124799TECHNIQUE FOR MANUFACTURING A SOLAR CELL - Techniques for manufacturing solar cells are disclosed. In one particular exemplary embodiment, the technique may comprise disposing a mask upstream of the solar cell, the mask comprising a plurality of filaments spaced apart from one another to define at least one aperture; directing a ribbon ion beam of desired species toward the solar cell to ion implant a portion of the solar cell defined by the at least one aperture of the mask; and orienting the ribbon ion beam such that longer cross-section dimension of the ribbon beam is perpendicular to the aperture in one plane.05-20-2010
20090142874METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE - A method for manufacturing a photoelectric conversion device typified by a solar cell, having an excellent photoelectric conversion characteristic with a silicon semiconductor material effectively utilized. The point is that the surface of a single crystal semiconductor layer bonded to a supporting substrate is irradiated with a pulsed laser beam to become rough. The single crystal semiconductor layer is irradiated with the pulsed laser beam in an atmosphere containing an inert gas and oxygen so that the surface thereof is made rough. With the roughness of surface of the single crystal semiconductor layer, light reflection is suppressed so that incident light can be trapped. Accordingly, even when the thickness of the single crystal semiconductor layer is equal to or greater than 0.1 μm and equal to or less than 10 μm, path length of incident light is substantially increased so that the amount of light absorption can be increased.06-04-2009
20090093079METHOD OF PRODUCING AN ASYMMETRIC ARCHITECTURE SEMI-CONDUCTOR DEVICE - A method is for producing an asymmetric architecture semi-conductor device. The device includes a substrate, and in stacked relation, a first photosensitive layer, a non-photosensitive layer, and a second photosensitive layer. The method includes a first step of exposing a first zone in each of the photosensitive layers by a first beam of electrons traversing the non-photosensitive layer. A second step includes exposing at least one second zone of one of the two photosensitive layers by a second beam of electrons or photons or ions, thereby producing a widening of one of the first zones compared to the other first zone such that the second zone is in part superimposed on one of the first zones.04-09-2009
20080206916Solar cell and method and apparatus for manufacturing solar cell - A thin solar cell is provided, a decreased amount of an Al paste used for the solar cell without occurrence of a problem of ball-up which is a defect in appearance. A method of manufacturing such a solar cell as well as a manufacturing apparatus used therefor are provided. This manufacturing method is applicable with substantially no change in the conventional material and process. The solar cell has an Al paste electrode on the back surface and at least a part of an outer edge of the Al paste is thicker than any remaining part.08-28-2008
20090042330Etching Of Solar Cell Materials - A solar cell is fabricated by etching one or more of its layers without substantially etching another layer of the solar cell. In one embodiment, a copper layer in the solar cell is etched without substantially etching a topmost metallic layer comprising tin. For example, an etchant comprising sulfuric acid and hydrogen peroxide may be employed to etch the copper layer selective to the tin layer. A particular example of the aforementioned etchant is a Co-Bra Etch® etchant modified to comprise about 1% by volume of sulfuric acid, about 4% by volume of phosphoric acid, and about 2% by volume of stabilized hydrogen peroxide. In one embodiment, an aluminum layer in the solar cell is etched without substantially etching the tin layer. For example, an etchant comprising potassium hydroxide may be employed to etch the aluminum layer without substantially etching the tin layer.02-12-2009
20080274578METHOD OF FORMING A PIXEL SENSOR CELL FOR COLLECTING ELECTRONS AND HOLES - The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.11-06-2008
20080274577Method of the Application of a Zinc Sulfide Buffer Layer on a Semiconductor Substrate - A chemical bath deposition method of depositing on a semiconductor substrate a layer of zinc sulfide by dipping the semiconductor substrate into an aqueous solution of zinc sulfate and thiourea and ammonia.11-06-2008
20100144080METHOD AND APPARATUS TO TRANSFER COAT UNEVEN SURFACE - A method and apparatus for transferring material on at least a portion of an uneven surface of a substrate in the manufacture of photovoltaic cells, which may include, but is not limited to a thin-film solar substrates (3-D TFSS). An apparatus for transfer coating onto an uneven surface comprising an applicator roll, a transport roll, a heating device, a drying system, a conveying system, a reservoir, a blade, and a substrate. A method for positioning a substrate, selectively coating the material on an uneven surface, compressing the material to conform at the uneven surface, heating the material to a temperature more than that of the substrate, and drying the material to form continuous material coverage on said uneven surface. A method and apparatus for passing the substrate in a controlled environment, agitating the material prior to step of selectively coating, and heating the conveying plane.06-10-2010
20100144079METHOD FOR THE PRECISION PROCESSING OF SUBSTRATES - The invention relates to a method for the precision processing of substrates, in particular for the microstructuring of thin layers, local dopant introduction and also local application of a metal nucleation layer in which a liquid-assisted laser, i.e. laser irradiation of a substrate which is covered in the regions to be processed by a suitable reactive liquid, is implemented.06-10-2010
20120142137MOVABLE JIG FOR SILICON-BASED THIN FILM SOLAR CELL - A movable jig for a silicon-based thin film solar cell comprises parallel electrode plates (06-07-2012
20090087939COLUMN STRUCTURE THIN FILM MATERIAL USING METAL OXIDE BEARING SEMICONDUCTOR MATERIAL FOR SOLAR CELL DEVICES - A thin film material structure for solar cell devices. The thin film material structure includes a thickness of material comprises a plurality of single crystal structures. In a specific embodiment, each of the single crystal structure is configured in a column like shape. The column like shape has a dimension of about 0.01 micron to about 10 microns characterizes a first end and a second end. An optical absorption coefficient of greater than 1004-02-2009
20090298217METHOD FOR FABRICATION OF SEMICONDUCTOR DEVICES ON LIGHTWEIGHT SUBSTRATES - A method for making a semiconductor device having front-surface electrical terminals in which the device is manufactured so as to include a bottom electrode, a top electrode and a semiconductor body therebetween. A first bus bar is disposed in a groove in the semiconductor body. It is in electrical communication with the bottom electrode, and includes a tab portion which projects from the device. A second bus bar is in electrical communication with the top electrode, and is disposed atop the first electrode, and electrically insulated therefrom. The tab of the first bus bar provides one terminal of the device and is folded onto the second bus bar and is electrically insulated therefrom. The second bus bar provides the second terminal of the device.12-03-2009
20080318358IMAGE SENSOR PIXEL HAVING PHOTODIODE WITH INDIUM PINNING LAYER - An active pixel using a pinned photodiode with a pinning layer formed from indium is disclosed. The pixel comprises a photodiode formed in a semiconductor substrate. The photodiode is an N12-25-2008
20120094419CMOS IMAGE SENSOR AND FABRICATING METHOD THEREOF - A method includes: forming a transfer gate on a semiconductor substrate; forming a first ion implantation region on a first side of the transfer gate; forming a second ion implantation region on the first side of the transfer gate such that the second ion implantation region encloses the first ion implantation region; forming a third ion implantation region along a surface of the semiconductor substrate; and forming a floating diffusion region at a second side of the transfer gate.04-19-2012
20090023241CLEAN RATE IMPROVEMENT BY PRESSURE CONTROLLED REMOTE PLASMA SOURCE - The present invention generally comprises a method for cleaning a large area substrate processing chamber. As chamber volume increases, it has surprisingly been found that simply scaling up the cleaning conditions may not effectively clean silicon from the exposed chamber surfaces. Undesired silicon deposits on exposed chamber surfaces may lead to contamination in solar panel formation. Increasing the pressure of the chamber to about 10 Torr or greater while maintaining the chamber at a temperature between about 150 degrees Celsius and 250 degrees Celsius increases plasma cleaning effectiveness such that silicon deposits are removed from the chamber. The combination of high pressure and low temperature may reduce substrate contamination without sacrificing substrate throughput in solar panel fabrication.01-22-2009
20100248409METHOD OF MANUFACTURING SOLAR CELL AND PLASMA TREATMENT APPARATUS - This method of manufacturing a solar cell includes a step of forming a photoelectric conversion layer on a substrate with a plasma treatment apparatus including a first electrode provided in a treatment chamber, a second electrode and a gas supply source supplying gas into the treatment chamber. A recess portion having a bottom portion in the form of a curved surface is provided on another surface of the first electrode, while a plurality of through-holes are provided on the bottom portion of the recess portion.09-30-2010
20100248408METHOD OF TEXTURING SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL - Methods of texturing and manufacturing a solar cell are provided. The method of texturing the solar includes texturing a surface of a substrate of the solar cell using a wet etchant, and the wet etchant includes a surfactant.09-30-2010
20110230002Local Oxidation of Silicon Processes with Reduced Lateral Oxidation - A method of forming an integrated circuit structure includes providing a silicon substrate, and implanting a p-type impurity into the silicon substrate to form a p-type region. After the step of implanting, performing an anneal to form a silicon oxide region, with a portion of the p-type region converted to the silicon oxide region.09-22-2011
20120142138DEPOSITION BOX FOR SILICON-BASED THIN FILM SOLAR CELL - A movable deposition box (06-07-2012
20090117680METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE - A photoelectric conversion device which is excellent in photoelectric conversion characteristics is provided by effectively utilizing silicon semiconductor materials. The present invention relates to a method for manufacturing a photoelectric conversion device using a solar cell, in which a plurality of single crystal semiconductor substrates in each of which a damaged layer is formed at a predetermined depth is arranged over a supporting substrate having an insulating surface; a surface layer part of the single crystal semiconductor substrate is separated thinly using the damaged layer as a boundary so as to form a single crystal semiconductor layer over one surface of the supporting substrate; and the single crystal semiconductor layer is irradiated with a laser beam from a surface side which is exposed by separation of the single crystal semiconductor layer to planarize the surface of the single crystal semiconductor layer.05-07-2009
20090246904Method for manufacturing a photovoltaic module - For manufacturing a photovoltaic module (10-01-2009
20110143479VAPOR DEPOSITION APPARATUS AND PROCESS FOR CONTINUOUS DEPOSITION OF A THIN FILM LAYER ON A SUBSTRATE - An apparatus and related process are provided for vapor deposition of a sublimated source material as a thin film on a photovoltaic (PV) module substrate. A receptacle is disposed within a vacuum head chamber and is configured for receipt of a source material. A heated distribution manifold is disposed below the receptacle and includes a plurality of passages defined therethrough. The receptacle is indirectly heated by the distribution manifold to a degree sufficient to sublimate source material within the receptacle. A molybdenum distribution plate is disposed below the distribution manifold and at a defined distance above a horizontal plane of a substrate conveyed through the apparatus. The molybdenum distribution plate includes a pattern of holes therethrough that further distribute the sublimated source material passing through the distribution manifold onto the upper surface of the underlying substrate. The molybdenum distribution plate includes greater than about 75% by weight molybdenum.06-16-2011
20100015745METHOD AND STRUCTURE FOR A CMOS IMAGE SENSOR USING A TRIPLE GATE PROCESS - A method of forming a CMOS image sensor device, the method includes providing a semiconductor substrate having a P-type impurity characteristic including a surface region. The method form a first thickness of silicon dioxide in a first region of the surface region, a second thickness of silicon dioxide in a second region of the surface region, and a third thickness of silicon dioxide in a third region of the surface region. The method includes forming a first gate layer overlying the second region and a second gate layer overlying the third region, while exposing a portion of the first thickness of silicon dioxide. An N-type impurity characteristic is formed within a region within a vicinity underlying the first thickness of silicon dioxide in the first region of the surface region to cause formation of a photo diode device characterized by the N-type impurity region and the P-type substrate.01-21-2010
20100291725Method of forming a flexible nanostructured material for photovoltaic panels - An efficient and low-cost method is intended for forming a flexible nanostructured material suitable for use as an active element of a photovoltaic panel. The method consists of evaporating a colloidal solution, which contains nanoparticles of various sizes and/or masses, from a flat surface of a rotating body on which the solution forms a thin and easily vaporizable layer, and simultaneously releasing the nanoparticles from the solution for their free flight through a gaseous medium toward the flexible substrate. As a result, the particles of different sizes and/or types of material are deposited onto the flexible substrate in a predetermined sequence that corresponds to the magnitude of resistance experienced by the nanoparticles during their free flight. In this method, the final, flexible nanostructured material is formed as a multilayer nanostructured film in which the nanoparticles of larger size and greater density are deposited onto the flexible substrate first and thus are located under the nanoparticles of smaller size and smaller density.11-18-2010
20130122629SYSTEMS, METHODS AND PRODUCTS INCLUDING FEATURES OF LASER IRRADIATION AND/OR CLEAVING OF SILICON WITH OTHER SUBSTRATES OR LAYERS - The present innovations relate to optical/electronic structures, and, more particularly, to methods and products consistent with composite structures for optical/electronic applications, such as solar cells and displays, composed of a silicon-containing material bonded to a substrate and including laser treatment.05-16-2013
20100184244SYSTEMS AND METHODS FOR DEPOSITING PATTERNED MATERIALS FOR SOLAR PANEL PRODUCTION - Method and system for forming one or more predetermined patterns on a substrate for making a photovoltaic device. The method includes aligning at least a first droplet source with a substrate, dispensing one or more first droplets associated with one or more first materials from the first droplet source, and forming at least a first pattern of one or more second materials on the substrate by at least the first droplet source. Additionally, the method includes providing a first light beam incident on at least the first pattern, obtaining a first signal associated with the first pattern in response to the first light beam, processing information associated with the first signal, and determining one or more first characteristics of the first pattern based on at least information associated with the first signal.07-22-2010
20100184243MASK APPLIED TO A WORKPIECE - A method of fabricating a workpiece is disclosed. A material defining apertures is applied to a workpiece. A species is introduced to the workpiece through the apertures and the material is removed. For example, the material may be evaporated, may form a volatile product with a gas, or may dissolve when exposed to a solvent. The species may be introduced using, for example, ion implantation or gaseous diffusion.07-22-2010
20100184242METHOD OF IMPLANTATION - Provided is a method of implanting dopant ions to an integrated circuit. The method includes forming a first pixel and a second pixel in a substrate, forming an etch stop layer over the substrate, forming a hard mask layer over the etch stop layer, patterning the hard mask layer to include an opening between the first pixel and the second pixel, and implanting a plurality of dopants through the opening to form an isolation feature.07-22-2010
20100210059SYSTEM AND METHOD FOR TOP-DOWN MATERIAL DEPOSITION - A method and apparatus for depositing a film on a substrate includes introducing a vaporizable material from a source positioned above a substrate. The vaporizable material is vaporized and directed as an vapor feed stream from the source, away from the substrate. The vapor feed stream is redirected as a plume from a redirector, towards the substrate and deposited as a film on the substrate.08-19-2010
20090286345Image sensor and method for fabricating the same - An image sensor includes a first conductivity type substrate with a trench formed in a predetermined portion thereof, a second conductivity type impurity region formed in the first conductivity type substrate below the trench and being a part of a photodiode, a second conductivity type first epitaxial layer filling the trench and being a part of the photodiode, and a first conductivity type second epitaxial layer formed over the second conductivity type first epitaxial layer.11-19-2009
20110027933METHOD OF TEXTURING SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL - Methods of texturing and manufacturing a solar cell are provided. The method of texturing the solar includes texturing a surface of a substrate of the solar cell using a wet etchant, and the wet etchant includes a surfactant.02-03-2011
20080311696Manufacturing prpcess for photodetector - A manufacturing process for a photo-detector is provided. The present manufacturing process for a photo-detector comprises the steps of: (a) providing a thin-film Ge on a cheap substrate including a first processing area and a second processing area; (b) performing a defect-reduction processing to at least one of the first processing area and the second processing area; and (c) forming a photo-detector element on the Ge.12-18-2008
20110237013Creation of Low-Relief Texture for a Photovoltaic Cell - A novel method is described to create low-relief texture at a light-facing surface or a back surface of a photovoltaic cell. The peak-to-valley height and average peak-to-peak distance of the textured surface is less than about 1 microns, for example less than about 0.8 micron, for example about 0.5 microns or less. In a completed photovoltaic device, average reflectance for light having wavelength between 375 and 1010 nm at a light-facing surface with this texture is 6 percent or less, for example about 5 percent or less, in some instances about 3.5 percent. This texture is produced by forming an optional oxide layer at the surface, lightly buffing the surface, and etching with a crystallographically selective etch. Excellent texture may be produced by etching for as little as twelve minutes or less. Very little silicon, for example about 0.3 mg/cm09-29-2011
20090068783METHODS OF EMITTER FORMATION IN SOLAR CELLS - Embodiments of the invention contemplate high efficiency emitters in solar cells and novel methods for forming the same. One embodiment of the improved emitter structure, called a high-low type emitter, optimizes the solar cell performance by equally providing low contact resistance to minimize ohmic losses and isolation of the high surface recombination metal-semiconductor interface from the junction to maximize cell voltage. Another embodiment, called an alternating doping type emitter, provides regions of alternating doping type for use with point contacts in the back-contact solar cells. One embodiment of the methods includes depositing and patterning a doped or undoped dielectric layer on a surface of a substrate, implanting a fast-diffusing dopant and/or a slow-diffusing dopant into the substrate either simultaneously or sequentially, and annealing the substrate to drive in the dopants. Another embodiment of the methods includes using a physical mask to form a patterned dopant distribution in a substrate.03-12-2009
20090035886PREDOPED TRANSFER GATE FOR A CMOS IMAGE SENSOR - A novel CMOS image sensor Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, a CMOS image sensor APS cell having a predoped transfer gate is formed that avoids the variations of V02-05-2009
20110129954METHOD FOR MANUFACTURING A PHOTOVOLTAIC CELL STRUCTURE - In the frame of photovoltaic cell manufacturing a silicon compound layer is deposited upon a carrier structure. Manufacturing flexibility is increased on one hand by incorporating ambient air exposure of such silicon compound layer and on the other preventing deterioration of reproducibility by such ambient air exposure by enriching the surface of the addressed silicon compound layer which is to be exposed to ambient air to an oxygen enrichment.06-02-2011
20110086457THIN FILM LAMINATED BODY MANUFACTURING APPARATUS AND METHOD - A strip-shape flexible substrate is transported over a long horizontal distance, with its width extending in the vertical direction, the position of the substrate in the vertical direction is maintained with high precision, and the films are deposited onto its surface. When depositing the thin films to manufacture a thin film laminated body, at least one pair of gripping rollers arranged in at least one space between film deposition chambers, and which grasps an upper-side edge portion of the substrate with its width oriented in the vertical direction, are installed such that the rotation direction of the gripping rollers is diagonally upward, at an angle relative to the direction of transport of the substrate, and by changing the force with which the gripping rollers grasp the substrate, a force lifts the substrate, and the height of the substrate can be controlled.04-14-2011
20090209056METHOD FOR MANUFACTURING SOLID-STATE IMAGING DEVICE - A method for manufacturing a solid-state imaging device in which a charge generator that detects an electromagnetic wave and generates signal charges is formed on a semiconductor substrate and a negative-charge accumulated layer having negative fixed charges is formed above a detection plane of the charge generator, the method includes the steps of: forming an oxygen-feed film capable of feeding oxygen on the detection plane of the charge generator; forming a metal film that covers the oxygen-feed film on the detection plane of the charge generator; and performing heat treatment for the metal film in an inactive atmosphere to thereby form an oxide of the metal film between the metal film and the oxygen-feed film on the detection plane of the charge generator, the oxide being to serve as the negative-charge accumulated layer.08-20-2009
20090325336METHODS FOR PRINTING AN INK ON A TEXTURED WAFER SURFACE - A method of printing an ink on a wafer surface configured with a set of non-rounded peaks and a set of non-rounded valleys is disclosed. The method includes exposing the wafer including at least some non-rounded peaks and at least some of the non-rounded valleys in a region to an etchant. The method further includes depositing the ink on the region, wherein a set of rounded peaks and a set of rounded valleys are formed.12-31-2009
20100009488METHOD TO FORM A PHOTOVOLTAIC CELL COMPRISING A THIN LAMINA - A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.01-14-2010
20100055822BACK CONTACT SOLAR CELLS USING PRINTED DIELECTRIC BARRIER - Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active doped region(s) and the metal contact structure of the solar cell device. In one embodiment, the methods include the steps of depositing a dielectric material that is used to define the boundaries of the active regions and/or contact structure of a solar cell device. Various techniques may be used to form the active regions of the solar cell and the metal contact structure.03-04-2010
20110151611METHOD FOR MANUFACTURING SOLAR CELLS - Disclosure herein is a method for manufacturing a solar cell. The method comprises the following steps. A substrate is provided. An article having a plurality of protrusions touches the surface of the substrate and thereby forming a plurality of indentations thereon. Subsequently, a transparent conductive layer is formed on the indented surface of the substrate, a photovoltaic layer is formed on the transparent conductive layer, and then a back electrode is form above the photovoltaic layer.06-23-2011
20100120189METHOD FOR MANUFACTURING IMAGE SENSOR - A method for manufacturing an image sensor includes forming circuitry including a metal line over a semiconductor substrate, forming a photodiode over the metal line, and forming a contact plug in the photodiode such that the contact plug is connected to the metal line. The forming of the contact plug includes performing a first etch process to etch a portion of the photodiode, and performing a second etch process to expose a portion of the metal line by using a byproduct generated in etching, to form a via hole for the contact plug in the photodiode.05-13-2010
20100285629METHOD FOR PLASMA DEPOSITION AND PLASMA CVD SYSTEM - In a film-forming process with a capacitively-coupled plasma (CCP) chemical vapor deposition (CVD) device, pulse control is performed on a low-frequency radio-frequency power source. During the pulse control, an ON time and an OFF time form one period. Furthermore, in the pulse control, a time interval between a time period from the moment that the electric power supply is stopped till the electron density decreases to a residual plasma threshold capable of causing an arc discharge and a time period from the moment that the electric power supply is stopped till the density of high-temperature electrons decreases to a specific plasma state serves as the OFF time; a saturation time during the rising process of the density of the high-temperature electrons in the plasma after the electric power supply is started serves as an upper limit of the ON time; and electric power is intermittently supplied under the above conditions.11-11-2010
20110250715METHODS FOR FORMING ANTI-REFLECTION STRUCTURES FOR CMOS IMAGE SENSORS - Protuberances, having vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode, are formed at an optical interface between two layers having different refractive indices. The protuberances may be formed by employing self-assembling block copolymers that form an array of sublithographic features of a first polymeric block component within a matrix of a second polymeric block component. The pattern of the polymeric block component is transferred into a first optical layer to form an array of nanoscale protuberances. Alternately, conventional lithography may be employed to form protuberances having dimensions less than the wavelength of light. A second optical layer is formed directly on the protuberances of the first optical layer. The interface between the first and second optical layers has a graded refractive index, and provides high transmission of light with little reflection.10-13-2011
20120202307SEMICONDUCTOR DEVICE MANUFACTURING METHOD - A first waveguide member is formed, as viewed from above, in an image pickup region and a peripheral region of a semiconductor substrate. A part of the first waveguide member, which part is disposed in the peripheral region, is removed. A flattening step is then performed to flatten a surface of the first waveguide member on the side opposite to the semiconductor substrate.08-09-2012
20090053847METHODS AND APPARATUS FOR DEPOSITING A MICROCRYSTALLINE SILICON FILM FOR PHOTOVOLTAIC DEVICE - Methods for depositing a microcrystalline silicon film layer with improved deposition rate and film quality are provided in the present invention. Also, a photovoltaic (PV) cell having a microcrystalline silicon film is provided. In one embodiment, the method produces a microcrystalline silicon film on a substrate at a deposition rate greater than about 20 nm per minute, wherein the microcrystalline silicon film has a crystallized volume between about 20 percent to about 80 percent.02-26-2009
20110177644PLASMA CVD APPARATUS, METHOD FOR MANUFACTURING SEMICONDUCTOR FILM, METHOD FOR MANUFACTURING THIN-FILM SOLAR CELL, AND METHOD FOR CLEANING PLASMA CVD APPARATUS - A plasma CVD apparatus includes: a film forming chamber; a holding member that holds a substrate to be processed that is set in the film forming chamber; a shower head that is set in the film forming chamber to face the holding member, and supplies raw material gas and generates a plasma of the raw material gas; a radical generation chamber that is set at an opposite side of the shower head relative to the holding member and generates radicals of process gas; and an openable and closable shutter that is provided between the shower head and the radical generation chamber.07-21-2011
20090029502APPARATUSES AND METHODS OF SUBSTRATE TEMPERATURE CONTROL DURING THIN FILM SOLAR MANUFACTURING - Embodiments of the invention generally provide apparatuses and methods of substrate temperature control during thin film solar manufacturing. In one embodiment a method for forming a thin film solar cell over a substrate is provided. The method comprises performing a temperature stabilization process on a substrate to pre-heat the substrate for a substrate stabilization time period in a first chamber, calculating a wait time period for a second chamber, wherein the wait time period is bases on the availability of the second chamber, the availability of a vacuum transfer robot adapted to transfer the substrate from the first chamber to the second chamber, or a combination of both the availability of the second chamber and the availability of the vacuum transfer robot, and adjusting the temperature stabilization time period to compensate for the loss of heat from the substrate during the wait time period.01-29-2009
20080213934INTEGRATED DEVICE MANUFACTURING PROCESS - A process for manufacturing an integrated device includes the steps of: providing a silicon substrate on which a silicon dioxide structure is arranged; and forming a trench having first and second essentially vertical walls relative to the substrate in the structure by means of anisotropic-type etching. A concavity having a sloped wall relative to the substrate is formed by isotropic-type etching which removes the second wall so that the concavity is open to the trench and the sloped wall faces the first wall.09-04-2008
20120149143Method for Manufacturing a Solar Cell - In the existent method for manufacturing a solar cell, manufacture of a solar cell having a quantum well having a crystalline well layer and capable of controlling the thickness of the well layer was difficult. A quantum well having an amorphous well layer, comprising a barrier layer and an amorphous well layer is formed and then the quantum well having the amorphous well layer is annealed thereby crystallizing the amorphous well layer to form a quantum well having a crystalline well layer. By applying energy density applied to the amorphous well layer at an energy density of 1.26 J/mm06-14-2012
20110020971Combinatorial Screening of Transparent Conductive Oxide Materials for Solar Applications - Embodiments of the current invention include methods of improving a process of forming a textured TCO film by combinatorial methods. The combinatorial method may include depositing a TCO by physical vapor deposition or sputtering, annealing the TCO, and etching the TCO where at least one of the depositing, the annealing, or the etching is performed combinatorially. Embodiments of the current invention also include improved methods of forming the TCO based on the results of combinatorial testing.01-27-2011
20110027932SOLID-STATE IMAGE PICKUP DEVICE AND METHOD FOR PRODUCING THE SAME - A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.02-03-2011
20120122261 CMOS IMAGER PHOTODIODE WITH ENHANCED CAPACITANCE - A method for manufacturing a pixel sensor cell that includes a photosensitive element having a non-laterally disposed charge collection region. The method includes forming a trench recess in a substrate of a first conductivity type material, and filling the trench recess with a material having second conductivity type material. The second conductivity type material is then diffused out of the filled trench material to the substrate region surrounding the trench to form the non-laterally disposed charge collection region. The filled trench material is removed to provide a trench recess, and the trench recess is filled with a material having a first conductivity type material. A surface implant layer is formed at either side of the trench having a first conductivity type material. A collection region of a trench-type photosensitive element is formed of the outdiffused second conductivity type material and is isolated from the substrate surface.05-17-2012
20110136286METHOD OF CLEANING AND FORMING A NEGATIVELY CHARGED PASSIVATION LAYER OVER A DOPED REGION - The present invention generally provides a method of forming a high efficiency solar cell device by preparing a surface and/or forming at least a part of a high quality passivation layer on a silicon containing substrate. Embodiments of the present invention may be especially useful for preparing a surface of a p-type doped region formed on a silicon substrate so that a high quality passivation layer can be formed thereon. In one embodiment, the methods include exposing a surface of the solar cell substrate to a plasma to clean and modify the physical, chemical and/or electrical characteristics of the surface.06-09-2011
20120309125BUFFER LAYER DEPOSITION METHODS FOR GROUP IBIIIAVIA THIN FILM SOLAR CELLS - The present invention provides methods for forming a buffer layer for Group IBIIIAVIA solar cells. The buffer layer is formed using chemical bath deposition and the layer is formed in steps. A first buffer layer is formed on the absorber and the first buffer layer is then treated using etching, oxidizing, annealing or some combination thereof. Subsequently a second buffer layer is then positioned on the treated surface. Additional buffer layers can be added following treatment of the previously deposited layer.12-06-2012
20110104848HOT WIRE CHEMICAL VAPOR DEPOSITION (CVD) INLINE COATING TOOL - Methods and apparatus for hot wire chemical vapor deposition (HWCVD) are provided herein. In some embodiments, an inline HWCVD tool may include a linear conveyor for moving a substrate through the linear process tool; and a multiplicity of HWCVD sources, the multiplicity of HWCVD sources being positioned parallel to and spaced apart from the linear conveyor and configured to deposit material on the surface of the substrate as the substrate moves along the linear conveyor; wherein the substrate is coated by the multiplicity of HWCVD sources without breaking vacuum. In some embodiments, methods of coating substrates may include depositing a first material from an HWCVD source on a substrate moving through a first deposition chamber; moving the substrate from the first deposition chamber to a second deposition chamber; and depositing a second material from a second HWCVD source on the substrate moving through the second deposition chamber.05-05-2011
20110070676Interdigitated Back Contact Silicon Solar Cells Fabrication Using Diffusion Barriers - Interdigitated back contact (IBC) solar cells are produced by depositing spaced-apart parallel pads of a first dopant bearing material (e.g., boron) on a substrate, heating the substrate to both diffuse the first dopant into corresponding first (e.g., p+) diffusion regions and to form diffusion barriers (e.g., borosilicate glass) over the first diffusion regions, and then disposing the substrate in an atmosphere containing a second dopant (e.g., phosphorus) such that the second dopant diffuses through exposed surface areas of the substrate to form second (e.g., n+) diffusion regions between the first (p+) diffusion regions (the diffusion barriers prevent the second dopant from diffusion into the first (p+) diffusion regions). The substrate material along each interface between adjacent first (p+) and second (n+) diffusion regions is then removed (e.g., using laser ablation) such that elongated grooves, which extend deeper into the substrate than the diffused dopant, are formed between adjacent diffusion regions.03-24-2011
20100129949INCREASING SOLAR CELL EFFICIENCY WITH SILVER NANOWIRES - A method for improving the performance and efficiency of a solar cell comprising the steps of: providing a plurality of silver nanowires and depositing a layer of the silver nanowires onto an emitter surface of the solar cell.05-27-2010
20110020970 ETCHING OR PLATING PROCESS AND RESIST INK - The present invention provides a process of etching or plating comprising the steps of: i) ink jet printing an alkali removeable water insoluble hot melt ink jet ink onto a substrate to form a resist image; ii) etching or plating the substrate in an aqueous acid medium; and iv) removing the resist image with an aqueous alkali.01-27-2011
20110306159METHOD FOR PROCESSING SOLAR CELL SUBSTRATES - A method for processing solar cells comprising: 12-15-2011
20120301989METHOD FOR MANUFACTURING SOLID-STATE IMAGE PICKUP DEVICE - A method for manufacturing a solid-state image pickup device that includes a pixel portion and a peripheral circuit portion, includes: forming a first insulating film in the pixel portion and the peripheral circuit portion, forming a second insulating film above the first insulating film, etching the second insulating film in photoelectric conversion elements, forming a metal film on the etched second insulating film in the photoelectric conversion elements and on the second insulating film in the peripheral circuit portion, and removing the metal film in the peripheral circuit portion and forming light-shielding films from the metal film in the photoelectric conversion elements.11-29-2012
20120040485THERMAL MANAGEMENT OF FILM DEPOSITION PROCESSES - Thermal management of film deposition processes. In one aspect, a deposition system includes a vacuum chamber defining an evacuated interior volume, a deposition source disposed within the interior volume, a substrate holder disposed within the interior volume and arranged to hold a substrate with a first surface of the substrate facing the deposition source and a second surface of the substrate disposed facing away from the deposition source, and a heat sink disposed to have a first side of the heat sink in radiative thermal contact with the second surface of the substrate held by the substrate holder, the first side of the heat sink comprising a collection of features having a longitudinal dimension that is four or more times larger than a lateral dimension between the features, the features thereby dimensioned and aligned to reflect, multiple times in succession, radiative thermal emissions of the second surface of the substrate.02-16-2012
20120045863MICROPLASMA GENERATOR AND METHODS THEREFOR - A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of ¼ of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.02-23-2012
20120009714DEUTERATED STRUCTURES FOR IMAGE SENSORS AND METHODS FOR FORMING THE SAME - A pixel cell with a photo-conversion device and at least one structure includes a deuterated material adjacent the photo-conversion device.01-12-2012
20110165721SYSTEMS, METHODS AND PRODUCTS INCLUDING FEATURES OF LASER IRRADIATION AND/OR CLEAVING OF SILICON WITH OTHER SUBSTRATES OR LAYERS - The present innovations relate to optical/electronic structures, and, more particularly, to methods and products consistent with composite structures for optical/electronic applications, such as solar cells and displays, composed of a silicon-containing material bonded to a substrate and including laser treatment.07-07-2011
20120058588DEVICE AND METHOD FOR SIMULTANEOUSLY MICROSTRUCTURING AND DOPING SEMICONDUCTOR SUBSTRATES - The invention relates to a device and a method for simultaneous microstructuring and doping of semiconductor substrates with boron, in which the semiconductor substrate is treated with a laser beam coupled into a liquid jet, the liquid jet comprising at least one boron compound. The method according to the invention is used in the field of solar cell technology and also in other fields of semiconductor technology in which a locally delimited boron doping is important.03-08-2012
20120156821Method for Making a Solar Cell - Disclosed is a method for making a solar cell. In the method, there are provided first and second substrates each including first and second faces. There are provided first and second coating devices and a joining device. The first coating device is used to form a transparent electrode layer on the first face of the first substrate. The second coating device is used to form an absorbing layer on the first face of the second substrate. The second substrate is selenized by hot pressing. The joining device is used to join together the first and second substrates by joining the transparent electrode layer with the absorbing layer. The transparent electrode layer is joined with the absorbing layer by hot pressing. Thus, the solar cell is not made by coating one layer on another. Time for making the solar cell is reduced.06-21-2012
20110104847EVAPORATIVE SYSTEM FOR SOLAR CELL FABRICATION - A plurality of chamber are arranged about a transport chamber. The linear transport chamber may include a linear track supporting robot arms. The robot arms transport substrates to and from the chambers. Each chamber includes a plurality of evaporators, each controlled independently. Each substrate positioned in the chamber is coated from a plurality of the evaporators, such that by controlling the operation of each evaporator independently the formation of the layers and the concentration gradient of each layer can be precisely controlled.05-05-2011
20120164777COMPOSITION FOR PRINTING CONDUCTOR TRACKS AND A PROCESS FOR PRODUCING SOLAR CELLS - The invention relates to a composition for printing conductor tracks onto a substrate, especially for solar cells, using a laser printing process, which composition comprises 30 to 90% by weight of electrically conductive particles, 0 to 7% by weight of glass frit, 0 to 8% by weight of at least one matrix material, 0 to 8% by weight of at least one organometallic compound, 0 to 5% by weight of at least one additive and 3 to 69% by weight of solvent. The composition further comprises 0.5 to 15% by weight of nanoparticles as absorbents for laser radiation, which nanoparticles are particles of silver, gold, platinum, palladium, tungsten, nickel, tin, iron, indium tin oxide, titanium carbide or titanium nitride. The composition comprises not more than 1% by weight of elemental carbon.06-28-2012
20120164776Non-Wear Shutter Apparatus for a Vapor Deposition Apparatus - An apparatus and associated method for vapor deposition of a sublimated source material as a thin film on a photovoltaic (PV) module substrate includes a deposition head wherein a source material is sublimated. A distribution manifold is provided with a plurality of passages defined therethrough for passage of the sublimated source material to the substrate. A shutter plate is disposed above the distribution manifold and includes a plurality of passages therethrough that align with the passages in the distribution manifold in a first position of the shutter plate. The shutter plate is movable to a second position wherein the shutter plate blocks the passages in the distribution manifold to flow of sublimated material therethrough. A lifting mechanism is configured between the shutter plate and the distribution manifold to lift and move the shutter plate between the first and second positions without sliding the shutter plate on the distribution manifold.06-28-2012
20090035887SOLID-STATE IMAGE PICKUP ELEMENT, METHOD FOR MANUFACTURING SUCH SOLID-STATE IMAGE PICKUP ELEMENT AND OPTICAL WAVEGUIDE FORMING DEVICE - A solid-state imaging device of the present invention includes a base 02-05-2009
20120135558METHOD OF ETCHING ASYMMETRIC WAFER, SOLAR CELL INCLUDING THE ASYMMETRICALLY ETCHED WAFER, AND METHOD OF MANUFACTURING THE SAME - With the present invention, two wafers for a solar cell only whose light receiving surfaces are selectively etched can be simultaneously obtained by overlapping the two wafers and performing a single-sided etching or an asymmetric etching thereon. The present invention provides a method of etching a wafer comprising: performing a single-sided etching or an asymmetric etching on the wafer, wherein the performing the single-sided etching or the asymmetric etching comprises: overlapping two wafers whose one sides face each other; and etching the overlapped two wafers, and a solar cell including the etched wafers.05-31-2012
20100173441METHOD FOR PROCESSING ELONGATE SUBSTRATES AND SUBSTRATE SECURING APPARATUS - A method for processing elongate substrates, including forming a plurality of parallel elongate openings (07-08-2010
20100173440Nozzle-Based, Vapor-Phase, Plume Delivery Structure for Use in Production of Thin-Film Deposition Layer - A physical vapor deposition effusion method comprising translating a strip material through a physical vapor deposition zone in a deposition chamber and providing first and second substantially closed vessels located serially along the processing path in the same deposition chamber, each vessel emitting different source materials to produce overlapping plumes and having an array of vapor delivery nozzles distributed uniformly across the vessel along the width of the zone, and configured to expel overlapping plumes to create a fog having a substantially uniform composition across the width and a varying composition across the length of the zone. Also, an elongate vapor deposition effusion vessel having an elongate lid including plural nozzles spaced from each other along its elongate axis, and a continuous heating element in the lid encircling the plural nozzles, the heating element having electrical contacts connected to an electrical source on the same side of the vessel.07-08-2010
20100173439Methods and systems of transferring a substrate to minimize heat loss - A method of transferring one or more substrates between process modules or load lock stations while minimizing heat loss is provided. In some embodiments the method comprising the steps of: identifying a destination location D1 for a substrate S1 present at an initial processing location P1; if the destination location D1 is occupied with a substrate S2, maintaining the substrate S1 at the initial processing location P1; and if the destination location D1 is available, transferring the substrate S1 to the destination location D1. In accordance with additional embodiments, the method is carried out on a system for processing substrates which includes two or more process modules, a substrate handling robot, a load lock chamber, and a transverse substrate handler. The transverse substrate handler includes mobile transverse chambers configured to convey substrates to process modules, wherein each mobile transverse chamber is configured to maintain a specified gas condition during the conveyance of the substrates. The transverse substrate handler further includes a rail for supporting the mobile transverse chambers, wherein the rail is positioned adjacent to entry of the process modules, and drive systems for moving the mobile transverse chambers on the rail.07-08-2010
20100047951IMAGE SENSOR AND METHOD FOR FABRICATING THE SAME - An image sensor and a method for fabricating the same are provided. The image sensor includes a first conductive type substrate including a trench formed in a predetermined portion of the first conductive type substrate, a second conductive type impurity region for use in a photodiode, formed below a bottom surface of the trench in the first conductive type substrate, and a first conductive type epitaxial layer for use in the photodiode, buried in the trench.02-25-2010
20100047950COMPLEMENTARY METAL OXIDE SEMICONDUCTOR IMAGE SENSOR AND METHOD FOR FABRICATING THE SAME - A complementary metal oxide semiconductor (CMOS) device and a method for fabricating the same are provided. The CMOS image sensor includes: a first conductive type substrate including a trench; a channel stop layer formed by using a first conductive type epitaxial layer over an inner surface of the trench; a device isolation layer formed on the channel stop layer to fill the trench; a second conductive type photodiode formed in a portion of the substrate in one side of the channel stop layer; and a transfer gate structure formed on the substrate adjacent to the photodiode to transfer photo-electrons generated from the photodiode.02-25-2010
20120178201COMPOSITION FOR FORMING N-TYPE DIFFUSION LAYER, METHOD FOR FORMING N-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING PHOTOVOLTAIC CELL - The composition for forming an n-type diffusion layer in accordance with the present invention contains a donor element-containing glass powder and a dispersion medium. An n-type diffusion layer and a photovoltaic cell having an n-type diffusion layer are prepared by applying the composition for forming an n-type diffusion layer, followed by a thermal diffusion treatment.07-12-2012
20120178200INTEGRATED IN-LINE PROCESSING SYSTEM FOR SELECTIVE EMITTER SOLAR CELLS - Embodiments of the present invention are directed to an in-line system and process for forming a selective emitter solar cell. In one embodiment, a liquid dopant material is applied to a silicon substrate and dried to at least a semi-solid state. In another embodiment, a dopant material is deposited on a silicon substrate using a chemical vapor deposition process. A laser is then used to thermally excite regions of the substrate to drive the dopant atoms from the dopant material deep into the substrate to form highly doped regions. The substrate is then thermally processed to form a lightly doped emitter region and a shallow p-n junction in the remaining field region of the substrate. Conductive contacts are then deposited on the highly doped regions.07-12-2012
20110124144SUBSTRATE PROCESSING SYSTEM AND SUBSTRATE PROCESSING METHOD - A substrate processing apparatus includes an evacuatable process chamber configured to receive a substrate carrier having at least one substrate, a plasma generating module, a gas feed, a gas discharge and a vapor etching module provided in the process chamber. A substrate processing method includes introducing a substrate carrier including at least one substrate into an evacuatable process chamber, generating a plasma in a plasma process using a plasma generating module in a gas or a gas mixture, performing a vapor etching of the at least one substrate before, after or alternatingly with the plasma process and performing at least one of a coating, etching, surface modification and cleaning of the substrate.05-26-2011
20100240164RADIATION DETECTOR MANUFACTURING METHOD - A coating film is formed by applying, on a tentative support, a dispersion solution in which at least an inorganic semiconductor particle and a binder are dispersed. Then, a radiation photoconductive layer is formed by subjecting the coating film to thermal compression, and the radiation photoconductive layer is joined to an active matrix layer in which multiple switching elements are arranged. This allows the radiation photoconductive layer to generate a charge in response to radiation of an electromagnetic wave representing image information and to be arranged such that the charge is read out by the active matrix layer.09-23-2010
20080299698Front Lip PIN/NIP Diode Having a Continuous Anode/Cathode - A photodetector includes a semiconductor substrate having first and second main surfaces opposite to each other. The photodetector includes at least one trench formed in the first main surface and a first anode/cathode region having a first conductivity formed proximate the first main surface and sidewalls of the at least one trench. The photodetector includes a second anode/cathode region proximate the second main surface. The second anode/cathode region has a second conductivity opposite the first conductivity. The at least one trench extends to the second main surface of the semiconductor substrate.12-04-2008
20080299697BANDGAP-SHIFTED SEMICONDUCTOR SURFACE AND METHOD FOR MAKING SAME, AND APPARATUS FOR USING SAME - Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.12-04-2008
20080299696SOLID STATE IMAGING APPARATUS - A method for manufacturing a solid state imaging device includes steps of forming a photodiode layer buried in a semiconductor substrate by ion injection and of forming a shielding layer buried in the photodiode layer by ion injection. At least in the ion injection process in the step of forming the shielding layer, an ion injection pause period is provided at least one time during whole ion injection step. According to the method, crystal defects are prevented from generating even if ion injection is performed with high energy, thereby suppressing dark current without complexity in manufacturing process.12-04-2008
20110045624PHOSPHORUS PASTE FOR DIFFUSION AND PROCESS FOR PRODUCING SOLAR BATTERY UTILIZING THE PHOSPHORUS PASTE - Disclosed is a phosphorus paste for diffusion that is used in continuous printing of a phosphorus paste for diffusion on a substrate by screen printing. The phosphorus paste for diffusion does not undergo a significant influence of ambient humidity on viscosity and has no possibility of thickening even after a large number of times of continuous printing. The phosphorus paste for diffusion is coated on a substrate by screen printing for diffusion layer formation on the substrate. The phosphorus paste for diffusion includes a doping agent containing phosphorus as a dopant for the diffusion layer, a thixotropic agent containing an organic binder and a solid matter, and an organic solvent. The doping agent is an organic phosphorus compound.02-24-2011
20120329194METHOD FOR TREATING A SILICON SUBSTRATE FOR THE PRODUCTION OF PHOTOVOLTAIC CELLS, AND PHOTOVOLTAIC CELL PRODUCTION METHOD - The invention relates to a method for treating a silicon substrate for the production of photovoltaic cells against reduction in yield during the illumination of said photovoltaic cells. The invention also relates to a method for producing photovoltaic cells from the treated substrate. To said end, the invention relates to a method for treating a silicon substrate for the production of photovoltaic cells, said method including the following steps: a) providing a silicon substrate obtained from a metallurgically purified load, and b) annealing said substrate by heating the substrate to a temperature between 880° C. and 930° C. for a duration of between one and four hours, preferably at a temperature of 900° C., give or take 10° C., for two hours, give or take 10 minutes.12-27-2012
20120288978METHOD FOR FORMING BUFFER LAYER IN DYE-SENSITIZED SOLAR CELL - Disclosed is a method for forming a buffer layer (11-15-2012
20120288979SOLID-STATE IMAGE SENSOR AND IMAGING SYSTEM - At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.11-15-2012
20120288977METHOD FOR MANUFACTURING DYE-SENSITIZED SOLAR CELL - Disclosed is a method for manufacturing a dye-sensitized solar cell including a transparent electrode (11-15-2012
20100167446Method for Manufacturing a Junction - The present invention relates to a semiconductor device comprising a homojunction or a heterojunction with a controlled dopant (concentration) profile and a method of making the same. Accordingly, one aspect of the invention is a method for manufacturing a junction comprising forming a first semiconductor material comprising a first dopant having a first concentration and thereupon; forming a second semiconductor material comprising a second dopant, having a second concentration thereby forming a junction, and depositing by Atomic Layer Epitaxy or Vapor Phase Doping at least a fraction of a monolayer of a precursor suitable to form the second dopant on the first semiconductor material, prior to forming the second semiconductor material, thereby increasing the second concentration of the second dopant at the junction.07-01-2010
20130011954High Power Density Photo-electronic and Photo-voltaic Materials and Methods of Making - A high power density photo-electronic and photo-voltaic material comprising a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein encapsulated inside a multi-wall carbon nanotube or nanotube array. The array can be on an electrode. The photosynthetic reaction center protein can be immobilized on the electrode surface and the protein molecules can have the same orientation. A method of making a high power density photo-electronic and photo-voltaic material comprising the steps of immobilizing a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein inside a carbon nanotube, wherein the immobilizing is by passive diffusion, wherein the immobilizing can include using an organic linker.01-10-2013
20100129951Method and Structure for Fabricating Multiple Tiled Regions Onto a Plate Using a Controlled Cleaving Process - A reusable transfer substrate member for forming a tiled substrate structure. The member including a transfer substrate, which has a surface region. The surface region comprises a plurality of donor substrate regions. Each of the donor substrate regions is characterized by a donor substrate thickness and a donor substrate surface region. Each of the donor substrate regions is spatially disposed overlying the surface region of the transfer substrate. Each of the donor substrate regions has the donor substrate thickness without a definable cleave region.05-27-2010
20100129950Method and Structure for Fabricating Multiple Tiled Regions Onto a Plate Using a Controlled Cleaving Process - A reusable transfer substrate member for forming a tiled substrate structure. The member including a transfer substrate, which has a surface region. The surface region comprises a plurality of donor substrate regions. Each of the donor substrate regions is characterized by a donor substrate thickness and a donor substrate surface region. Each of the donor substrate regions is spatially disposed overlying the surface region of the transfer substrate. Each of the donor substrate regions has the donor substrate thickness without a definable cleave region.05-27-2010
20100129948METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to manufacture a semiconductor substrate having a single crystal semiconductor layer with favorable characteristics, without requiring CMP treatment and/or heat treatment at high temperature. In addition, another object is to improve productivity of semiconductor substrates. Vapor-phase epitaxial growth is performed by using a first single crystal semiconductor layer provided over a first substrate as a seed layer, whereby a second single crystal semiconductor layer is formed over the first single crystal semiconductor layer, and separation is performed at an interface of the both layers. Thus, the second single crystal semiconductor layer is transferred to the second substrate to provide a semiconductor substrate, and the semiconductor substrate is reused by performing laser light treatment on the seed layer.05-27-2010
20130017644Fluorine Based Chamber Clean With Nitrogen Trifluoride Backup - The present invention is a process for cleaning a reaction chamber comprising the steps of; 01-17-2013
20130017645PHOTOELECTRIC CONVERSION DEVICE AND METHOD OF PRODUCING THE SAME - A photoelectric conversion device which can improve photoelectric conversion efficiency is provided. The photoelectric conversion device has at least one p-i-n type photoelectric conversion part which includes a first conductivity type layer, a first i-type layer, a second i-type layer and a second conductivity type layer stacked in this order, and it is characterized in that a crystallization ratio of the first i-type layer is lower than that of the second i-type layer and a change rate of a crystallization ratio in a film-thickness direction at an interface between the first i-type layer and the second i-type layer is 0.013 to 0.24 nm01-17-2013
20110136285METHOD FOR MANUFACTURING STACKED FILM AND SOLAR CELL - A method of manufacturing a stacked film includes; subjecting a semiconductor substrate to a radical oxidation reaction to form a radical oxide layer on a surface of the semiconductor substrate, annealing the radical oxide layer in a hydrogen atmosphere to convert the radical oxide layer to a first passivation layer, and disposing a second passivation layer on the first passivation layer.06-09-2011
20080220558Plasma spraying for semiconductor grade silicon - A plasma spray gun configured to spray semiconductor grade silicon to form semiconductor structures including p-n junctions includes silicon parts such as the cathode or anode or other parts facing the plasma or carrying the silicon powder having at least surface portions formed of high purity silicon. The semiconductor dopant may be included in the sprayed silicon.09-11-2008
20130143348HEAT TREATMENT METHOD OF SEMICONDUCTOR WAFERS, MANUFACTURING METHOD OF SOLAR BATTERY, AND HEAT TREATMENT DEVICE - A heat treatment method of the present invention includes mounting a plurality of semiconductor wafers upright on a treatment boat in parallel to each other, inserting the treatment boat in a space above an injector located in a tube to be oriented to plane surfaces of the semiconductor wafers in parallel to an extending direction of the tube, and heating the tube while continuously supplying source gas into the tube through openings of the injector.06-06-2013
20130171757ADVANCED PLATFORM FOR PASSIVATING CRYSTALLINE SILICON SOLAR CELLS - The present invention generally provides a high throughput substrate processing system that is used to form one or more regions of a solar cell device. In one configuration of a processing system, one or more solar cell passivating or dielectric layers are deposited and further processed within one or more processing chambers contained within the high throughput substrate processing system. The processing chambers may be, for example, plasma enhanced chemical vapor deposition (PECVD) chambers, low pressure chemical vapor deposition (LPCVD) chambers, atomic layer deposition (ALD) chambers, physical vapor deposition (PVD) or sputtering chambers, thermal processing chambers (e.g., RTA or RTO chambers), substrate reorientation chambers (e.g., flipping chambers) and/or other similar processing chambers.07-04-2013
20130203202INTEGRATED VAPOR TRANSPORT DEPOSITION METHOD AND SYSTEM - vapor transport deposition system and method that includes a vaporizer and distributor unit and at least one auxiliary process unit for integrating thin-film layer deposition with one or more pre- or post-deposition processes.08-08-2013
20110212564METHOD FOR PRODUCING PHOTOVOLTAIC CELL - In a method for producing a photovoltaic cell, the improvement comprising: 09-01-2011
20110256654DOUBLE-SIDED REUSABLE TEMPLATE FOR FABRICATION OF SEMICONDUCTOR SUBSTRATES FOR PHOTOVOLTAIC CELL AND MICROELECTRONICS DEVICE MANUFACTURING - This disclosure presents manufacturing methods and apparatus designs for making TFSSs from both sides of a re-usable semiconductor template, thus effectively increasing the substrate manufacturing throughput and reducing the substrate manufacturing cost. This approach also reduces the amortized starting template cost per manufactured substrate (TFSS) by about a factor of 2 for a given number of template reuse cycles.10-20-2011
20100317140TECHNIQUES FOR FORMING THIN FILMS BY IMPLANTATION WITH REDUCED CHANNELING - Embodiments of the present invention relate to the use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. Then, a thin film of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. To improve uniformity of depth of implantation, channeling effects are reduced by one or more techniques. In one technique, a miscut bulk substrate is subjected to the implantation, such that the lattice of the substrate is offset at an angle relative to the impinging particle beam. According to another technique, the substrate is tilted at an angle relative to the impinging particle beam. In still another technique, the substrate is subjected to a dithering motion during the implantation. These techniques may be employed alone or in combination.12-16-2010
20120282720MESA HETEROJUNCTION PHOTOTRANSISTOR AND METHOD FOR MAKING SAME - A two-terminal mesa phototransistor and a method for making it are disclosed. The photo transistor has a mesa structure having a substantially planar semiconductor surface. In the mesa structure is a first semiconductor region of a first doping type, and a second semiconductor region of a second doping type opposite to that of the first semiconductor region, forming a first semiconductor junction with the first region. In addition, a third semiconductor region of the first doping type forms a second semiconductor junction with the second region. The structure also includes a dielectric layer. The second semiconductor region, first semiconductor junction, and second semiconductor junction each has an intersection with the substantially planar semiconductor surface. The dielectric covers, and is in physical contact with, all of the intersections.11-08-2012
20110312119ETCHING OF SOLAR CELL MATERIALS - A solar cell is fabricated by etching one or more of its layers without substantially etching another layer of the solar cell. In one embodiment, a copper layer in the solar cell is etched without substantially etching a topmost metallic layer comprising tin. For example, an etchant comprising sulfuric acid and hydrogen peroxide may be employed to etch the copper layer selective to the tin layer. A particular example of the aforementioned etchant is a Co-Bra Etch® etchant modified to comprise about 1% by volume of sulfuric acid, about 4% by volume of phosphoric acid, and about 2% by volume of stabilized hydrogen peroxide. In one embodiment, an aluminum layer in the solar cell is etched without substantially etching the tin layer. For example, an etchant comprising potassium hydroxide may be employed to etch the aluminum layer without substantially etching the tin layer.12-22-2011
20120015469High-Efficiency, Monolithic, Multi-Bandgap, Tandem, Photovoltaic Energy Converters - A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.01-19-2012
20120021553METHODS FOR DISCRETIZED PROCESSING AND PROCESS SEQUENCE INTEGRATION OF REGIONS OF A SUBSTRATE - The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.01-26-2012
20120021552Quartz Boat Method and Apparatus for Thin Film Thermal Treatment - A method of supporting a plurality of planar substrates in a tube shaped furnace for conducting a thermal treatment process is disclosed. The method uses a boat fixture having a base frame including two length portions and a first width portion, a second width portion, and one or more middle members connected between the two length portions. Additionally, the method includes mounting a removable first grooved rod respectively on the first width portion, the second width portion, and each of the one or more middle members, each first grooved rod having a first plurality of grooves characterized by a first spatial configuration. The method further includes inserting one or two substrates of a plurality of planar substrates into each groove in the boat fixture separated by a distance.01-26-2012
20120028394IMAGE SENSOR AND METHOD FOR FABRICATING SAME - An image sensor includes an epi-layer of a first conductivity type formed in a substrate, a photodiode formed in the epi-layer, and a first doping region of a second conductivity type formed under the photodiode to separate the first doping region from the photodiode.02-02-2012
20120028393VAPOR DEPOSITION APPARATUS AND PROCESS FOR CONTINUOUS DEPOSITION OF A DOPED THIN FILM LAYER ON A SUBSTRATE - An apparatus and related process are provided for vapor deposition of a sublimated source material as a doped thin film on a photovoltaic (PV) module substrate. A receptacle is disposed within a vacuum head chamber and is configured for receipt of a source material supplied from a first feed tube. A second feed tube can provide a dopant material into the deposition head. A heated distribution manifold is disposed below the receptacle and includes a plurality of passages defined therethrough. The receptacle is indirectly heated by the distribution manifold to a degree sufficient to sublimate source material within the receptacle. A distribution plate is disposed below the distribution manifold and at a defined distance above a horizontal plane of a substrate conveyed through the apparatus to further distribute the sublimated source material passing through the distribution manifold onto the upper surface of the underlying substrate.02-02-2012
20130196464LASER SYSTEM WITH MULTIPLE LASER PULSES FOR FABRICATION OF SOLAR CELLS - A laser system with multiple laser pulses for removing material from a solar cell being fabricated. The laser system includes a single pulse laser source and a multi-pulse generator. The multi-pulse generator receives a single pulse laser beam from the single pulse laser source and converts the single pulse laser beam into a multi-pulse laser beam. A laser scanner scans the multi-pulse laser beam onto the solar cell to remove material from the solar cell.08-01-2013
20120295386STRATIFIED PHOTODIODE FOR HIGH RESOLUTION CMOS IMAGE SENSOR IMPLEMENTED WITH STI TECHNOLOGY - A stratified photodiode for high resolution CMOS image sensors implemented with STI technology is provided. The photodiode includes a semi-conductive layer of a first conductivity type, multiple doping regions of a second conductivity type, multiple doping regions of the first conductivity type, and a pinning layer. The multiple doping regions of the second conductivity type are formed to different depths in the semi-conductive layer. The multiple doping regions of the first conductivity type are disposed between the multiple doping regions of the second conductivity type and form multiple junction capacitances without full depletion. In particular, the stratified doping arrangement allows the photodiode to have a small size, high charge storage capacity, low dark current, and low operation voltages.11-22-2012
20120295385LIGHTLY-DOPED DRAINS (LDD) OF IMAGE SENSOR TRANSISTORS USING SELECTIVE EPITAXY - Embodiments of the present invention are directed to an image sensor having pixel transistors and peripheral transistors disposed in a silicon substrate. For some embodiments, a protective coating is disposed on the peripheral transistors and doped silicon is epitaxially grown on the substrate to form lightly-doped drain (LDD) areas for the pixel transistors. The protective oxide may be used to prevent epitaxial growth of silicon on the peripheral transistors during formation of the LDD areas of the pixel transistors.11-22-2012
20120094420MANUFACTURING METHOD OF GROUP OF WHISKERS - A seed substrate is placed to face a formation substrate, and then a gas containing silicon is introduced and chemical vapor deposition is performed. There is no particular limitation on a kind of a material used for the formation substrate as long as the material can withstand the temperature at which the reduced pressure chemical vapor deposition is performed. A group of silicon whiskers which does not include a seed atom can be grown directly on and in contact with the formation substrate. Further, the substrate provided with the group of whiskers can be applied to a solar cell, a lithium ion secondary battery, and the like, by utilizing surface characteristics of the group of whiskers.04-19-2012
20130210183ION IMPLANTATION METHOD, CARRIER, AND ION IMPLANTATION DEVICE - An ion implantation method includes: placing, in an atmosphere, a mask, which is used in conjunction with a tray for accommodating a substrate for a solar cell, at a first position covering a partial area on a surface of the substrate while maintaining the mask aligned relative to the substrate or at a second position distanced from the surface of the substrate; implanting, in a vacuum, ions in a first area on the surface of the substrate while the mask is placed at the first position; and implanting, in a vacuum, ions in a second area on the surface of the substrate while the mask is placed at the second position.08-15-2013
20130210185METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE - A crystalline-based silicon photoelectric conversion device comprises: an intrinsic silicon-based layer and a silicon-based layer of a first conductivity type, on one surface of a single-crystal silicon substrate of the first conductivity type; and an intrinsic silicon-based and a silicon-based layer of an opposite conductivity type, in this order on the other surface of the silicon substrate. At least one of forming the intrinsic silicon-based layer of the first conductivity type layer-side forming the intrinsic silicon-based layer of the opposite conductivity type layer-side includes: forming a first intrinsic silicon-based thin-film layer having a thickness of 1-10 nm on the silicon substrate; plasma-treating the silicon substrate in a gas containing mainly hydrogen; and forming a second intrinsic silicon-based thin-film layer on the first intrinsic silicon-based thin-film.08-15-2013
20130210184PATTERNING - A method for patterning an article, the article comprising a first layer of a first material, a first major surface of the first layer being in intimate contact with some or all of a first major surface of a second layer of a second different material the method comprising providing a first thread carrying a first species to remove at least a portion of the first layer, and providing a second thread aligned with and adjacent the first thread and contacting the first and second threads with the first layer to remove at least part of the first layer.08-15-2013

Patent applications in class Responsive to electromagnetic radiation

Patent applications in all subclasses Responsive to electromagnetic radiation