Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


LIGHT TRANSMISSIVE SHEETS, WITH GAS SPACE THEREBETWEEN AND EDGE SEALED (E.G., DOUBLE GLAZED STORM WINDOW, ETC.)

Subclass of:

428 - Stock material or miscellaneous articles

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110195206TRANSLUCENT INSULATED GLASS PANEL - A translucent insulated glass panel includes first and second glass plates separated from one another by a spacer. Together with the spacer, the first and second glass plates form a closed cavity. The closed cavity is filled with a translucent insulating material, preferably an aerogel material. The latter is in a compressed state, so that it will not settle over the course of time to produce an empty space or gap at the top of the panel.08-11-2011
20120244298COATED ARTICLES AND METHODS OF MAKING SAME - A coated substrate. The coated substrate includes a unitary substrate having a major surface. A first coating is applied to a first surface segment of the major surface. A second coating applied to a second surface segment of the major surface. The first coating is different than the second coating.09-27-2012
20130078397ISOCYANATE-FREE INSULATED GLASS SEALANT AND INSULATED GLASS UNITS USING THE SAME - An insulated glass sealant includes an elastomeric matrix that is the reaction product of a carboxyl-terminated polymer and a polycarbodiimide. A method of sealing an insulated glass unit includes applying the insulated glass sealant to one or more glass sheets, a spacer to be disposed between the glass sheets, or both; and contacting the one or more glass sheets with the spacer to define an annular space between the glass sheets and to produce the insulated glass unit. The sealants maintain the excellent attributes of traditional polyurethane sealants, such as low water swell, low moisture vapor transmission, good adhesion to the window frame, low migration of the insulating gas, and good workability, but without the use of polyisocyanates in the curing process. Methods for making the sealant and for sealing insulated glass panels, such as glass windows, with these rugged sealants, and the resulting articles, are also provided.03-28-2013
20130040080APPARATUS FOR EFFICIENT REMOVAL OF HALOGEN RESIDUES FROM ETCHED SUBSTRATES - An apparatus for removing volatile residues from a substrate is provided. In one embodiment, an apparatus for removing halogen-containing residues from a substrate includes a chamber suitable for operating maintaining a vacuum therein and a heat module positioned to heat a substrate disposed in the chamber. The apparatus for removing halogen-containing residues from a substrate also includes at least one of A) a temperature controlled pedestal having a projection extending radially therefrom suitable for supporting the temperature control pedestal on a ledge of the chamber body, the projection thermally isolating the base from the chamber body; B) a pair of substrate holders that include two support flanges extending radially inward from an inner edge of an arc-shaped body, each support flange having a substrate support step that includes a sloped landing; or C) a domed window.02-14-2013
20130040079SPACER FOR A VACUUM GLAZING PANEL, CORRESPONDING VACUUM GLAZING PANEL AND PRODUCTION PROCESS - The invention relates to a spacer (02-14-2013
20130029063ARTICLES INCLUDING ANTICONDENSATION COATINGS AND/OR METHODS OF MAKING THE SAME - Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon, The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.01-31-2013
20080292820LIGHT DIFFUSING SOLAR CONTROL FILM - A light diffusing solar control film includes a multilayer film that transmits visible light and reflects infrared light, and a light diffusing layer or surface adjacent to the multilayer film forming a light diffusing solar control film. The light diffusing solar control film has a haze value of 10% or greater.11-27-2008
20130089684INSULATING GLAZING - The invention relates to triple glazing comprising at least one glass sheet that has a system of layers on one side which are produced using sputtering and include at least one metal layer that reflects infrared radiation. The at least one glass sheet has a set of low-emission layers on the other side, said set of layers comprising one or more oxide layers that are deposited using gas phase pyrolysis. The disclosed glazing has a minimum light transmittance of 60 percent (standard EN 410, illuminant D65 at 2°) with 4 mm thick glass sheets.04-11-2013
20090304956Use of Polysulphide- Containing Two- Component Adhesives for the Production of Windows - A polysulphide-containing two-component adhesive/sealant consists of a binder component and a curing agent component, and is suitable for use as the secondary seal in the edge region of the insulating glass and/or for bonding the insulating glass unit in the frame or window sash of a window unit in a friction locked manner according to the process of rebate base bonding or back bedding.12-10-2009
20110151154INSULATED GLASS UNIT WITH SEALANT COMPOSITION HAVING REDUCED PERMEABILITY TO GAS - The invention relates to a high thermal efficiency, insulated glass unit structure sealed with a cured composition containing, inter alia, moisture-curable linear silylated resin and organic nanoclay, the cured composition exhibiting low permeability to gas(es).06-23-2011
20110059275INSULATED GLAZING UNITS - A hermetically sealed multi-pane window assembly comprises first and second windowpane sheets formed of transparent materials. A first sealing member has an inner edge and an outer edge, the inner edge being hermetically attached around the periphery of the first windowpane sheet by diffusion bonding. A second sealing member has an inner edge and an outer edge, the inner edge being hermetically attached around the periphery of the second windowpane sheet by diffusion bonding and the outer edge being hermetically attached to the outer edge of the first sealing member. A spacer assembly is disposed between the first and the second windowpane sheets for maintaining a gap therebetween, whereby a hermetically sealed cavity is defined between the first and the second windowpanes.03-10-2011
20120225224Barrier layers comprising Ni and/or Ti, coated articles including barrier layers, and methods of making the same - Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., Ni09-06-2012
20090155500Vacuum insulating glass unit with large pump-out port, and/or method of making the same - Certain example embodiments of this invention relate to vacuum insulating glass (VIG) units, and/or methods of making the same. More particularly, certain example embodiments relate to VIG units having large pump-out ports, and/or methods of making the same. In certain example embodiments, a vacuum insulating glass (VIG) unit is provided. First and second spaced-apart glass substrates are provided, and a gap is provided between the spaced-apart substrates. A pump-out port has a size (e.g., diameter) of at least about 30 mm. A cover seals the pump-out port. A getter is in communication with the gap. The pump-out port is sealed using the cover, in making the vacuum insulating glass unit, via a sealing material provided proximate to the cover and/or proximate to the pump-out port.06-18-2009
20090233020GLAZING ASSEMBLY AND METHOD - A glazing assembly includes a functional coating extending over, and being adhered to a central region of an inner major surface of a first substrate, which opposes a second substrate, whose inner surface includes a central region facing the functional coating; a spacer member, which is directly adhered to aligned peripheries of the inner major surfaces, joins the substrates, such that an airspace is enclosed between the central regions thereof. The spacer member may be pre-formed from a material having properties that result in a relatively low moisture vapor transmission rate therethrough, and may have a pre-formed footprint that matches a shape of the periphery of each of the substrates. A silane primer may be applied to the peripheries of the substrates to improve hydrolytic stability of the adhesion between the substrates and the spacer member.09-17-2009
20130164464COATED ARTICLE WITH LOW-E COATING HAVING BARRIER LAYER SYSTEM(S) INCLUDING MULTIPLE DIELECTRIC LAYERS, AND/OR METHODS OF MAKING THE SAME - Certain example embodiments of this invention relate to coated articles with low-E coatings having one or more barrier layer systems including multiple dielectric layers, and/or methods of making the same. In certain example embodiments, providing barrier layer systems that each include three or more adjacent dielectric layers advantageously increases layer quality, mechanical durability, corrosion resistance, and/or thermal stability, e.g., by virtue of the increased number of interfaces. These barrier layer systems may be provided above and/or below an infrared (IR) reflecting layer in the low-E coating in different embodiments. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, vehicle windows, other types of windows, or in any other suitable application.06-27-2013
20090155499Metal-inclusive edge seal for vacuum insulating glass unit, and/or method of making the same - Certain example embodiments of this invention relate to metal-inclusive edge seal designs for vacuum insulating glass (VIG) units, and/or methods of making the same. First and second substantially parallel spaced-apart glass substrates, including edge portions thereof, are provided. At least one metal-inclusive edge-sealing strip is located proximate to the edge portions of the first and second substrates, getter being applied to at least a portion of at least some of the edge-sealing strips, and the at least one edge-sealing strip being selected so as to have a coefficient of thermal expansion over a temperature range of interest within about 25% of a coefficient of thermal expansion of the first and second substrates, the temperature range of interest being from about −40° C. to about 50° C. The first and second substrates are sealed together proximate to the edge portions thereof with the at least one edge-sealing strip via an edge-sealing material provided to the at least one edge-sealing strip and/or the first and second glass substrates.06-18-2009
20100189932CURABLE RESIN COMPOSITION, TRANSPARENT LAMINATE USING THE SAME, AND PROCESS FOR PRODUCING THE TRANSPARENT LAMINATE - To provide a transparent laminate having a pair of transparent substrates integrated via an adhesive layer, in which the adhesive layer has good tear resistance and good adhesion to the transparent substrates and has excellent transparency.07-29-2010
20110123733Vacuum flat glass substrate structure - A vacuum flat glass substrate structure includes two glass substrates and a glass frit adhering to the boundary of the two glass substrates. The glass substrates and the glass frit form a sealed vacuum room. The two glass substrates have receiving gaps formed on the boundary thereof. A glass tube is disposed in the receiving gaps, and an interior end portion of the glass tube extends into the vacuum room and a sealed exterior end portion of the glass tube doesn't extend out of the geometric space in accordance of the receiving gaps. Accordingly, the present invention can receive and conceal the glass tube protruding out of the surfaces associated with the glass substrates in the receiving gaps, thereby keeping the glass substrates in flat and smooth shape after being lapped and sealed.05-26-2011
20110300319SUBSTRATE PROVIDED WITH A MULTILAYER COATING HAVING THERMAL PROPERTIES AND AN ABSORBENT LAYER - The invention relates to multiple glazing comprising at least two substrates, one substrate being coated on an inner face in contact with a gas-filled cavity with a thin-film multilayer coating having reflection properties in the infrared and/or in solar radiation, said coating comprising a single metallic functional layer (12-08-2011
20120009366Chemically Curing All-In-One Warm Edge Spacer And Seal - An “all-in-one” spacer and seal useful in insulating glass units is based on silane-functional, organic polymer which preferably has a low permeability (e.g., curable polyisobutylene or curable butyl rubber) technology. This chemically crosslinking (curing) flexible thermoset spacer and seal offers a solution to overcome the current shortfalls of commercially available thermoplastic spacer materials. When used as an edge-seal in an Insulating Glass unit, the cured product of the composition performs the functions of sealing, bonding, spacing, and desiccating.01-12-2012
20110293861Plastic Hollow Plate - A plastic hollow plate is composed of an upper plate, a lower plate, and plural ribs connected between the upper plate and the lower plate. The ribs are positioned obliquely in parallel so as to shield sunlight. And with plural inclined passages formed between every two adjacent ribs, the plastic hollow plate can allow part sunlight to pass through.12-01-2011
20100034996ASYMMETRICAL FLEXIBLE EDGE SEAL FOR VACUUM INSULATING GLASS - A flexible edge seal for a vacuum insulating glazing unit. The flexible edge seal comprises an elongate first edge seal portion having a substantially constant first cross-section and including a bonding flange at one end, a weld surface at the other end and a first center portion therebetween. An elongate second edge seal portion has a substantially constant second cross-section and includes a bonding flange at one end, a weld surface at the other end and a second center portion therebetween. Each bonding flange includes a substantially flat portion adapted for hermetic bonding to a surface of a different one of a pair of glass panes. The weld surfaces are hermetically joined to one another forming a hermetic seal therebetween. At least one of the first center portion and the second center portion has a convolute cross-section and is asymmetrical to the other center portion.02-11-2010
20110268898SYSTEM PROVIDED WITH PANELS, AND METHOD - A system provided with panels, for instance glass sheets, and with elements (11-03-2011
20120295043SPACER PROFILE FOR AN INSULATED GLAZING UNIT - In order to provide a spacer profile for an insulated glazing unit, which profile has a cross-section based on a rectangular shape, is provided with two parallel spaced side walls which, when said insulated glazing unit is assembled, will be placed against the panes of glass to be kept apart from each other, and is further provided with first and second transverse walls which extend between said side walls and of which the first will be adjacent to the edge of the glazing unit and the second will face the space between the panes, with the intention of enabling simple handling of said profile when assembling the spacer frame whilst maintaining a high absorptive capacity for water vapor, it is proposed that said spacer profile comprises a binder matrix and, embedded therein, a particulate adsorbent material for water vapor, and that the binder matrix is permeable to water vapor.11-22-2012
20090263596Coated article with IR reflecting layer and method of making same - Example embodiments of this invention relate to a coated article including an infrared (IR) reflecting layer of a material such as silver or the like, for use in an insulating glass (IG) window unit for example. In certain example embodiments, the coating is a single-silver type coating, and includes an overcoat including an uppermost layer of or including silicon nitride and a layer of or including tin oxide immediately under and contacting the silicon nitride based overcoat. In certain example embodiments, the thicknesses of the silicon nitride based overcoat and the tin oxide based layer are balanced (e.g., substantially equal, or equal plus/minus about 10%). It has surprisingly been found that such balancing results in an improvement in thermal cycling performance and improved mechanical durability. In certain example embodiments, the coating may realize surprisingly good substantially neutral film side reflective coloration, and may achieve an improved visible transmission, SHGC ratio and low U-values. Moreover, in certain example embodiments, stress in the overcoat of the coating may be reduced by reducing nitrogen gas flow (N10-22-2009
20090004412Low-Emissivity Glazing - Low emissivity glazing which is an assembly of thin layers including at least one metal layer reflecting infrared rays between one or more dielectric layers located between the metal layer and the glass sheet and on the metal layer, the light transmission of one clear float glass sheet 4 mm thick coated with said layers being not less than 83%, the metal layer being selected such that the emissivity is not higher than 0.042.01-01-2009
20090104385ANTIREFLECTION-COATED TRANSPARENT SUBSTRATE EXHIBITING NEUTRAL COLOR IN REFLECTION - Transparent especially glass, substrate (04-23-2009
20110206873Insulating Corrective Lens System for Windows - An improved insulated glass unit which contains vessels filled with nanotechnology insulating material for superior insulation. Vessels are arranged so that users will still be able to see through the unit without compromising on insulation. The shape and angles of the vessel can be used to determine the range of vision allowed for the user.08-25-2011
20080280078CARBON NANOTUBE GLAZING TECHNOLOGY - The invention provides a glazing that includes a substrate on which there is provided a coating comprising carbon nanotubes. The glazing can be an IG unit comprising two spaced-apart panes bounding a between-pane space, the IG unit having at least one exterior surface on which there is provided a transparent conductor coating comprising carbon nanotubes. The glazing can alternatively be a laminated glass assembly comprising two panes of glass and an interlayer comprising carbon nanotubes sandwiched therebetween. Monolithic substrate embodiments are also provided. In certain embodiments, the coating comprises both dielectric film and carbon nanotubes.11-13-2008
20110223360GLASS MEMBER PROVIDED WITH SEALING MATERIAL LAYER, AND ELECTRONIC DEVICE USING IT AND PROCESS FOR PRODUCING THE ELECTRONIC DEVICE - To increase the sealing property and the reliability of an electronic device by suppressing cracks, fractures and the like of a glass substrate at the time of laser sealing.09-15-2011
20090142521Embedded vacuum insulating glass unit, and/or method of making the same - Certain example embodiments of this invention relate to a vacuum insulating glass (VIG) unit surrounded by two glass substrates, with at least one spacer element being disposed adjacent to and/or cradling the VIG and with a sealant sealing the entire unit at each end of the VIG, thereby reducing the chances of the VIG being damaged and/or improving the insulating features of the entire window unit. In certain example embodiments the spacer may be substantially U-shaped, whereas two pillar-like spacers may be used in connection with certain other example embodiments. The spacer element(s) may be butyl-based, foam-based, warm-edge spacer element(s), etc. The sealant may be polysulfide based, one- or two-part silicone based, polyurethane based, a dual seal equivalent sealant product, a hot melt butyl based sealant product, etc. The R-value of the window unit may be at least about 11, but typically is about 15-16, when measured at the center of the lite.06-04-2009
20090324858INSULATING GLAZING ELEMENT, ITS MANUFACTURE AND USE - Insulating glazing element comprising a glass pane arrangement with a first outward pointing glass pane, a second inward pointing glass pane and at least a third glass pane arranged on the inside between the glass panes, wherein the glass panes comprise surfaces arranged on the inside, a spacer assembly provided for setting a distance between the glass panes and an edge seal assembly provided for sealing gaps between the glass panes against the surroundings, wherein the glazing element is set up in such a way that the pressure in the gaps is lower compared to the exterior atmospheric pressure, wherein at least one of the surfaces arranged on the inside comprises at least one low emissivity coating layer, the condition 0.3≦(A12-31-2009
20100255225THIN FILM COATING AND METHOD OF MAKING THE SAME - The present invention provides low-E thin film optical stacks with improved optical and infrared reflecting properties and methods of making the same. More specifically, the present invention provides for a metal oxide thin film coating that exhibits lower emissivity values than its predecessor due to the inclusion of an oxidizer in the metal oxide deposition process, such as a strong acid such as nitric acid. The present invention also provides for a method that increases the coating efficiencies of the thin films described herein.10-07-2010
20120141699Spacer for Spacing Glass Panes in a Multiple Glass Pane, a Multiple Glass Pane, and a Method for Producing a Multiple Glass Pane - The invention relates to a multiple glass pane (06-07-2012
20090074997INSULATING GLASS UNIT HAVING MULTI-HEIGHT INTERNAL STANDOFFS AND VISIBLE DECORATION - An insulating glass unit having a decorative pattern visible to the unaided eye. The glass unit comprises a pair of glass sheets disposed in a parallel, but spaced apart arrangement, thereby defining a gap between their respective inner surfaces. The glass unit further comprises a frame attached around the periphery of both sheets to form a sealed cavity. A first plurality of dots are disposed within the sealed cavity. Each dot of the first plurality is attached to the inner surface of one of the sheets, and has a height substantially equal to the width of the gap. A second plurality of dots are disposed within the sealed cavity. Each dot of the second plurality is attached to the inner surface of one of the sheets and has a height less than the width of the gap. The dots of the second plurality are arranged so as to form a pattern on the sheet that is visible to the unaided eye.03-19-2009
20110117300SOLAR CONTROL COATING WITH HIGH SOLAR HEAT GAIN COEFFICIENT - A coating provides a high solar heat gain coefficient (SHGC) and a low overall heat transfer coefficient (U-value) to trap and retain solar heat. The coating and coated article are particularly useful for use in architectural transparencies in northern climates. The coating includes a first dielectric layer; a continuous metallic layer formed over at least a portion of the first dielectric layer, the metallic layer having a thickness less than 8 nm; a primer layer formed over at least a portion of the metallic layer; a second dielectric layer formed over at least a portion of the primer layer; and an overcoat formed over at least a portion of the second dielectric layer. When used on a No. 3 surface of a reference IGU, the coating provides a SHGC of greater than or equal to 0.6 and a U-value of less than or equal to 0.35.05-19-2011
20110111147Variable emissivity coatings and their applications - This invention describes the applications of variable emissivity materials and their fabrication and incorporation in a variety of structures. In particular, self-regulating energy efficient coatings and products for use in buildings and transportation are disclosed.05-12-2011
20090035494ARMOURED GLASS - A compound protective glass in which a sacrificial plate unit facing the direction of expected projectile impact is placed in front of a main functional armoured glass plate unit. A space between the two units is maintained by spacers.02-05-2009
20100221461VEHICLE GLAZING - A vehicle glazing comprising two panes of glazing material spaced apart from one another, a self-cleaning coating extending over the outermost surface of the glazing, and having a solar control function. The solar control function may result from the presence of a solar control coating or at least one pane of glazing material being body-tinted. The glazing may be a laminate or a double glazing unit and it may also include a functional layer, such as a liquid crystal film or a layer of light emitting diodes.09-02-2010
20100178439FLEXIBLE EDGE SEAL FOR VACUUM INSULATING GLAZING UNITS - A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.07-15-2010
20090311449METHOD OF MANUFACTURING AN INSULATED, IMPACT RESISTANT WINDOW - An insulated glass unit (IGU) is provided. The IGU meets the industry standards for impact resistance while significantly reducing the weight of the IGU compared to conventional IGUs. In particular, the two pane IGUs of the present invention can meet or exceed industry standards for various wind storm criteria while reducing the weight and cost of the IGU. The IGU only requires one layer of film to meet the performance of previous IOU designs that require two or more layers of film laminated to two or more surfaces of glass.12-17-2009
20110256325COATED GLAZING - Coated Glazing comprising a pane of glass having an innermost surface and an outermost surface, and a coating layer (e.g. a titania coating and an underlying fluorine-doped tin oxide coating) on the outermost surface of the pane. The glazing has an emissivity of 0.7 or less and its outermost coated surface is both hydrophilic and photoactive (after any necessary initial activation period) with a water droplet contact angle of 30° or less, the glazing thereby having the capability of reducing or preventing the tendency for condensation to form on its outermost surface and the facility for maintaining the water droplet contact angle at or below 30°. Also disclosed is a method of reducing or preventing the tendency for condensation to form on the outermost surface of a glazing.10-20-2011
20100255224Sealant For Insulating Glass Unit - This invention relates to the use of an acrylate polymer containing curable silyl groups as a secondary sealant in an insulating glass unit and to a secondary sealant for an insulating glass unit having low gas permeability, in which the secondary sealant comprises an acrylate polymer containing curable silyl groups.10-07-2010
20100098888Insulated Glass Unit Possessing Room Temperature-Cured Siloxane Sealant Compositon of reduced gas permeability - The invention relates to an insulated glass unit having an increased service life. An outer glass pane and inner glass pane are sealed to a spacer to provide an improved gas impermeable space. The glass unit includes a curable two-part sealer composition which, upon curing, exhibits unexpectedly high adhesion to substrates.04-22-2010
20100040812GLASS COMPOSITION - Flat glass composition comprising the following (expressed as percentages by weight): SiO02-18-2010
20110212279Articles including anticondensation coatings and/or methods of making the same - Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.09-01-2011
20100310797Safe pressure system viewing port - A fracture-safe viewport for a pressure system having a pressure port which is pumped by said pressure system to a pressure above or below atmospheric pressure, comprising a plurality of panes each capable of passing electromagnetic radiation therethrough, each pane being mounted inside a tubular structure and being hermetically sealed to the wall of the pressure chamber. Each of the panes may be a different material or any combination of materials may be used from the group comprising sapphire, glass and quartz or any other material through which a high powered laser or other electromagnetic beam may be directed without adverse consequences. Highly pure, defect-free, ultra-polished, single-crystal sapphire is preferred. Spacing between the panes is used in most embodiments to avoid shrapnel damage in case of catastrophic failure of a pane. Half-donut shaped or chimney-shaped strain relief mounts are used in some embodiments to relieve strain caused by differential rates of thermal expansion when the structure is heated.12-09-2010
20080254242METHOD FOR PRODUCING WELDED RESIN MATERIAL AND WELDED RESIN MATERIAL - A method for producing a welded resin material contains steps of: superimposing a resin member having transmissibility to laser light and a resin member having absorptivity to laser light to form a contact part where the resin members are in contact with each other; forming a closed space that is adjacent to the contact part and faces one end of the contact part; and radiating the laser light from the resin member having transmissibility while pressing the resin members to each other through the contact part, so as to heat the contact part to melt a resin at the contact part, housing a resin excluded from the contact part through melting in the closed space, solidifying the resin melted at the contact part to weld the resin members.10-16-2008
20100330308Non-toxic water-based frit slurry paste, and assembly incorporating the same - Certain example embodiments of this invention relate to a frit slurry paste for use in assemblies (e.g., a vacuum insulated glass unit or a plasma display panel), and methods of making the same. Frit powder, binder material, and a water-based solvent are mixed together to form an intermediate mixture. The frit powder is substantially lead free, and the water-based solvent is provided at a first temperature. Additional water-based solvent is added to the intermediate mixture to form a frit slurry paste. The additional water-based solvent is provided at a second temperature, with the second temperature being lower than the first temperature. The binder material is provided at a concentration of 0.001%-20% by weight with respect to the frit slurry paste or the frit slurry paste absent the frit powder. The frit slurry paste has a bulk viscosity of 2,000-200,000 cps.12-30-2010
20100330309Frit or solder glass compound including beads, and assemblies incorporating the same - Certain example embodiments of this invention relate to frits or solder glass compounds that include beads, and/or assemblies such as, for example, vacuum insulated glass (VIG) units or plasma display panels (PDPs) including the same. In certain example embodiments, the beads may be hollow glass beads of any suitable shape (e.g., substantially spherical, substantially eye shaped, substantially oblong, substantially square shaped, etc.) with or without evacuated cavities. The inclusion of such beads in a frit material may improve the thermal properties of the bulk fired frit in certain example instances. Additionally, the inclusion of such beads in a frit material may take the place of other more expensive materials in the frit, thereby reducing the costs associated with the fabrication of the assemblies.12-30-2010
20100330310SPACER HAVING A DESICCANT FOR AN INSULATING GLASS PANE - In order to configure an insulated glass pane, two individual glass panes are glued to each other by means of a frame-shaped spacer. For this purpose, a sealant is provided in joints between two flanks of the spacer and the two adjoining glass panes. The joints on the interior of the insulated glass pane are open and contain a mass, which has a surface facing the interior of the insulated glass pane and in which a drying agent is embedded.12-30-2010
20100119740GLASS-TO-METAL BOND STRUCTURE - A glass-to-metal bond structure comprises a metal substrate, a glass substrate and an oxide layer. The metal substrate is formed from a stainless steel alloy, a carbon steel, titanium, aluminum or copper. The glass substrate is formed from a soda-lime glass. The oxide layer is disposed between the metal substrate and the glass substrate, and includes iron oxide and chromium oxide. The oxide layer has an iron to chromium ratio within the range from 0.02 to 0.6 (atom ratio).05-13-2010
20120308747COEFFICIENT OF THERMAL EXPANSION FILLER FOR VANADIUM-BASED FRIT MATERIALS AND/OR METHODS OF MAKING AND/OR USING THE SAME - Certain example embodiments relate to seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a composition may be combined with a binder solution that substantially or completely burns out by the time the composition is melted. In certain example embodiments, a CTE filler is included with a frit material. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.12-06-2012
20120308746Insulated glass (IG) units including spacer systems, and/or methods of making the same - Certain example embodiments relate to improved spacers for insulated glass units. Certain example embodiments relate to corrugated spacers that extend around a periphery of an IG unit. In certain example embodiments, the spacer includes at least one structured concave cavity. When positioned in conjunction with a substrate, the cavity may be filled with a sealant. In certain example embodiments, the sealant may be a thermoplastic sealant. In certain example embodiments, another cavity may be provided that may accept a structural sealant. In certain example embodiments, the thickness of the corrugated faces of a spacer may be less than the thickness of the shoulders of spacer.12-06-2012
20100304059MATERIAL WITH PHOTOCATALYTIC PROPERTIES - The subject of the invention is a material comprising a substrate coated on at least one portion of at least one of its faces with a coating comprising photocatalytic titanium oxide, characterized in that said substrate and/or a coating placed between said substrate and said coating comprising photocatalytic titanium oxide comprises at least one compound capable of converting radiation having a wavelength in the visible or infrared range to radiation having a wavelength in the ultraviolet range.12-02-2010
20090098317Standard Insulating Glass Units Having Known Concentrations of a Gas and Methods for Calibrating a Measuring Device Using the Standard Insulating Glass Units - A calibration technique for a measurement device that produces a spark in an interpane space of an insulating glass unit to determine the content of an inert gas, in particular, argon. Standard calibration units are created which have the same construction as an IGU produced an assembly line. The standard calibration units are filled with varying percentages of argon/oxygen mixture. The calibration technique can be performed on an assembly line by aiming the measurement device at a particular insulating glass unit produced on the assembly line. The measurement device is activated to take a reading of the unit on the line. One of a plurality of calibration standard units of insulating glass units is selected that has substantially an identical construction as the unit on the line except that the calibration standard unit selected has a known, specific amount of certified argon gas that should be the same as the unit on the line. The measurement device is aimed at the calibration standard unit. The measurement device is activated to take a reading of the calibration standard unit. The measurement taken of the calibration standard unit is compared to the known amount of argon gas in the standard calibration unit. And, finally adjusting the calibration of the measurement device if the comparison shows a discrepancy.04-16-2009
20110305853SUBSTRATE PROVIDED WITH A MULTILAYER COATING HAVING THERMAL PROPERTIES AND ABSORBENT LAYERS - The invention relates to multiple glazing comprising at least two substrates, one substrate being coated on an inner face in contact with a gas-filled cavity with a thin-film multilayer coating having reflection properties in the infrared and/or in solar radiation, said coating comprising a single metallic functional layer (12-15-2011
20090291238Chemically Curing All-in-One Warm Edge Spacer and Seal - A water release agent that release water over an application temperature range in an amount sufficient to cure a composition is add to a curable composition containing 10 to 65 weight % of a moisture-curable, silane-functional, elastomeric, organic polymer; 0.1 to 3 weight % of a condensation catalyst; and (C) 15 to 25 weight % of a physical drying agent. When used as an edge-seal in an IG unit, the cured product of the composition performs the functions of sealing, bonding, spacing, and desiccating.11-26-2009
20090068384INFRARED RADIATION REFLECTING INSULATED GLAZING UNIT - An insulated glazing unit is described and includes a first transparent substrate spaced apart from a parallel second transparent substrate, a sealed void space defined between the first transparent substrate, second transparent substrate, and the window mounting member, and an infrared radiation reflecting multilayer polymeric film disposed between the first transparent substrate and the second transparent substrate. The infrared radiation reflecting multilayer polymeric film includes a plurality of alternating polymeric layers of a first polymer material and a second polymer material. At least one of the alternating polymer layers is birefringent and oriented. The alternating, polymeric layers cooperate to reflect infrared radiation.03-12-2009
20090246426FIRE RESISTANT GLAZING ASSEMBLY WITH ADDITIONAL FUNCTIONS - A fire resistant glazing assembly with various additional functions in impact safety, solar control, bullet and blast resistance, burglary and forced entry resistance, natural disaster protection, decoration and aesthetics, privacy protection, sound insulation and signal defense security. The fire resistant glazing assembly comprises: (a) two or more glass sheets that are parallel and spaced-apart from each other, the distance between any two adjacent glass sheets is from 1 mm to 40 mm; (b) one plastic film that is adhered onto one of opposite surfaces of the glass sheets or more plastic films that are respectively adhered onto more opposite surfaces of the glass sheets; (c) one or more intumescent interlayers that are between the glass sheets and bond with the glass sheet or the plastic film adhered onto the glass sheet. The fire resistant glazing assembly achieves various additional functions by means of different plastic films existing inside the glazing assembly. The adopted plastic film is compatible with fire resistant glazing assembly and has at least one specific function in safety and security, solar control, decoration and aesthetics, privacy protection, sound insulation and signal defense security.10-01-2009
20120207952Substrates or assemblies having directly laser-fused frits, and/or method of making the same - Certain example embodiments relate to substrates or assemblies having laser-fused fits, and/or methods of making the same. In certain example embodiments, a pattern is formed or written on a stock glass sheet by laser fusing frit material to the glass sheet. An optional thin film coating is disposed on and supported by the stock glass sheet. The stock glass sheet with the pattern and the optional thin film coating is cut prior to heat treatment (e.g., heat strengthening and/or thermal tempering). A YAG or other type of laser source may be used to directly or indirectly heat the frit material, which may be wet applied to the substrate. In certain instances, the laser firing of the frit raises the temperature of the glass substrate to no more than 100 degrees C. and, preferably, the temperature is kept even lower.08-16-2012
20120207951Substrates or assemblies having indirectly laser-fused frits, and/or method of making the same - Certain example embodiments relate to substrates or assemblies having laser-fused frits, and/or methods of making the same. In certain example embodiments, a pattern is formed or written on a stock glass sheet by laser fusing frit material to the glass sheet. An optional thin film coating is disposed on and supported by the stock glass sheet. The stock glass sheet with the pattern and the optional thin film coating is cut prior to heat treatment (e.g., heat strengthening and/or thermal tempering). A YAG or other type of laser source may be used to directly or indirectly heat the frit material, which may be wet applied to the substrate. In certain instances, the laser firing of the frit raises the temperature of the glass substrate to no more than 100 degrees C. and, preferably, the temperature is kept even lower.08-16-2012
20120064265Double Window/Door System for Blocking Infrared Light - There is provided a double window/door system for blocking infrared rays which includes a first glass member, a second glass member, and a spacer positioned between the first glass member and the second glass member for maintaining the space between the first glass member and the second glass member, characterized in that one of the surfaces of the first glass member is coated with a nano substance film for blocking near infrared rays and one of the surfaces of the second glass member is coated with a thermochromic substance film.03-15-2012
20090162582Method for producing a molded glass article and products produced in accordance with the method - The invention envisions a method for improving the thermal shock resistance of glass objects. For this a glass object is heated starting from a surface temperature under the softening point (06-25-2009
20120269996HEAT INSULATING GLAZING ELEMENT AND METHODS FOR ITS MANUFACTURE - A heat insulating glazing element comprises a glass pane arrangement with a first outer glass pane and a second outer glass pane, of which the first outer glass pane protrudes the second outer glass pane along the entire circumference by an overlapping surface, a spacer assembly comprising spacers provided for setting a distance between the glass panes, and an edge seal assembly for scaling a gap between the glass panes against the surroundings and comprises a profiled frame attached vacuum-tight to the overlapping surface of the inside of the first outer glass pane, wherein the glazing element is set up in such a way that the pressure in the gap is lower compared to the exterior atmospheric pressure, and wherein the frame is attached vacuum-tight to an outer face of the second outer glass pane and forms an evacuated space connected to the gap at the side edge of the second outer glass pane, and at least one evacuating device is provided which is arranged through the frame for the evacuation of the evacuated space.10-25-2012
20100279038Edge profiles for vacuum insulated glass (VIG) units, and/or VIG unit including the same - Certain example embodiments of this invention relate to vacuum insulated glass (VIG) units. The VIG unit may comprise first and second substrates with inner and outer substantially planar surfaces. For either or both of the first and second substrates, when considered along a side cross-section, a portion of the inner planar surface is removed proximate to an outer edge of the glass substrate so as to form a shoulder portion. An inner surface of the shoulder portion is angled (a negative number of degrees, zero degrees, or a positive number of degrees) relative to the inner and outer planar surfaces. The shoulder portion at its smallest height is at least about 50% of the glass substrate at its largest height. A side portion of the step proximate the edge also may be angled, e.g., so that it is or is not perpendicular to the planar surfaces.11-04-2010
20120156404VACUUM INSULATING GLASS UNIT WITH LARGE PUMP-OUT PORT, AND/OR METHOD OF MAKING THE SAME - Certain example embodiments of this invention relate to vacuum insulating glass (VIG) units, and/or methods of making the same. More particularly, certain example embodiments relate to VIG units having large pump-out ports, and/or methods of making the same. In certain example embodiments, a vacuum insulating glass (VIG) unit is provided. First and second spaced-apart glass substrates are provided, and a gap is provided between the spaced-apart substrates. A pump-out port has a size (e.g., diameter) of at least about 30 mm. A cover seals the pump-out port. A getter is in communication with the gap. The pump-out port is sealed using the cover, in making the vacuum insulating glass unit, via a sealing material provided proximate to the cover and/or proximate to the pump-out port.06-21-2012
20110091668ANTIMONY-FREE GLASS, ANTIMONY-FREE FRIT AND A GLASS PACKAGE THAT IS HERMETICALLY SEALED WITH THE FRIT - An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.04-21-2011
20120121829WINDOW FOR PREVENTING BIRD COLLISIONS - This invention relates to a window designed to prevent or reduce bird collisions therewith. In certain example embodiments, the window may include an insulating glass (IG) window unit having first and second substrates spaced apart from one another, wherein at least one of the substrates supports an ultraviolet (UV) reflecting coating for reflecting UV radiation so that birds are capable of more easily seeing the window. By making the window more visible to birds, bird collisions and thus bird deaths can be reduced.05-17-2012
20090130349Window for preventing bird collisions - This invention relates to a window designed to prevent or reduce bird collisions therewith. In certain example embodiments, the window may include an insulating glass (IG) window unit having first and second substrates spaced apart from one another, wherein at least one of the substrates supports an ultraviolet (UV) reflecting coating for reflecting UV radiation so that birds are capable of more easily seeing the window. By making the window more visible to birds, bird collisions and thus bird deaths can be reduced.05-21-2009
20100247820CARBON NANOTUBE GLAZING TECHNOLOGY - The invention provides a glazing that includes a substrate on which there is provided a coating comprising carbon nanotubes. The glazing can be an IG unit comprising two spaced-apart panes bounding a between-pane space, the IG unit having at least one exterior surface on which there is provided a transparent conductor coating comprising carbon nanotubes. The glazing can alternatively be a laminated glass assembly comprising two panes of glass and an interlayer comprising carbon nanotubes sandwiched therebetween. Monolithic substrate embodiments are also provided. In certain embodiments, the coating comprises both dielectric film and carbon nanotubes.09-30-2010
20120213954COEFFICIENT OF THERMAL EXPANSION FILLER FOR VANADIUM-BASED FRIT MATERIALS AND/OR METHODS OF MAKING AND/OR USING THE SAME - Certain example embodiments relate to seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a composition may be combined with a binder solution that substantially or completely burns out by the time the composition is melted. In certain example embodiments, a CTE filler is included with a frit material. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.08-23-2012
20120213951Vanadium-based frit materials, and/or methods of making the same - Certain example embodiments relate to improved seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.08-23-2012
20120213952VANADIUM-BASED FRIT MATERIALS, AND/OR METHODS OF MAKING THE SAME - Certain example embodiments relate to improved seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.08-23-2012
20120213953VANADIUM-BASED FRIT MATERIALS, BINDERS, AND/OR SOLVENTS AND METHODS OF MAKING THE SAME - Certain example embodiments relate to seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a composition may be combined with a binder solution that substantially or completely burns out by the time the composition is melted. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.08-23-2012
20120315409VACUUM INSULATING GLASS UNIT WITH VISCOUS EDGE SEAL - Vacuum insulating glass (VIG) units, edge seals for VIG units and methods for forming the edge seals are provided. The VIG units include an edge seal that includes a viscous material, which serves to restrict the rate at which gas permeates into a vacuum space defined between the glass sheets of the VIG unit. The edge seals are configured to allow the glass sheets to move laterally relative to one another when the glass sheets experience differential thermal strain and further configured such that viscous shear occurs within at least a portion of the viscous material when there is relative lateral movement between the glass sheets.12-13-2012
20120315410LOW SOLAR ABSORBING BLUE GLASS, SOLAR REFLECTING COATED BLUE GLASS, AND INSULATING UNIT HAVING A LOW SOLAR HEAT GAIN - An insulating unit having a neutral grey color and a solar heat gain coefficient less than 0.40 includes a clear glass sheet spaced from a coated glass sheet. The coated glass sheet includes a colored glass substrate having a solar infrared reflective coating. The composition of the coated substrate includes a base glass portion and a glass colorant portion, the glass colorant portion including total iron in the range of 0.04 to less than 0.28 weight percent; CoO in the range of 32 to 90 parts per million, and Se in the range of greater than 0 to less than 5.5 parts per million. In one non-limiting embodiment of the invention the glass substrate at a thickness of 0.223 inches has a* chromaticity coordinates of −3.5 to +2.5 and b* chromaticity coordinates of −1 to −15, and a visible light transmittance of 40 to 80%.12-13-2012
20110123734FLAT VACUUM GLASS STRUCTURE - A vacuum glass structure comprising two glass substrates maintained at an substantially constant interval by a glass frit paste sealingly adhering to the peripheries thereof, forming a hermetically sealed vacuum room. A receiving gap is formed at the periphery of the glass substrate. The internal surface of the glass structure further includes an air chamber and a glass tube groove for receiving a pumping tube. The pumping tube can be placed inside the receiving gap with the internal end of the pumping tube extending from the receiving gap through the glass tube groove into the air chamber. The external end of the pumping tube constitutes a hermetic seal retained within the geometric boundary of the receiving gap. The air chamber structure may improve air transferring efficiency and prevents problems such as blockage in the pumping tube, thus enabling an increase in production yield.05-26-2011
20120328803SUBSTRATES OR ASSEMBLIES HAVING TWO-COLOR LASER-FUSED FRITS, AND/OR METHOD OF MAKING THE SAME - Certain example embodiments relate to substrates or assemblies having two-colored laser-fused frits, and/or methods of making the same. In certain example embodiments, a first pattern is formed or written on a glass sheet by laser fusing a first frit material to the glass sheet. A second pattern is formed by laser fusing a second frit material disposed on the first frit material. An optional thin film coating is supported by the glass sheet. The glass sheet with the first and second patterns and optional coating is cut prior to heat treatment. A YAG or other type of laser may be used to directly or indirectly heat the frit materials, at the same or different times, and the frit materials may be wet-applied to the substrate. In certain instances, the laser firing raises the temperature of the glass substrate to no more than 100 degrees C. or preferably even lower.12-27-2012
20120269994Marine vehicle component comprising flame retardant compositions and methods of manufacture - A marine vehicle component wherein the component is a partition or a light cover, and wherein the marine vehicle component is molded or formed from a thermoplastic polymer composition comprising a siloxane-containing copolymer in an amount effective to provide a total of 0.2 to 6.5 wt % of siloxane units based on the total weight of the polymers in the thermoplastic polymer composition, a bromine-containing polymer in an amount effective to provide 9 to 13 wt % of bromine, based on the total weight of the polymers in the thermoplastic polymer composition, and optionally a third polymer, wherein the wt % of the siloxane-containing copolymer, the bromine-containing polymer, and the optional third polymer, sum to 100 wt %, and 0.05 to 10 wt % of a light diffuser additive, based on the total weight of polymers in the thermoplastic polymer composition.10-25-2012
20120269995LIGHT WEIGHT TEMPERATURE RESISTANT TRANSPARENT LAMINATE STRUCTURE - A transparent laminate structure is provided that includes a front section, a rear section, and a middle section securing the front and rear sections to one another with a gap therebetween. The front section has a strike face formed of an impact resistant layer and a polymer backing layer bonded to the impact resistant layer by an interlayer. The rear section has a forward face comprising at least one polymer layer. The front and middle sections can form an integral subassembly.10-25-2012
20110236609VACUUM INSULATING GLASS UNIT WITH VISCOUS EDGE SEAL - Vacuum insulating glass (VIG) units, edge seals for VIG units and methods for forming the edge seals are provided. The VIG units include an edge seal that includes a viscous material, which serves to restrict the rate at which gas permeates into a vacuum space defined between the glass sheets of the VIG unit. The edge seals are configured to allow the glass sheets to move laterally relative to one another when the glass sheets experience differential thermal strain and further configured such that viscous shear occurs within at least a portion of the viscous material when there is relative lateral movement between the glass sheets.09-29-2011
20120321821Method for Sealing Vacuum Glass and Vacuum Glass Product - A method for sealing vacuum glass and a vacuum glass product processed by said method are provided. The method specifically is: preparing metallized layers (12-20-2012
20120321822Compound Sealing Method for Vacuum Glass - The invention relates to a compound sealing method for glass plates, which is characterized by realizing the air-tight joint between compounded glass plates in a preset position by using a metal brazing technology. The invention provides a brand new technological method for the compound sealing between glass plates. The method has the advantages of firm connection in sealing positions, high air tightness, favorable thermal shock resistance and the like, and the annealing of toughened glass are avoided because of a lower brazing temperature used, thereby providing convenience to the processing of toughened vacuum glass, toughened insulated glass and other toughened compound glass products12-20-2012
20120088045Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same - Certain example embodiments of this invention relate to composite pillar arrangements for VIG units that include both harder and softer materials. The softer materials are located on the outside or extremities of the central, harder pillar material. In certain example embodiments, a high aspect ratio mineral lamellae is separated by an organic “glue” or polymer. When provided around a high strength pillar, the combination of the pillar and such a nano-composite structure may advantageously result in superior strength compared to a monolithic system, e.g., where significant wind loads, thermal stresses, and/or the like are encountered.04-12-2012
20100166987METHOD AND DEVICE FOR PRODUCING A WINDOW GLAZING EQUIPPED WITH A PROFILED STRIP COMPRISING AN INSERT, AND WINDOW GLAZING OBTAINED - The present invention relates to a method of overmolding at least one portion of seal (J) onto a peripheral part of a glazed element (V), said seal comprising at least one insert (07-01-2010
20080226850Alternating Spacer Frame Line Control - Each of the multiple spacer frame fabricating machines executes its portion of a schedule, then alerts an operator(s) he or she should move to another spacer frame machine that is simultaneously providing spacer frames for the same schedule. The multiple controllers running the multiple spacer machines continue to prompt the operator until the production schedule has been completed. By alternately choosing spacers from different machines, the operator(s) can maintain the proper spacer sequence on the overhead conveyor.09-18-2008
20130142972Vacuum Insulated Glass Panel with Spacers Coated with Micro Particles and Method of Forming Same - A vacuum insulating glass (VIG) panel comprises first and second panels of glass spaced from another with a separation space therebetween. The VIG panel further comprises spacers disposed between the first and second glass panels to define the separation space. The spacers are generally arranged in a matrix between the first and the second glass panels. The spacers are coated with a coating material comprising particles having an average size of less than about 1 micron. The coating material may be polytetrafluoroethylene particles having an average particle size in a range of about 200 nanometers to about 700 nanometers06-06-2013
20130202820Method for Sealing Tempered Vacuum Glass and Tempered Vacuum Glass - A method for sealing the tempered vacuum glass comprises: first preparing metallized layer bonded with the glass plate on the edge surface of the tempered glass to be sealed by locally heating the metal slurry coating; then air-tightly sealing the edges of two glass plates by using the metal brazing technology, or air-tightly sealing the edges of two glass plates by air-tightly welding the metal sealing sheet between the metallized layers of two glass plates to be sealed. A tempered vacuum glass is also provided. The method makes the sealing part have firm connection, good air tightness and good thermal shock resistance. The sealing structure made of the metal sealing sheet is well compatible with the temperature deformation caused by the temperature difference between the internal and external glass plates of the vacuum glass.08-08-2013
20130202821VACUUM GLASS PANEL AND METHOD FOR MANUFACTURING SAME - A vacuum glass panel includes patterned spacers formed by a print system using ceramic ink to enable the shapes of the patterned spacers and spacing between the patterned spacers to be uniformly controlled and to improve the speed of forming patterned spacers. The vacuum glass panel comprises: an upper glass sheet; a lower glass sheet facing the upper glass sheet; a sealing material arranged along the edges of the upper glass sheet and lower glass sheet to seal the upper glass sheet and the lower glass sheet such that a vacuum layer is formed in the space between the upper glass sheet and the lower glass sheet; and one or more patterned spacers inserted into the vacuum layer between the upper glass sheet and the lower glass sheet so as to maintain a gap having a predetermined thickness between the upper glass sheet and the lower glass sheet.08-08-2013
20130171380JOINED UNIT OF GLASS BASE MEMBERS, AIRTIGHT ENVELOPE, AND METHOD FOR PRODUCING GLASS STRUCTURAL UNIT - A joined unit of glass base members is provided, comprising first and second glass base members and a joining member which extends along opposing surfaces of the first and second glass base members, wherein glass base member is elastically deformed while being depressed in an internal direction of the glass base member in the vicinity of an end portion in a widthwise direction of the joining member, a boundary surface between the elastically deformed glass base member and the joining member and a surface of the elastically deformed glass base member, which are disposed in the vicinity of the end portion in the widthwise direction of the joining member, are positioned on an internal side of the glass base member, and an area, in which a residual stress is a compressive stress, is formed in the vicinity of the end portion in the widthwise direction of the joining member.07-04-2013
20130136875VACUUM INSULATED GLASS (VIG) UNIT INCLUDING NANO-COMPOSITE PILLARS, AND/OR METHODS OF MAKING THE SAME - Certain example embodiments of this invention relate to composite pillar arrangements for VIG units that include both harder and softer materials. The softer materials are located on the outside or extremities of the central, harder pillar material. In certain example embodiments, a high aspect ratio mineral lamellae is separated by an organic “glue” or polymer. When provided around a high strength pillar, the combination of the pillar and such a nano-composite structure may advantageously result in superior strength compared to a monolithic system, e.g., where significant wind loads, thermal stresses, and/or the like are encountered.05-30-2013
20130101760INSULATING GLAZING - The invention relates to double glazing comprising at least one glass sheet that has a set of low-emission layers on each side, one side being coated with layers which are produced using sputtering and which include at least one metal layer that reflects infrared radiation. The other side of said at least one glass sheet comprises one or more metal oxide layers that are deposited using gas phase pyrolysis. The disclosed glazing has a minimum light transmittance of 60 percent (with 4 mm thick clear glass sheets).04-25-2013
20130101759VACUUM INSULATING GLASS UNIT WITH VISCOUS EDGE SEAL - Vacuum insulating glass (VIG) units and edge seals for VIG units are provided. The VIG units include an edge seal that includes a viscous material, and is configured to allow the glass sheets to move laterally relative to one another when the glass sheets experience differential thermal strain and further configured such that viscous shear occurs within at least a portion of the viscous material when there is relative lateral movement between the glass sheets. The edge seals comprise a cavity that contains at least a portion of the viscous material, wherein at least a portion of a boundary defining the cavity is reversibly expandable and collapsible such that the viscous material and the cavity are configured to maintain volume compatibility when one or both of the viscous material and the cavity undergo a temperature-induced volume change.04-25-2013
20130129945GLAZING PANEL - The subject of the invention is a glazing unit comprising a glass substrate (05-23-2013
20130129944HIGH R-VALUE WINDOW UNIT - In certain example embodiments of this invention, a window unit may include a vacuum IG (VIG) unit as an inboard lite and a monolithic lite (e.g., with an optional low-E coating thereon) as an outboard lite. A dead air space may separate the inboard and outboard lites. A highly insulated frame may be used to support the inner and outer lites. The VIG unit may be partially embedded or supported in the insulative frame, so that the insulating frame separates the VIG unit inboard lite from the outboard lite thereby reducing conductivity around the edges of the window unit so that R-value can be increased (and U-value decreased). In certain example embodiments, the total R-value of the window unit is at least about R-8, and more preferably at least about R-10 (compared to the much lower R-values of conventional IG units).05-23-2013
20100279037MULTI-LAYERED GLASS STRUCTURE - A multi-layered glass structure includes at least three glass substrates. The edges of the three glass substrates are sealed and fastened. There is a cavity space between two adjacent glass substrates, and the multi-layered glass structure includes at least one vacuum cavity space. The multi-layered glass structure has a flat vacuum structure to enhance the heat insulation and separating effect and the noise insulation effect of the multi-layered glass structure.11-04-2010
20130149473INSULATING GLASS UNITS WITH LOW-E AND ANTIREFLECTIVE COATINGS, AND/OR METHODS OF MAKING THE SAME - Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.06-13-2013
20120021149High Quality Emission Control Coatings, Emission Control Glazings, and Production Methods - The invention provides emission control coatings. The coating includes a transparent conductive film over which there is an oxygen barrier film. In some embodiments, the transparent conductive film comprises indium tin oxide and the oxygen barrier film comprises silicon nitride.01-26-2012
20130196091FIRE-RESISTANT GLAZING - A fire-resistant glass unit is provided having at least two transparent carrier elements, in particular glass panes, and an intermediate layer between the carrier elements, this layer expanding for example in the event of a fire, or a gas-releasing intermediate layer, which builds up a pressure between the carrier elements. At least one glass pane of the fire-resistant glass unit, preferably the two outermost glass panes, or even all the glass panes adjacent to an intermediate layer, are provided with specific local weakening as a defined breaking point. A predetermined breaking point may be, for example, a groove or milled recess, in particular a notch.08-01-2013
20120301642SMART WINDOW - A core-shell nanoparticle which includes a core formed of a transparent material and a shell including vanadium dioxide (VO11-29-2012
20120094040SPACER TAPE - A spacer tape (04-19-2012

Patent applications in class LIGHT TRANSMISSIVE SHEETS, WITH GAS SPACE THEREBETWEEN AND EDGE SEALED (E.G., DOUBLE GLAZED STORM WINDOW, ETC.)