Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


WITH PASSAGE IN BLADE, VANE, SHAFT OR ROTARY DISTRIBUTOR COMMUNICATING WITH WORKING FLUID

Subclass of:

415 - Rotary kinetic fluid motors or pumps

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20100074726GAS TURBINE AIRFOIL - A gas turbine airfoil (03-25-2010
20090220332AXIAL FLOW FLUID APPARATUS AND BLADE - An axial flow fluid apparatus axially provided with a plurality of blade rows having a plurality of blades arranged around a shaft is provided. A fluid passage for jetting a fluid to a downstream velocity defect region resulting from a blade is formed in at least one of blades constituting a blade row installed on the upstream side of the plurality of blade rows so as to lead from a positive pressure surface to a negative pressure surface or a trailing edge.09-03-2009
20090196736APPARATUS AND RELATED METHODS FOR TURBINE COOLING - An apparatus and a method for cooling and/or sealing a gas turbine by selectively boosting the pressure of air extracted at a lower extraction stage is provided. The pressure of the extracted air is boosted by an external compressor before it becomes available for cooling and/or sealing the turbine components. A bypass line includes a higher extraction stage providing air for cooling the turbine.08-06-2009
20090196737Cooling airflow modulation - A gas turbine engine airfoil (08-06-2009
20100008761COOLABLE AIRFOIL TRAILING EDGE PASSAGE - An airfoil suitable for use in a gas turbine engine having at least one feed passage at least in part defined along a feed axis which is at least perpendicular to a cavity axis to reduce dirt ingestion into a trailing edge passage.01-14-2010
20090123268Z-NOTCH SHAPE FOR A TURBINE BLADE - In one embodiment, a turbine bucket includes: a tip shroud with a front edge and a following edge, the front edge and the following edge including a Z-Notch profile according to the Cartesian coordinate values of X, Y and Z set forth in Table I; wherein the coordinate values are dimensional values representing a distance from an origin of an internal coordinate system for the bucket; and wherein when the X and Y values are connected by smooth continuing arcs, the Z-Notch profile is defined. A turbine is provided.05-14-2009
20120183389SEAL SYSTEM FOR COOLING FLUID FLOW THROUGH A ROTOR ASSEMBLY IN A GAS TURBINE ENGINE - A sealing system for a rotor assembly in a gas turbine engine is disclosed. The sealing system may include a seal formed from a side block and an upper seal that seals a gap between a radially outward extending first rotor supply channel in a rotor assembly terminating at an inlet of an axially extending second rotor supply channel that is in fluid communication with an internal blade cooling system of a turbine blade. The seal may include components that enhance the flow of cooling fluids over conventional configurations. In another embodiment, the sealing system may include an integrated sealing block configured to seal a gap between adjacent turbine blades at an intersection between the first and second rotor supply channels. The integrated sealing block may be formed from a radially inward extending leg and central body.07-19-2012
20130136579EXHAUST-GAS TURBOCHARGER - An exhaust-gas turbocharger (05-30-2013
20100104419TURBINE AIRFOIL WITH NEAR WALL INFLOW CHAMBERS - A turbine airfoil usable in a turbine engine and having at least one cooling system. At least a portion of the cooling system may be positioned in an outer wall of the turbine airfoil for receiving cooling fluids from a cooling fluid supply source, passing those fluids through the chambers in the outer wall, and exhausting those fluids into central cooling fluids collection chambers. The outer wall may include a plurality of outer wall cooling chambers that may be configured to pass cooling fluids in a counter flow direction. The outer wall cooling chambers may include a plurality of ribs including a plurality of impingement orifices for increasing the cooling efficiency of the cooling system.04-29-2010
20090155052MOUNTING TUBES FOR PRESSURIZING AN INTERNAL ENCLOSURE IN A TURBOMACHINE - A turbomachine comprising high- and low-pressure compressor shafts guided in bearings isolated from an internal enclosure by a sealing end plate, and radial pressurization tubes connecting the enclosure to an air passage passing through the intermediate casing, the ends of these tubes being engaged in sealed manner in radial ducts of the intermediate casing and in radial chimneys of the sealing end plate, the chimneys being of a length is sufficient to enable the ends of the tubes to be moved in translation therein between a service position and a mounting position for the tubes.06-18-2009
20090155051DUPLEX TURBINE SHROUD - A gas turbine engine shroud includes a row of different first and second shroud segments alternating circumferentially therearound. The first segments have a first pattern of first cooling holes extending therethrough. The second segments have a second pattern of second cooling holes extending therethrough. The corresponding patterns have different collective flowrate capabilities.06-18-2009
20090155050DIVERGENT TURBINE NOZZLE - A turbine nozzle includes a row of vanes extending radially in span between inner and outer bands. The vanes include opposite pressure and suction sidewalls and opposite leading and trailing edges. Each vane includes an inner pattern of inner cooling holes and an outer pattern of outer cooling holes distributed along the leading edge. The inner and outer holes diverge toward the corresponding inner and outer bands to preferentially discharge cooling air.06-18-2009
20100040455METHOD AND DEVICE FOR JOINING METAL ELEMENTS - A method for connecting metallic components, in particular components of a gas turbine, including: corresponding connecting surfaces of the components being connected by means of inductive HF pressure welding, and that during or after a sufficiently great heating of the connecting surfaces, the first component is moved by a definite path toward the second component, and is pressed against it and held there.02-18-2010
20130209227GAS TURBINE ENGINE COMPONENT WITH DIFFUSIVE COOLING HOLE - A component for a gas turbine engine includes a gas path wall having a first surface, a second surface exposed to hot gas flow, and a cooling hole extending through the gas path wall. The cooling hole includes an inlet formed in the first surface, an outlet formed in the second surface, cooling hole surfaces that define the cooling hole between the inlet and the outlet, and a longitudinal ridge formed along at least one of the cooling hole surfaces. The longitudinal ridge separates the cooling hole into first and second lobes. The cooling hole diverges through the gas path wall, such that cross-sectional area of the cooling hole increases continuously from the inlet through the cooling hole to the outlet.08-15-2013
20090220331TURBINE NOZZLE WITH INTEGRAL IMPINGEMENT BLANKET - A turbine nozzle segment includes: (a) an arcuate outer band segment; (b) a hollow, airfoil-shaped turbine vane extending radially inward from the outer band segment; (c) a manifold cover secured to the outer band such that the manifold cover and the outer band segment cooperatively define an impingement cavity; and (d) an impingement blanket disposed in the impingement cavity, the impingement blanket having at least one impingement hole formed therethrough which is arranged to direct cooling air at the outer band segment. A method is provided for impingement cooling the outer band segment.09-03-2009
20130045083TURBINE ROTOR DISK INLET ORIFICE FOR A TURBINE ENGINE - A turbine rotor body having at least one inlet orifice in fluid communication with a pre-swirl system such that the inlet orifice receives cooling fluids from the pre-swirl system is disclosed. The inlet orifice may be configured to reduce the relative velocity loss associated with cooling fluids entering the inlet orifice in the rotor, thereby availing the cooling system to the efficiencies inherent in pre-swirling the cooling fluids to a velocity that is greater than a rotational velocity of the turbine rotor body. As such, the system is capable of taking advantage of the additional temperature and work benefits associated with using the pre-swirled cooling fluids having a rotational speed greater than the turbine rotor body.02-21-2013
20130051980HIGH-PRESSURE TURBINE NOZZLE FOR A TURBOJET - A high temperature turbine nozzle with automatic regulation of flow of cooling air passing therethrough. Each of vanes includes a first sleeve drilled with holes and a second sleeve that is engaged in the first sleeve, drilled with corresponding holes, and made of a material possessing a coefficient of expansion different from that of the first sleeve.02-28-2013
20130051979TURBINE SHROUD SEGMENT WITH INTEGRATED IMPINGEMENT PLATE - A turbine shroud segment is metal injection molded (MIM) about an insert having a cooling air cavity covered by an impingement plate. The insert is held in position in an injection mold and then the MIM material is injected in the mold to form the body of the shroud segment about the insert.02-28-2013
20090104018COOLED BLADE FOR A TURBOMACHINE - The present invention relates to a cooled blade forming an upstream guide vane element for a turbomachine, wherein the airfoil comprises a longitudinal cavity with a first opening at one end and a second opening at the other end, a tubular sleeve being housed in the cavity with a first end in the first opening and a second end in the second opening, first spacers on the side of the first end and second spacers on the side of the second end of the sleeve making a space between the outer face of the sleeve and the wall of the cavity, the blade being arranged so that the sleeve is inserted into the cavity through the first opening.04-23-2009
20120219402VANE - A vane is provided for directing hot gases in a gas turbine engine. The vane includes a hollow aerofoil portion, which in use spans the working gas annulus of the engine. The vane further includes an impingement tube which forms a covering over the interior surface of the aerofoil portion and which has jet-forming apertures formed therein for the production of impingement cooling jets. The impingement tube includes two tube portions which are separately insertable into position into the aerofoil portion to form the covering. The o impingement tube further includes an expansion member which, when the tube portions are in position in the aerofoil portion, is locatable in the aerofoil portion to urge each tube portion outwardly and thereby holds the tube portions in position against the aerofoil portion.08-30-2012
20090092478SYSTEM AND METHOD FOR IMPROVING FLOW IN PUMPING SYSTEMS - A technique is provided for improving the efficiency of a centrifugal pump. The centrifugal pump comprises diffusers that optimize the area schedule through the diffuser to diffuse the total fluid velocity and recover dynamic head while minimizing flow separation. Each diffuser comprises an improved transition from the diffuser blade into the diffuser discharge duct to remove abrupt changes in area and to reduce fluid separation. The impellers also can be constructed with impeller transitions able to reduce fluid separation and improve the efficiency of the pump.04-09-2009
20110038710Application of Dense Vertically Cracked and Porous Thermal Barrier Coating to a Gas Turbine Component - A configuration for coating a turbine component such as a blade or vane with various forms of thermal barrier coating to provide enhanced temperature capability and increased strain tolerance is disclosed. A gas path surface of the platform, airfoil and airfoil fillet region are first coated with a bond coating. A dense vertically cracked (DVC) thermal barrier coating is then applied to at least the gas path surface of the platform and can be applied to the fillet region. A porous thermal barrier coating is then applied to at least the airfoil. The porous thermal barrier coating can also be applied over the DVC thermal barrier coating if desired.02-17-2011
20110038708TURBINE ENDWALL COOLING ARRANGEMENT - An airfoil is provided and includes an airfoil body having a pressure surface extendable between radial ends and a fluid path in an airfoil interior defined therein. The pressure surface is formed to further define a passage by which coolant is deliverable from the fluid path in the airfoil interior, in a perimetric direction from the pressure surface for the purpose of cooling a portion on the surface of the radial end.02-17-2011
20090274549WALL COOLING ARRANGEMENT - A wall cooling arrangement comprising on one side of a wall a multiplicity of cooling fluid inlet apertures and on the opposite of the wall a multiplicity of cooling fluid exit apertures, and in the body of the wall linking said inlet and exit apertures a network of multiply branched cooling passages. Flow of cooling fluid through a network is controlled by a throat positioned either at or close to the inlet to the passage network or at a location part way through the network, in which case there may be a plurality of inlet apertures feeding through a single throat to a plurality of outlet apertures.11-05-2009
20090269184Gas Turbine Engine Systems Involving Turbine Blade Platforms with Cooling Holes - Gas turbine engine systems involving turbine blade platforms with mateface cooling holes are provided. In this regard, a representative turbine blade for a gas turbine engine includes: an airfoil having a leading edge, a trailing edge, a pressure side and a suction side; and a blade platform on which the airfoil is disposed, the blade platform having a pressure side mateface located adjacent to the pressure side of the airfoil and a suction side mateface located adjacent to the suction side of the airfoil, the blade platform having a cooling hole operative to direct a flow of cooling air toward an adjacent blade platform.10-29-2009
20090245999HYBRID IMPINGEMENT COOLED AIRFOIL - A turbine nozzle for a gas turbine engine includes: (a) spaced-apart arcuate inner and outer bands; (b) a hollow, airfoil-shaped turbine vane extending between the inner and outer bands, the interior of the vane defining at least a forward cavity and a mid-cavity positioned aft of the forward cavity; (c) a hollow impingement insert received inside the mid-cavity, the impingement insert having walls which are pierced with at least one impingement cooling hole; (d) a passage in the turbine vane at a radially outer end of the forward cavity adapted to be coupled to a source of cooling air; and (e) a passage in the inner band in fluid communication with a radially inner end of the forward cavity and a radially inner end of the impingement insert.10-01-2009
20130164116HIGH PRESSURE TURBINE VANE COOLING HOLE DISTRIBUTION - A turbine vane for a gas turbine engine with an airfoil portion including a perimeter wall having first, second, and third sets of cooling holes defined therethrough, including the holes numbered HA-1 to HA-13, HB-1 to HB-13 and PA-1 to PA-9, respectively, and located such that a central axis thereof extends through the respective point 1 and point 2 having a nominal location in accordance with the X, Y, Z Cartesian coordinate values set forth in Table 3.06-27-2013
20120237333COOLED GAS TURBINE ENGINE COMPONENT - A gas turbine engine component is disclosed having a cooling fluid passageway that provides relatively cool fluid to a surface of the gas turbine engine component. The cooling fluid passageway can be shaped in cross section to reduce a stress present in the gas turbine engine component. One form of the shape is non-circular. The gas turbine engine component can be formed such that an overhanging material otherwise formed by the intersection of a cooling fluid passageway and a surface of the gas turbine engine component is absent. The gas turbine engine component can also have a depression formed near the surface of the gas turbine engine component such that the cooling fluid passageway exits into an upstream portion and a downstream portion of the depression.09-20-2012
20100266387TURBINE ENGINE ROTATING CAVITY ANTI-VORTEX CASCADE - A gas turbine engine rotor drum includes spaced apart discs providing a cavity between the discs. The discs are configured to rotate in a rotational direction about an axis. An annular support is mounted on at least one of the discs and within the cavity. A cascade of relatively short anti-vortex members is mounted circumferentially on the annular support. The anti-vortex members are tubular in shape and provide a radially extending passage. The anti-vortex members include an outer end having a circumferential side with an opening in fluid communication with the radial passage.10-21-2010
20100266386FLANGE COOLED TURBINE NOZZLE - A turbine nozzle includes outer and inner bands bounding nozzle vanes. The outer band includes an aft flange. An impingement baffle bridges the outer band and aft flange at the root thereof to provide impingement cooling.10-21-2010
20100266385Separation resistant aerodynamic article - An airfoil disclosed herein comprises a pressure surface 10-21-2010
20100111670SHROUD HANGER WITH DIFFUSED COOLING PASSAGE - A shroud hanger for a gas turbine engine has an arcuate body with opposed inner and outer faces and opposed forward and aft ends, the channel having at least one cooling passage therein which includes: (a) a generally axially-aligned channel extending through the body, the channel having one end open to an exterior of the body; and (b) a generally radially-aligned diffuser extending through the inner face and intersecting the channel.05-06-2010
20100278631TURBINE ENGINE HAVING COOLING PIN - In one embodiment, a turbine system may include a turbine casing, a shroud block coupled to the turbine casing, a fluid passage in the shroud block; and a pin configured to interface with the fluid passage. The pin may include a hollow shaft; a rod inserted into the hollow shaft; and a valve disposed on a distal end of the rod, wherein the valve is configured to open and close the fluid passage when the rod is actuated remotely through the hollow shaft.11-04-2010
20090202339PLATFORM COOLING STRUCTURE FOR GAS TURBINE MOVING BLADE - A platform cooling structure for a gas turbine moving blade is provided which is capable of improving cooling performance of a platform and of improving reliability of a moving blade in such a manner that a portion in the vicinity of a side edge of the platform which is away from moving blade cooling passageways and is easily influenced by thermal stress caused by high-temperature combustion gas, that is, an upper surface of the side edge is effectively cooled by guiding high-pressure cooling air, flowing to the moving blade cooling passageways, to a discharge opening formed in a surface of the platform in the vicinity of the side edge of the platform without particularly attaching an additional member such as a cover plate to the platform. A moving blade cooling passageway 08-13-2009
20130216355WATER PUMP IN VEHICLE - The present invention relates to a water pump in a vehicle.08-22-2013
20100247290TURBINE BLADE AND GAS TURBINE - A turbine blade and a gas turbine are provided in which the velocity of cooling fluid at the inlet of a pin fin region is improved so that the cooling performance at the trailing edge of the turbine blade can be improved. It includes an airfoil; a supply channel extending through the interior of the airfoil in the span direction, through which cooling fluid flows; a pin fin channel extending from the supply channel along the center line of the airfoil toward the trailing edge of the airfoil and opening at the trailing edge to the exterior of the airfoil; a plurality of gap pin fins projecting from a pair of opposing inner walls that constitute the pin fin channel at a region at the supply channel side of the pin fin channel and forming a gap therebetween extending in the span direction; pin fins connecting the pair of opposing inner walls at a region at the trailing edge side of the pin fin channel; and an insertion portion disposed in the gap to decrease the area of the channel of the cooling fluid at the region at the supply channel side of the pin fin channel.09-30-2010
20090074562NOZZLE GUIDE VANES - A turbine nozzle guide vane 03-19-2009
20090129915Turbine Airfoil Cooling System with Recessed Trailing Edge Cooling Slot - A cooling system for a turbine airfoil of a turbine engine having a trailing edge cooling slot positioned within the generally elongated, hollow airfoil and extending from the trailing edge chordwise into the generally elongated, hollow airfoil toward the leading edge such that a secondary trailing edge is offset upstream from the trailing edge. As such, the trailing edge cooling slot reduces stress formation at the trailing edge of the turbine airfoil.05-21-2009
20100034638Impingement cooling arrangement - An impingement cooling arrangement comprises a projection extending partially across a coolant passage upstream of a jet aperture. An end surface of the projection increases the available surface area for heat exchange with a cross flow whilst a coolant air flow jetted from the jet aperture can transgress a proportion of the air flow passing between the end surface and a junction surface incorporating the jet aperture. A spacing gap B between the end surface and the junction surface avoids localised distortions to the cross flow whilst the projection provides that the coolant air flow projected from the jet aperture mostly passes through a lower turbulence wake downstream of the projection for greater impingement upon a target surface for heat transfer and cooling efficiency. Typically the impingement cooling arrangement is incorporated within turbine blades or vanes of a jet engine.02-11-2010
20090324386GAS TURBINE - A gas turbine includes a shaft directional passage provided to a rotating member that rotates along a central axis of a rotor, which is a rotating axis of the rotating member, about the central axis, or a rotating axis of the rotating member, and in which cooling air flows along a direction of the rotating axis of the rotor, a plurality of radial directional passages provided in a circumferential direction of the rotating member, and compressing the cooling air by being provided outwardly from the center of the rotor, in which one end of each of the radial directional passages is communicated with the shaft directional passage and the other end is communicated with exterior of the rotating member.12-31-2009
20090142181Gas Turbine Engine Systems Involving Mechanically Alterable Vane Throat Areas - Gas turbine engine systems involving mechanically alterable vane throat areas are provided. In this regard, a representative vane for a gas turbine engine includes: a leading edge; a trailing edge; a suction side surface extending between the leading edge and the trailing edge; a cavity having an aperture located in the suction side surface; and a barrel located within the cavity and being moveable therein such that movement of the barrel alters an extent to which the barrel protrudes through the aperture.06-04-2009
20080304956COAL NOZZLE TIP SHROUD - An outer shroud for a solid fuel nozzle tip includes: an top shell portion and a bottom shell portion, each portion fabricated from a preform produced from a single sheet of flat stock and each shell portion including a forward area and a backward area and outlet sidewalls, wherein a right outlet sidewall and a left outlet sidewall are each separated from the forward area by a rounded corner; and a left inlet sidewall and a right inlet sidewall coupled to the top shell portion and the bottom shell portion12-11-2008
20100119357Gas Turbine - A gas turbine including a rotor shaft, a plurality of rotor blades that extend generally radially outwardly from the rotor shaft, each rotor blade including a shroud radially outward of an aerofoil, and a plurality of guide vanes located adjacent to the plurality of rotor blades, the plurality of guide vanes also extending generally radially outwardly is provided. The guide vanes operate to direct gas flowing through the turbine onto the rotor blades. A guide vane accommodates a flow of cooling fluid to an aperture in the guide vane that is located in a region that is adjacent both the radially outer end of the guide vane and the trailing edge of the guide vane. The flow of cooling fluid emanating from the aperture travels to impinge upon the shroud thereby cooling the shroud. The aperture is located in the high or low pressure side of the guide vane.05-13-2010
20100124485Aerofoil cooling arrangement - Within aerofoils (05-20-2010
20100129199Platform Cooling of Turbine Vane - A turbine vane is provided which includes a radial outer platform, a radial inner platform and an airfoil extending between the outer platform and the inner platform. Each platform has a gas washed surface facing towards the respective other platform, a non gas washed surface facing away from the respective other platform and a peripheral surface extending from the gas washed surface to the non gas washed surface. The peripheral surface includes an upstream section that is designed to be directed towards the gas flow washing the gas washed surface. Cooling fluid channels each include an opening in the peripheral surface or in the gas washed surface and are located in at least a section of the outer platform and/or in at least a section of the inner platform. The respective section directly adjoins the upstream section of the peripheral surface of the respective platform.05-27-2010
20100129194Castings, Casting Cores, and Methods - The pattern has a pattern material and a casting core combination. The pattern material has an airfoil. The casting core combination is at least partially embedded in the pattern material. The casting core combination comprises a metallic casting core and at least one additional casting core. The metallic casting core has opposite first and second faces. The metallic core and at least one additional casting core extend spanwise into the airfoil of the pattern material. In at least a portion of the pattern material outside the airfoil of the pattern material, the metallic casting core is bent transverse to the spanwise direction so as to at least partially surround an adjacent portion of the at least one additional casting core.05-27-2010
20100068033Turbine Airfoil Cooling System with Curved Diffusion Film Cooling Hole - A cooling system for a turbine airfoil of a turbine engine having at least one diffusion film cooling hole positioned in an outer wall defining the turbine airfoil is disclosed. The diffusion film cooling hole includes a first sidewall having a first radius of curvature about an axis generally orthogonal to a centerline of cooling fluid flow through the diffusion film cooling hole and a second sidewall having a second radius of curvature about an axis generally orthogonal to the centerline of cooling fluid flow through the at least one diffusion film cooling hole. The radii of curvature of the first and second sidewalls are different such that the diffusion film cooling hole includes an ever increasing cross-sectional area moving from an inlet to an outlet, thereby diffusing and reducing the velocity of cooling fluids flowing there through.03-18-2010
20100080688HOT GAS COMPONENT OF A TURBOMACHINE INCLUDING AN EMBEDDED CHANNEL - A component, especially a hot gas component of a turbomachine, has at least one passage (04-01-2010
20100080687Multiple Piece Turbine Engine Airfoil with a Structural Spar - A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.04-01-2010
20100098527FLUID FLOW MACHINE WITH PERIPHERAL ENERGIZATION NEAR THE SUCTION SIDE - A fluid flow machine has a main flow path (“MFP”) 04-22-2010
20100098526AIRFOIL WITH COOLING PASSAGE PROVIDING VARIABLE HEAT TRANSFER RATE - A turbine engine airfoil includes an airfoil structure having a side with an exterior surface. The structure includes a cooling passage extending a length within the structure and providing a convection surface facing the side. The convection surface is twisted along the length, which varies a heat transfer rate between the exterior surface and the convection surface along the length. In one example, the cooling passage is provided by a refractory metal core that is used during the airfoil casting process. The core includes multiple legs joined by a connecting portion. At least one of the legs is twisted along its length. The legs are deformed toward one another opposite the connecting portion to provide a desired core shape that corresponds to the shape of the cooling passage. Accordingly, the cooling passage provides desired cooling of the airfoil.04-22-2010
20110171005STEAM TURBINE - According to an embodiment, at least one first outer ring has an annular outer ring cavity to which external cooling steam is supplied. A radial direction cooling hole connecting with the outer ring cavity is formed in the stator blades connected to the first outer ring. An annular inner ring cavity connecting with the radial direction cooling hole is formed in a first inner ring constituting one diaphragm together with the first outer ring. Cooling steam blowing holes connecting an annular wheel space and the inner ring cavity are formed. The annular wheel space is formed between the first inner ring and a rotor wheel adjacent to the first inner ring.07-14-2011
20100124484Aerofoil and method for making an aerofoil - Within aerofoils, and in particular nozzle guide vane aerofoils in gas turbine engines problems can occur with regard to coolant flows from respective inlets at opposite ends of a cavity within the aerofoil. The cavity generally defines a hollow core and unless care is taken coolant flow can pass directly across the internal cavity. Previously baffle plates were inserted within the cavity to prevent such direct jetting across the cavity. Such baffle plates are subject to additional costs as well as potential unreliability problems. Baffles formed integrally with a wall within the aerofoil allow more reliability with regard to positioning as well as consistency of performance. The baffles can be perpendicular, upward or downwardly orientated or have a compound angle.05-20-2010
20090202338BLADE FOR A FLOW MACHINE - In a blade intended to be exposed to a gas flow at high speed during operation of a flow machine comprising the blade, the blade includes a front end designed to face towards the incoming gas flow and a rear end. The front end is provided with a concave area that is such that during operation a stagnation point for the incoming gas flow arises at a distance in front of an outer blade surface that defines the concave area and such that the outer blade surface is thereby at least partially protected from the incoming gas flow.08-13-2009
20100086394HYDRAULIC MACHINE - A hydraulic machine having a hydro turbine runner which has a crown at a center and a band along an outer periphery, and is formed around the axis of rotation, long blades which are arranged along the circumferential direction of the axis of rotation, and whose center-side ends are supported by the crown, and periphery-side ends are supported by the band, and short blades which are arranged between the long blades, and whose center-side ends are supported by the crown, periphery-side ends are supported by the band, and rear edges are curved in a rotation direction of the hydro turbine runner in turbine operation, on a plane of projection perpendicular to the axis of rotation.04-08-2010
20090274550GAS TURBINE COMPONENTS AND METHOD FOR MACHINING GAS TURBINE COMPONENTS - The present technology relates to the problem that during diverse machining steps of application to the production or reconditioning of internally cooled gas turbine blades, an undesired effect may be had on sections of the gas turbine blades and proposes, as an improvement, to inject the cavity of the gas turbine blades before the machining steps with a plastic material which can be removed without trace, such as polystyrene, which can be subsequently removed again, in particular by heat.11-05-2009
20090285670APPARATUS AND METHOD FOR DOUBLE FLOW TURBINE FIRST STAGE COOLING - A method of cooling a double flow steam turbine includes supplying steam flow to each nozzle of the sections of the turbine; reversing a portion of each steam flow to provide a reverse steam flow from an aft side to a forward side of each section. Each reverse steam flow is directed to an annular space between a rotor and a tub. The method further includes removing the reverse steam flows through a pipe, the pipe having a first end at the annular space at a first pressure and a second end at a second pressure that is lower than the first pressure. A double flow steam turbine, includes a pair of nozzles, each nozzle being provided at a section of the turbine; a rotor supporting buckets of the sections; a tub supporting the pair of nozzles; and a pipe extending from an annular space between the tub and the rotor. The pipe has a first end at the annular space and second end. A pressure at the first end of the pipe is greater than a pressure at the second end.11-19-2009
20100129197METHOD AND SYSTEM FOR COOLING ENGINE COMPONENTS - A method and system for a rotatable member of a turbine engine are provided. The rotatable member includes a substantially cylindrical shaft rotatable about a longitudinal axis, and a hub coupled to the cylindrical shaft through a conical shaft portion wherein the conical shaft portion includes a plurality of circumferentially-spaced air passages and wherein at least one of the plurality of air passages includes a non-circular cross section.05-27-2010
20090297335ASYMMETRIC FLOW EXTRACTION SYSTEM - A system for asymmetric flow extraction is described and claimed, the system comprising a flow path, a bleed slot in the flow path, a bleed cavity for receiving at least a portion of the fluid extracted from the flow path and a bleed passage in flow communication with the bleed slot and the bleed cavity wherein the bleed passage has at least one deflector having a shape such that the width of the bleed passage cross section varies in a direction normal to the direction of fluid flow in the bleed passage. In another embodiment, the deflector has an aerodynamic surface having a shape such that the flow passage between the aerodynamic surface and a surface located away from it has a cross sectional shape that is non-axisymmetric. In another embodiment, the bleed passage comprises an assembly of a plurality deflectors, arranged circumferentially.12-03-2009
20100111672Hesting Power Turbine Device - A power turbine employs a plurality of turbine blades which allows the turbine to regulate pressure and ventilate for a greater ability to generate power without back pressure of the power source. It also relieves much of the stress on the uni-body construction. The vent ports #30 work at various times to transfer pressure naturally from one compartment to another, greatly increasing the balance of pressure throughout the process within the turbine.05-06-2010
20100111671METHODS AND APPARATUS INVOLVING SHROUD COOLING - A turbine cooling component comprising a circumferential leading edge, a circumferential trailing edge, a pair of spaced and opposed side panels connected to the leading and trailing edges, an arcuate base connected to the trailing and leading edges having a fore portion, a midsection portion, an aft portion, opposed side portions, an outer surface partially defining a cavity operative to receive pressurized air, and an arcuate inner surface in contact with a gas flow path of a turbine engine, a first side cooling air passage in the base extending along the first side portion from the fore portion to the aft portion, and a fore cooling air passage in the fore portion of the base communicative with the side cooling air passage and the cavity, operative to receive the pressurized air from the cavity.05-06-2010
20100135772TURBINE AIRFOIL COOLING SYSTEM WITH PLATFORM COOLING CHANNELS WITH DIFFUSION SLOTS - A cooling system for a turbine airfoil of a turbine engine having suction side platform cooling channels and pressure side platform cooling channels for cooling hot spots in a platform attached to a turbine blade. The cooling system may include one or more pressure side platform cooling chambers having a diffusion slot for cooling downstream platforms on the suction side of the turbine blade. The diffusion slots reduce the velocity of the cooling fluids released from the platform to increase the capacity of the film cooling of downstream platforms.06-03-2010
20080273963Impingement skin core cooling for gas turbine engine blade - Turbine components, and in particular turbine blades, are provided with impingement cooling channels. Air is delivered along central channels, and the central channels deliver the air through crossover holes to core channels adjacent both a pressure wall and a suction wall. The air passing through the crossover holes impacts against a wall of the core channels.11-06-2008
20090169360Turbine Nozzle Segment - A turbine nozzle segment includes a band having a flowpath side and a non-flowpath side and an enclosure disposed on the non-flowpath side of the band. A plenum may be defined between the band and the enclosure and a discourager may extend from the enclosure.07-02-2009
20090169361COOLED TURBINE NOZZLE SEGMENT - A turbine nozzle segment may have a band having a flange extending radially from a non-flowpath side and an aft end. A plurality of airfoils may extend radially from a flowpath side of the band and may have trailing edges. A plurality of cooling holes may be disposed in the flange and directed at the aft end between the trailing edges.07-02-2009
20100034640NESTED CORE GAS TURBINE ENGINE - A fan for creating lift or thrust having a fan hub and fan blades depending from the fan hub. The fan blades have slots formed therein with openings facing substantially aft, relative to a rotation direction of the fan blades, wherein air blowing from the fan hub into the fan blades and out of the openings of the slots contribute to the aerodynamic performance of the fan blades to enhance the aerodynamic performance of the fan blades.02-11-2010
20090311091IMPELLER AND CENTRIFUGAL PUMP INCLUDING THE SAME - An example impeller includes: an impeller body in which an internal channel is formed, the internal channel extending inside the impeller body in a direction of a rotation axis spirally about the rotation axis to connect an inlet and an outlet; and at least one centrifugal vane provided in the impeller body. The internal channel including the inlet and the outlet has a predetermined passage diameter. An external channel is formed so as to continue to the outlet and go around the circumferential surface of the impeller body, the external channel being defined by the centrifugal vane and being recessed inward in the radial direction from the circumferential surface of the impeller body. At least a part in a flow direction of the external channel has a channel width in the direction of the rotation axis smaller than the width of the outlet.12-17-2009
20080286090Turbine Component - A plurality of film cooling holes 11-20-2008
20080267768HIGH-PRESSURE TURBINE OF A TURBOMACHINE - High-pressure turbine of a turbomachine A high-pressure turbine (10-30-2008
20090123267INLET FILM COOLING OF TURBINE END WALL OF A GAS TURBINE ENGINE - The disclosure provides a gas turbine engine having a plurality of nozzle vanes extending between an inner shroud wall and an outer shroud wall of the engine. Each of the vanes includes a leading edge and at least one cooling protrusion extending upstream from a center of the leading edge. A cooling system is provided that is operable to inject cooling air upstream from the vanes. The disclosure also provides a method of cooling a gas turbine engine. The method includes the steps of supplying cooling air to an engine nozzle upstream of a gas directing vane, and adjusting the flow of the cooling air with a cooling protrusion extending forward from a leading edge center of the vane.05-14-2009
20090180861COOLING ARRANGEMENT FOR TURBINE COMPONENTS - A turbine component includes an aft cooling circuit that extends between a turbine midsection and a turbine trailing end. The aft cooling circuit includes a trailing end section proximate the trailing end, a first interior section proximate the turbine midsection, and a first intermediate section fluidly connected between the trailing end section and the first interior section. A forward cooling circuit of the turbine component extends between the turbine midsection and a turbine leading end. The forward cooling circuit includes a leading end section proximate the leading end, a second interior section proximate the turbine midsection, and a plurality of second intermediate sections fluidly connected between the leading end section and the second interior section. The leading end section, the second intermediate section, the first intermediate section, and the trailing end section each include a plurality of coolant discharge openings for facilitating cooling of the turbine component.07-16-2009
20090162190Centrifugal Impeller With Internal Heating - An internal heating arrangement for a centrifugal impeller for a gas turbine engine is provided having at least one heating passage extending through into the rotor for directing air bled from the rotor exit along the backface and forwardly through the impeller.06-25-2009
20090162189Systems and Methods Involving Variable Throat Area Vanes - Systems and methods involving variable throat area vanes are provided. In this regard, a representative gas turbine engine includes: a vane extending into a gas flow path and having: an interior operative to receive pressurized air; a pressure surface portion; and a first port communicating between the interior and pressure surface portion, the first port being operative to receive the pressurized air from the interior and emit the pressurized air, wherein the emitted pressurized air displaces the gas flow path such that a throat area defined, at least in part, by the vane is modified.06-25-2009
20090129916TURBINE APPARATUS - A gas turbine engine comprising a rotor and a stator which define first, second and third cavities; the rotor and stator define a seal therebetween and which is located for sealing between the second and third cavities, the rotor comprises an aperture through which a gas flow passes from the first cavity to the second cavity characterized in that the seal comprises a deflector that extends axially over at least a portion of the aperture to deflect at least a part of the gas towards the rotor.05-21-2009
20090169359HEAT EXCHANGER ARRANGEMENT FOR TURBINE ENGINE - A turbine engine cooling arrangement includes a core passage for receiving a core flow for combustion, a first airflow source including a first passage adjacent the core passage for conveying a first airflow, and a second airflow source including a second passage adjacent the first passage for conveying a second airflow. A heat exchanger is thermally connected with the first passage and the second passage for transferring heat between the first airflow and the second airflow.07-02-2009
20080317585RECIPROCAL COOLED TURBINE NOZZLE - A turbine nozzle includes first and second vanes joined to outer and inner bands. The vanes include outboard sides defining outboard flow passages containing axial splitlines, and opposite inboard sides defining an inboard flow passage without axial splitline. The two vanes include different cooling circuits for differently cooling the inboard and outboard vane sides.12-25-2008
20090003988Vane assembly with metal trailing edge segment - Embodiments of the invention relate to a vane assembly formed by a forward airfoil segment and an aft airfoil segment. The aft segment is made of metal and can define the trailing edge of the vane assembly. The forward segment can be made of ceramic, CMC or metal. The forward and aft segments cannot be directly joined to each other because of differences in their rates of thermal expansion and contraction. The forward and aft segments can be positioned substantially proximate to each other so as to form a gap therebetween. In one embodiment, the gap can be substantially sealed by providing a coupling insert or leaf springs in the gap. A separate metal aft segment can take advantage of the beneficial thermal properties of the metal to improve cooling efficiency at the trailing edge without limiting the rest of the vane to being made out of metal.01-01-2009
20090185896GAS TURBINE AND GAS TURBINE COOLING METHOD - A gas turbine includes a nozzle vane and a sealing unit engaged with the nozzle vane inside a turbine supplied with combustion gases produced by mixing and burning air for combustion and fuel. The nozzle vane and the sealing unit are disposed in a channel of the downward flowing combustion gases on the outlet side of a gas path. A plurality of engagement portions between the sealing unit and the nozzle vane are provided successively from the upstream side toward the downstream side in a direction of flow of the combustion gases, and a downstream one of the plurality of engagement portions has a contact interface formed in a direction across a turbine rotary shaft. A reduction in the thermal efficiency of the gas turbine can be suppressed.07-23-2009
20110223005Airfoil Having Built-Up Surface with Embedded Cooling Passage - A component in a gas turbine engine includes an airfoil extending radially outwardly from a platform associated with the airfoil. The airfoil includes opposed pressure and suction sidewalls, which converge at a first location defined at a leading edge of the airfoil and at a second location defined at a trailing edge of the airfoil opposed from the leading edge. The component includes a built-up surface adjacent to the leading edge at an intersection between the pressure sidewall and the platform, and at least one cooling passage at least partially within the built-up surface at the intersection between the pressure sidewall and the platform. The at least one cooling passage is in fluid communication with a main cooling channel within the airfoil and has an outlet at the platform for providing cooling fluid directly from the main cooling channel to the platform.09-15-2011
20110223004APPARATUS FOR COOLING A PLATFORM OF A TURBINE COMPONENT - The present subject matter discloses a turbine component including a platform and an airfoil extending radially upward from the platform. A plurality of curved cooling passages may be defined in the platform. Each of the curved cooling passages may have at least one end disposed at an exterior surface of the platform. Additionally, each of the cooling passages may be configured to direct a cooling medium through the platform.09-15-2011
20110142597TURBINE BLADE STRUCTURE - Provided is a turbine blade structure that is capable of suppressing quality variations of cast products during the manufacturing of turbine blades. A turbine blade structure wherein the space inside an air foil is divided into a plurality of cavities, partitioned by rib members provided substantially perpendicular to the center line connecting a leading edge and a trailing edge, is provided with partition members that partition the inside of the cavities located in the central portion of the blade, excluding the blade leading-edge side and the blade trailing-edge side, into blade pressure side cavities and blade suction side cavities substantially along the center line, wherein blade leading-edge end portions and blade trailing-edge end portions of the partition members are inserted from one shroud surface side to the other shroud surface side along engagement grooves formed on the rib members.06-16-2011
20090081024Turbine blade - An aerofoil for a gas turbine engine, the aerofoil comprises a leading edge and a trailing edge, pressure and suction surfaces and defines therebetween an internal passage for the flow of cooling fluid therethrough. A particle deflector means is disposed within the passage to deflect particles within a cooling fluid flow away from a region of the aerofoil susceptible to particle build up and subsequent blockage, such as a cooling passage for a shroud of a blade.03-26-2009
20090081025SEGMENTED COOLING AIR CAVITY FOR TURBINE COMPONENT - A component for a gas turbine engine has an airfoil with internal cooling channels for delivering air from a radially outer end of the airfoil toward a radially inner end of the airfoil. The cooling channels are separated from adjacent cooling channels by sets of at least two disconnected wall segments.03-26-2009
20110229305COVER PLATE FOR TURBINE VANE ASSEMBLY - Embodiments of a cover plate and material blank for forming the cover plate may include features and characteristics to accommodate tolerance issues in a turbine vane assembly. In one embodiment, the cover plate is formed from a material blank configured to provide the cover plate with a flexible flange area that can be secured to the turbine vane assembly. The flange area may have a range of motion that may be responsive to an installation force, which effectively modifies the configuration of the cover plate to such degree as to seal the cover plate to the turbine vane assembly.09-22-2011
20090003989Blade with tangential jet generation on the profile - A blade of a fluid-flow machine has at least one cavity 01-01-2009
20090003987Airfoil with improved cooling slot arrangement - The present invention relates to airfoils, and in particular turbine blades and vanes, having cooling slots that are angled from a line of reference to effect metering of cooling air through the cooling slots thereof. This metered cooling airflow also creates a more stable film cooling layer about the surface of the airfoil.01-01-2009
20090208324Casing structure for stabilizing flow in a fluid-flow machine08-20-2009
20090208323METHODS AND APPARATUS FOR COOLING ROTARY COMPONENTS WITHIN A STEAM TURBINE - A method for cooling a rotating component within a steam turbine is provided. The method includes channeling a cooling fluid through an outer plenum defined in a stationary component of the steam turbine and channeling the cooling fluid from the outer plenum through a passageway defined in an airfoil of the stationary component. The cooling fluid is discharged from the airfoil passageway through an inner plenum of the stationary component to facilitate cooling an adjacent rotating component.08-20-2009
20090180860PROTECTION DEVICE FOR A TURBINE STATOR - Protection device (07-16-2009
20090252596Fluid flow machine with fluid injector assembly - A fluid flow machine has a flow duct 10-08-2009
20100178157HEAT EXCHANGE ELEMENT, MANUFACTURING METHOD THEREOF, AND HEAT EXCHANGE VENTILATOR - A heat exchange element according to the present invention has a stacked-layer structure in which sheet-like partition members and spacing members are stacked alternately, while the spacing members are joined with the partition members so as to form air flow passages together with the partition members. A plurality of adhesive layers included in the stacked-layer structure i.e., the plurality of adhesive layers that cause the partition members to be each joined with a corresponding one of the spacing members include one or more colored adhesive layers. It is therefore easy to manufacture a heat exchange element having a desired color arrangement at a low cost, regardless of the type of the heat exchange element.07-15-2010
20100183428MODULAR SERPENTINE COOLING SYSTEMS FOR TURBINE ENGINE COMPONENTS - A cooling system for use in a turbine engine component exposed to high temperatures during engine operation. The system includes a serpentine flow passage and an exhaust region. The serpentine flow passage includes a coolant supply inlet. The passage can be configured so that neighboring portions of the passage have coolant flowing in the same direction or, alternatively, in opposite directions. A number of flow disrupting structures, such as microfins and trip strips, can be located along the flow passage. The exhaust region can discharge coolant from the system at reduced exit momentum. The exiting flow can provide film cooling to the component. The cooling system can be provided in a small modular form, which can increase cooling design flexibility and can allow cooling designs tailored to the unique cooling requirements of the individual component. As a result, the modules can result in high levels of cooling effectiveness.07-22-2010
20100183429TURBINE BLADE WITH MULTIPLE TRAILING EDGE COOLING SLOTS - A cooling system for a turbine airfoil of a turbine engine has a multiple suction side cooling slots extending from a front edge on the suction side to the center of the trailing edge or even to the pressure side of the center line and a pressure side cooling slot curving to a pressure side outlet forward of the trailing edge and having a front pressure side lip that is aligned with or forward of the front edge of the suction side cooling slots. The suction side cooling slots receive cooling flow from the pressure side cooling slots through a boundary layer bleed valve, which is also aligned with or rearward of the pressure side lip. The cooling system may also combine double impingement cooling with these features. The cooling system minimizes shear mixing, reduces hot spots and can reduce the trailing edge thickness, resulting in more efficient stage performance and extended operational life.07-22-2010
20100183427TURBINE BLADE WITH MICRO CHANNEL COOLING SYSTEM - A cooling system for a turbine airfoil of a turbine engine has a multi-pass serpentine flow circuit providing a flow path from a forward cooling flow entry at the root and exhausting towards the trailing edge through a series of chord wise micro channels extending from the rearward pass of the multi-pass serpentine circuit to pressure side bleed slots, each having a forward pressure side lip and opening onto the pressure side adjacent the trailing edge. The micro channels can be formed by a series of spaced fins stacked span wise and extending between the outer wall on the pressure side and the outer wall on the suction side and extending chord wise from the rearward pass to the trailing edge. At least two trip strips can extend from sides of the fins into the micro channels and be staggered relative to trip strips extending into the micro channel from an adjacent fin, whereby turbulent flow levels in the micro channels are increased.07-22-2010
20100226755Turbine Vane for a Gas Turbine Engine Having Serpentine Cooling Channels Within the Outer Wall - A turbine vane for a gas turbine engine having an outer wall containing a plurality of serpentine cooling channels. The serpentine cooling channels may be configured to receive cooling fluids from internal cooling fluids supply channels. The serpentine cooling channels may be positioned in the pressure side and suction side outer walls and configured such that a first pass is positioned radially outward from an internal chamber a greater distance than a second pass. As such, cooling fluids are first passed proximate to an outer surface where the fluids are heated and then passed proximate to an inner surface, thereby establishing a smaller thermal gradient than typically found in conventional turbine blade outer walls.09-09-2010
20100239412Film-Cooling Augmentation Device and Turbine Airfoil Incorporating the Same - A turbine airfoil is disclosed. The airfoil includes one of a turbine shroud, liner, vane or blade, including an airfoil sidewall having a film-cooling hole that extends between an airfoil cooling circuit and an airfoil surface. The airfoil also includes an insert disposed in the film-cooling channel having a body. The body has a proximal end configured for disposition proximate the airfoil surface and a distal end. The body is also configured to define a passageway that extends between the distal end and proximal end upon disposition in the film-cooling hole.09-23-2010
20100221098Peripheral Microcircuit Serpentine Cooling for Turbine Airfoils - A turbine component has an airfoil portion with at least one central core element, a pressure side wall, and a suction side wall. The airfoil portion also has a serpentine cooling passageway in at least one of the walls. In a preferred embodiment, the airfoil portion has a serpentine cooling passageway in both of the pressure and suction side walls. A refractory metal core for forming the serpentine cooling passageway(s) is also described.09-02-2010
20100254801COOLED AEROFOIL FOR A GAS TURBINE ENGINE - A cooled aerofoil for a gas turbine engine has an aerofoil section with pressure and suction surfaces extending between inboard and outboard ends thereof. The aerofoil section includes first and second internal passages for carrying cooling air. The aerofoil section further includes a plurality of holes in the external surface of the aerofoil section which receive cooling air from the internal passages. The external holes are arranged such that cooling air exiting a first portion of the external holes participates in a cooling film extending from the leading edge of the aerofoil section over said pressure surface and cooling air exiting from a second portion of the external holes participates in a cooling film extending from the leading edge over said suction surface. The first portion of external holes receives cooling air from the first internal passage, and the second portion of external holes receives cooling air from the second internal passage. The first and second internal passages are supplied with cooling air from respective and separate passage entrances. Each entrance is located at either the inboard end or the outboard end of the aerofoil section.10-07-2010
20100254802ROTOR ARRANGEMENT - With highly loaded rotors and stators problems can occur with secondary flows sweeping low momentum fluid across the blades reducing efficiency. By provision of collector slots to collect the secondary air and direct that air to a return slot in a rotor hub it is possible to provide impetus to the collected secondary flow to an outlet slot such that there is dispersal of the secondary flow and therefore reduce the effects upon the overall performance of a gas turbine engine incorporating the arrangement.10-07-2010
20100129198HYDRAULIC MACHINE INCLUDING MEANS FOR INJECTING A FLOW DRAWN FROM A MAIN FLOW - The invention relates to a hydraulic machine through which a main flow (E) of water passes, including at least one turbine blade profile (05-27-2010
20120195737Gas turbine engine - A gas turbine engine including a segment of an annular guide vane assembly is provided. When the engine is used, the segment directs hot combustion gases onto rotor blades of the engine. The segment includes a platform disposed at a side of the segment radially inward/outward with respect to the axis of rotation of the engine. The platform has a trailing edge portion downstream with respect to the flow of hot combustion gases through the segment, the trailing edge portion includes a rail that extends radially inwardly/outwardly from the trailing edge portion. The engine also includes a support and cooling arrangement for supporting the segment and directing a cooling fluid to cool the segment. The arrangement is located radially inward/outward of the platform, and includes a flange part that extends radially outwardly/inwardly from the arrangement. The arrangement further includes a leaf seal and a retaining pin.08-02-2012
20090074563SEAL FOR GAS TURBINE ENGINE COMPONENT - A gas turbine engine component includes a pressurized fluid source, an airfoil, and a seal member for selectively providing sealing at an end of the airfoil. The seal member includes a stowed position for non-sealing and a deployed position for sealing. The seal member is operatively connected with a pressurized fluid source for moving the seal member between the stowed position and the deployed position.03-19-2009
20090016871Systems and Methods Involving Variable Vanes - Systems and methods involving vanes are provided. In this regard, a representative method for modifying the throat area between vanes of a gas turbine engine includes: directing a gas flow path of the gas turbine engine between a first vane and a second vane, wherein each of the first vane and the second vane has an outer surface and an interior; and emitting pressurized air from outlet ports communicating between the outer surface and the interior of the first vane, wherein the emitted pressurized air from the first vane modifies a throat area between the first vane and the second vane.01-15-2009
20090196738GAS TURBINE AND GAS TURBINE COOLING METHOD - A gas turbine includes a nozzle vane and a sealing unit engaged with the nozzle vane inside a turbine supplied with combustion gases produced by mixing and burning air for combustion and fuel. The nozzle vane and the sealing unit are disposed in a channel of the downward flowing combustion gases on the outlet side of a gas path. A plurality of engagement portions between the sealing unit and the nozzle vane are provided successively from the upstream side toward the downstream side in a direction of flow of the combustion gases, and a downstream one of the plurality of engagement portions has a contact interface formed in a direction across a turbine rotary shaft. A reduction in the thermal efficiency of the gas turbine can be suppressed.08-06-2009
20090148269Gas Turbine Engines and Related Systems Involving Air-Cooled Vanes - Gas turbine engines and related systems involving air-cooled vanes are provided. In this regard, a representative vane for a gas turbine engine includes: an airfoil having a leading edge, a pressure surface, a trailing edge and a suction surface; and a cooling air channel; the suction surface being formed by an exterior surface of a first wall portion and an exterior surface of a second wall portion, the first wall portion spanning a length of the suction surface between the second wall portion and the trailing edge; the cooling air channel being defined, at least in part, by an interior surface of the first wall portion, the first wall portion exhibiting a thickness that is thinner than a thickness exhibited by the second wall portion.06-11-2009
20110123312GAS TURBINE ENGINE COMPONENTS WITH IMPROVED FILM COOLING - An engine component includes a body; and a plurality of cooling holes formed in the body. At least one of the cooling holes has cross-sectional shape with a first concave portion and a first convex portion.05-26-2011
20110123310TURBINE AIRFOIL PLATFORM COOLING CORE - A gas turbine engine component has a platform and an airfoil extending from the platform. The platform has a pressure side and a suction side. A cooling passage is formed within the platform, and extends along a pressure side of the platform. Air leaves the passage through an air outlet on a suction side of the platform.05-26-2011
20090067987Airfoil replacement repair - A method of repairing a vane segment for a gas turbine engine includes removing an engine-run cooling baffle from the vane segment, forming a non-engine-run manufacturing detail that includes an inner platform, an outer platform, and an airfoil, attaching the engine-run cooling baffle to the non-engine-run manufacturing detail, and marking the non-engine-run manufacturing detail with a serial number associated with the vane segment from which the engine-run cooling baffle was removed.03-12-2009
20110110761GAS TURBINE HAVING AN IMPROVED COOLING ARCHITECTURE - A thermal machine includes a hot gas channel; a shell bounding the hot gas channel; a cooling shirt surrounding the shell; and a cooling channel disposed between the shell and the cooling shirt and configured to convection cool the hot gas channel with a cooling medium, wherein the cooling shirt includes at least one local divergence in the guidance of the cooling medium so as to compensate for non-uniformities in at least one of a thermal load on the shell and a flow of the cooling medium in the cooling channel.05-12-2011
20110243711INTERIOR COOLING CHANNELS - Cooling channels through the interior of a machine component that include: a first set of cooling channels, the first set of cooling channels including a plurality of parallel channels that reside in a first plane; a second set of cooling channels, the second set of cooling channels including a plurality of parallel channels that reside in a second plane. Along a longitudinal axis, the cooling channels of the first and second set of cooling channels may include an alternating diverging-converging configuration, the alternating diverging-converging configuration creating a series of broader chamber sections connected by a series of narrower throat sections. The first set of cooling channels and the second set of cooling channels may be configured such that, when viewed from the side, a crisscrossing pattern with a plurality of intersections is formed. The first plane resides in spaced relation to the second plane, with the first plane being offset from the second plane such that a plurality of the chamber sections of the first set of cooling channels connect to a plurality of the chamber sections of the second set of cooling channels.10-06-2011
20090214328BLADES FOR GAS TURBINE ENGINES - A blade for a gas turbine engine comprises an aerofoil having a root portion, a tip portion located radially outwardly of the root portion, and leading and trailing edges extending between the root portion and the tip portion. A shroud extends transversely from the tip portion of the aerofoil and the aerofoil defines interior cooling passages which extend between the root portion and the tip portion. The aerofoil includes a wall member adjacent the trailing edge and a support structure extending from the wall member to the shroud to support the shroud. The support structure permits a flow of cooling air from a cooling passage to the trailing edge at a region proximate the tip portion of the aerofoil. Optionally, the aerofoil also includes a flow disrupting arrangement.08-27-2009
20110044798TURBINE NOZZLE FOR A TURBOMACHINE - A turbine nozzle for a turbomachine, the nozzle including two coaxial platforms interconnected by radial vanes, an inner platform being connected to an annular partition that is festooned or crenellated and on which there is fastened an annular support carrying elements made of abradable material. The support is capable of sliding circumferentially over the partition between a mounting-and-dismounting position and a position for locking the support on the partition.02-24-2011
20110044796FLUIDFOIL TIP VORTEX DISRUPTION - A fluidfoil tip vortex disruption arrangement. There is a fluid inlet on a pressure side of the fluidfoil; and a fluid outlet in a low pressure region at or near the tip of the fluidfoil. Fluid exiting the fluid outlet inserts instability into a tip vortex to disrupt or destroy the vortex.02-24-2011
20110044795TURBINE VANE PLATFORM LEADING EDGE COOLING HOLES - A vane for use in a gas turbine engine has a platform connected to an airfoil. There is a cooling passage for supplying cooling air to the platform. A cooling chamber supplies cooling air to a plurality of cooling slots at the platform. The cooling slots have a non-uniform cross section.02-24-2011
20110123311SERPENTINE CORED AIRFOIL WITH BODY MICROCIRCUITS - A gas turbine engine component has an airfoil that extends from a leading edge to a trailing edge, and a suction side and has a pressure side. There are cooling passages extending from a root of the airfoil toward a tip of the airfoil. The cooling passages include a straight passage extending from the root toward the tip and adjacent the leading edge. A serpentine passage has at least three connected paths and is spaced from the straight passage toward the trailing edge. A cooling circuit is provided between the pressure wall and each of the three serpentine paths, and the straight path. A cooling circuit is provided between the suction wall and the straight passage. There is no cooling between at least a downstream one of the at least three paths of the serpentine passage and the suction wall.05-26-2011
20110250053FLUID TURBINES - Shrouded fluid turbines of various configurations are disclosed. The shrouded fluid turbines include an impeller, a turbine shroud surrounding the impeller, and an ejector shroud around the turbine shroud. The ejector shroud may completely surround the turbine shroud. The turbine shroud may have a plurality of mixing lobes that form a crenellated trailing edge. Alternatively, the turbine shroud may have a plurality of open slots. Means for directing fluid flow into the plurality of open slots may include an ejector shroud that seals with the turbine shroud downstream of the open slots. A plurality of fluid ducts may also connect individually to each open slot. An external stator may be connected to an exterior surface of the ejector shroud.10-13-2011
20110097191METHOD AND STRUCTURE FOR COOLING AIRFOIL SURFACES USING ASYMMETRIC CHEVRON FILM HOLES - A film-cooled turbine structure is configured with one or more asymmetric chevron film cooling holes for improving film cooling for a variety of airfoil surfaces or airfoil regions, particularly in regions and applications where the surface fluid streamline curvature is significant.04-28-2011
20090028692Systems and Methods for Providing Vane Platform Cooling - Systems and methods for cooling vane platforms are provided. In this regard, a representative method for cooling a vane platform includes: providing a cooling channel on a platform from which a vane airfoil extends, the cooling channel being defined by a cooling surface and a channel cover, the channel wall being spaced from the cooling surface and located such that the cooling surface is positioned between a gas flow path of the vane and the channel cover; and directing a flow of cooling air through the cooling channel such that heat is extracted from the cooling surface of the platform by the flow of cooling air.01-29-2009
20100129195Castings, Casting Cores, and Methods - The pattern has a pattern material and a casting core combination. The pattern material has an airfoil. The casting core combination is at least partially embedded in the pattern material. The casting core combination comprises a plurality of metallic casting cores. Each metallic casting core has opposite first and second faces and a respective portion along the trailing edge of the airfoil. At least two of the metallic cores have sections offset between the pressure side and the suction side.05-27-2010
20110081228INTERTURBINE VANE WITH MULTIPLE AIR CHAMBERS - A gas turbine engine has a mid turbine frame disposed between turbine rotor assemblies. The mid turbine frame includes hollow airfoils radially extending through an annular gas path duct. The airfoils each include a double-walled leading edge structure to define a front chamber separated from a rear chamber defined in the remaining space within the airfoil.04-07-2011
20100124483Apparatus and method for cooling a turbine airfoil arrangement in a gas turbine engine - A turbine airfoil arrangement for a gas turbine engine includes an airfoil having an inlet and an exit, the inlet configured to receive a cooling gas flow operable to cool at least part of an other airfoil; and a passage disposed in the airfoil and fluidly coupled to the inlet and the exit, the exit being configured to pass at least some of the cooling gas flow to the other airfoil.05-20-2010
20110076133 TURBOMACHINE COMPRESSOR WITH AN AIR INJECTION SYSTEM - A turbomachine or high pressure compressor including a stator casing housing a plurality of compression stages that are spaced apart in an axial direction along the central axis of the turbomachine, each compression stage including a row of rotor blades followed by a row of stator vanes. The compressor further includes an air injection system including at least one air injection passage through the casing and including an outlet segment that opens out in an inclined manner upstream from and directed towards a row of rotor blades into a set-back zone of the inside face of the casing.03-31-2011
20110070069STEAM TURBINE HAVING ROTOR WITH CAVITIES - A steam turbine and a rotor are disclosed having steam extending internally along at least part of the rotor. The rotor includes an interface and a steam passage system formed in the rotor, the passage system including a first inlet flow passage to the interface, the first inlet flow passage configured to receive steam from a first region of an outer surface of the rotor, a first outlet flow passage from the interface, the first outlet flow passage configured to pass steam to a second region of the rotor, a second inlet flow passage to the interface, the second inlet flow passage configured to receive steam from a third region of the outer surface of the rotor, a second outlet flow passage from the interface, the second outlet flow passage configured to pass steam to a fourth region of the rotor.03-24-2011
20120201653GAS TURBINE ENGINE AND COOLED FLOWPATH COMPONENT THEREFOR - One embodiment of the present invention is a unique gas turbine engine. Another embodiment of the present invention is a unique cooled gas turbine engine flowpath component. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines and cooled gas turbine engine flowpath components. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.08-09-2012
20120201652CROSS-OVER PURGE FLOW SYSTEM FOR A TURBOMACHINE WHEEL MEMBER - A wheel member includes a body having a first surface that extends to a second surface through an intermediate portion. The body includes an outer diametric surface and a central bore. A first plurality of purge circuits are formed in the body. The first plurality of purge circuits extend from a first end to a second end through the body. The first plurality of purge circuits are arranged to direct a first purge flow in a first direction. A second plurality of purge circuits are formed in the body and fluidly isolated from the first plurality of purge circuits. The second plurality of purge circuits extend from a first end portion to a second end portion through the body and are arranged to direct a second purge flow in a second direction, that is distinct from the first direction, to establish a cross-over purge flow system.08-09-2012
20120034068VENTILATION INLET - A ventilation inlet comprising a ventilation pipe to receive flow from a first flow zone and to deliver the flow to a second flow zone; a divider arranged to divide a portion of the ventilation pipe into a static pressure zone and a total pressure zone; and a deflector arranged to direct flow from the total pressure zone at least partially across the static pressure zone to restrict delivery of the flow from the static pressure zone to the second flow zone dependent on the pressure of the flow in the first flow zone.02-09-2012
20100034639Air directing assembly and method of assembling the same - A gas turbine engine assembly is provided. The gas turbine engine assembly includes a high-pressure compressor including a first rotor and a second compressor rotor disposed downstream from the first rotor, a high-pressure turbine coupled downstream to the compressor by a first shaft, and an air directing assembly coupled between the first and second compressor rotors for selectively channeling airflow discharged from the first compressor rotor through the first shaft. A method of assembling a gas turbine engine is also provided.02-11-2010
20100014958TURBINE ENGINE ROTOR DISC WITH COOLING PASSAGE - Disclosed is a gas turbine engine rotor disc with a plurality of cooling passages having an essentially radial orientation relative to an axis of rotation of the rotor disc, each cooling passage having an inlet and an outlet and being included relative to a rotor disc surface and a cut-out arranged at the passage at an outlet end of the passage. Each cooling passage terminating in a slot is arranged in the periphery of the rotor disc. Each slot is sized and configured to receive a glade root.01-21-2010
20100008758LEADING EDGE COOLING WITH MICROCIRCUIT ANTI-CORIOLIS DEVICE - A turbine engine component, such as a high pressure turbine blade, has an airfoil portion having a pressure side, a suction side, and a leading edge. A cooling system is provided within the leading edge. The cooling system includes at least one peripheral leading edge cooling channel for creating anti-Coriolis forces in the leading edge of the airfoil portion.01-14-2010
20090324385Airfoil for a gas turbine - An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.12-31-2009
20090317234CROSSFLOW TURBINE AIRFOIL - A turbine airfoil includes pressure and suction sidewalls extending axially in chord between opposite leading and trailing edges. The sidewalls are spaced transversely apart to define flow channels extending longitudinally and separated chordally by partitions bridging the sidewalls. A perforate partition includes a row of crossover holes extending obliquely therethrough.12-24-2009
20110164960HEAT TRANSFER ENHANCEMENT IN INTERNAL CAVITIES OF TURBINE ENGINE AIRFOILS - An airfoil includes a leading edge, a trailing edge, a suction side and a pressure side; a plurality of internal cooling cavities extending radially within the airfoil, one of the plurality of internal cavities extending along the trailing edge. The trailing edge is provided with a plurality of coolant exit apertures extending therealong. A plurality of vortex generators is formed on an internal surface of at least one of the pressure and suction sides of the airfoil. The vortex generators are arranged in radially spaced relationship in one of the plurality of internal cooling cavities, extending substantially parallel to and in proximity to the plurality of coolant exit apertures.07-07-2011
20080247862COMPRESSOR INLET DUCT - An inlet for a compressor having a housing defining a generally C-shaped inlet opening and a rotor cavity configured to contain first and second rotors is provided. The inlet includes an inlet duct defining an inlet opening and a generally C-shaped outlet opening. The inlet duct has an inner wall defining a cavity operable to communicate airflow between the inlet opening and the generally C-shaped outlet opening. The generally C-shaped outlet opening of the inlet duct is substantially similar to the shape of the generally C-shaped inlet opening of the housing. The inner wall includes a floor portion and a roof portion. At least a portion of the floor portion is contoured to impart a velocity component to the airflow complementary to the tangential velocity of each of the first and second rotors during rotation of the first and second rotors.10-09-2008
20100329849TURBINE ROTOR - A turbine rotor which is easy to manufacture and has a high tolerable temperature is provided. A highly efficient steam turbine power plant is also provided. The turbine rotor is configured from a rotor shaft, an inner rotor disc constructed integrally with the rotor shaft, and an outer rotor disc which is welded to the inner rotor disc via a weld metal part and has a structure for fixing a turbine blade. The outer rotor disc preferably has a cooling hole which extends in an axial direction to penetrate the outer rotor disc over the thickness of the outer rotor disc.12-30-2010
20100329847STATIONARY BLADE AND STEAM TURBINE - A stationary blade and a steam turbine capable of reducing self-excited vibrations with a simple configuration are provided. A stationary blade has a cavity, extending in a blade-width direction, formed therein and slits communicating between the cavity and the outside. A wave-shaped plate spring that is in sliding contact with at least one of a pressure-side member and a suction-side member is provided between the pressure-side member, which is a portion on the pressure side of the cavity, and the suction-side member, which is a portion on the suction side of the cavity. When the stationary blade is elastically deformed, the wave-shaped plate spring causes friction between itself and at least one of the pressure-side member and the suction-side member. This friction attenuates relative positional displacement between the pressure-side member and the suction-side member. Thus, self-excited vibrations occurring at the stationary blade can be reduced.12-30-2010
20100329848SHROUDLESS BLADE - A shroudless blade for use in a compressor or fan of an axial flow gas turbine engine includes a treatment to the tips of the blades to improve the surge margin of the compressor. A series of cross bleed holes are formed at the tip of the blade, which may be a stator or rotor component, extending between the pressure and suction sides of the blades. Notches are provided at the tip of the blades to provide initiation sites for any fatigue cracks such that the cracks propagate from the base of these slots or notches and radially inwards into the body of the blades. The present invention provides an arrangement, which by provision of the cross bleed holes the propagation of the cracks is arrested. A preferred placement and orientation for the holes for best mechanical and aerodynamic performance is described.12-30-2010
20100329846TURBINE ENGINE COMPONENTS - A turbine engine component includes a wall, a main opening, and two clusters of two or more auxiliary openings. The wall includes cool and hot air sides. The main opening extends between the cool air side and the hot air side and has an inlet and an outlet. The inlet is formed on the cool air side, and the outlet is formed on the hot air side. The first cluster of two or more auxiliary openings extends from the main opening to the hot air side. The second cluster of two or more auxiliary openings extends from the main opening to the hot air side. The main opening may be cylindrical or conical with a converging passage extending from the cool air side to the hot air side. The converging main opening may enhance flow through the auxiliary openings especially at high blowing ratios.12-30-2010
20110135446Castings, Casting Cores, and Methods - If a refractory metal core (RMC) is punched, the punching asymmetry may be reflected in an asymmetry of the cast article features cast by the punched features. The punched features may have a shear zone and a fracture zone. The shear zone of the RMC will cast a relatively narrow portion of the post near one end; whereas the fracture zone will cast a relatively broader portion near the other end. The broader portion will also have a relatively shallow transition to the adjacent face of the slot-like passageway cast by the RMC. Where there is a stress asymmetry in the cast article in-use, the punching direction may be chosen so that the relatively broad portions of the post fall along the relatively higher stress face of the passageway.06-09-2011
20110135447SYSTEM FOR REDUCING THE LEVEL OF EROSION AFFECTING A COMPONENT - A system for removing moisture from a steam/water mixture engaging a stationary component of a steam turbine. The system includes an airfoil located within a flow path of a steam turbine. The airfoil is configured for removing moisture from a steam/water mixture traveling in the flow path. To this end, the airfoil includes a cavity in flow communication with the steam path through at least one inlet and outlet opening, near the leading and trailing edge of the airfoil, respectively. Moisture and steam are extracted from the surface through the inlet openings, the steam and water are separated in the cavity, the separated water flows towards the bottom end, and the dry steam flows through the outlet opening and returns to the steam path. The dry steam blowing out of the trailing edge reduces the size of secondary droplets, and thereby prevents erosion.06-09-2011
20110052373HIGH-TURNING DIFFUSER STRUT WITH FLOW CROSS-OVER SLOTS - A turning strut for use in a diffuser of a turbine engine has a leading edge with first and second opposing surfaces depending therefrom that terminate at a trailing edge. Slots extend through the turning strut and reduce in volume from the first surface to the second surface. During turn down operation of the turbine engine, exhaust flow impacts the leading edge at a deviated swirl angle. This results in exhaust flow at the first surface being at a higher pressure than at the second surface, which causes exhaust flow to be induced through the slots. The reduction in slot volume causes exhaust flow through the slots to accelerate. This exhaust flow from the slots is combined with exhaust flow at the second surface. Thusly, momentum of exhaust flow at the second surface is increased to maintain the second laminar boundary layer at the second surface.03-03-2011
20110052372TURBINE DISC AND RETAINING NUT ARRANGEMENT - A turbine rotor for a gas turbine engine comprises a disc having a hub defining a central bore for receiving an engine shaft. A nut retains the disc on the shaft. The disc retaining nut has at least one cooling passage defined therein and disposed for directing a flow of cooling air passing through the bore of the disc.03-03-2011
20110044797ELECTRICAL CONDUCTOR PATHS - A component, for example an aerofoil vane or other gas path structure in a gas turbine machine such as a gas turbine engine, in which an insulated electrical conductor path (02-24-2011
20100158669MICROCIRCUITS FOR SMALL ENGINES - A turbine engine component for use in a small engine application has an airfoil portion having a root portion, a tip portion, a suction side wall, and a pressure side wall. The suction side wall and the pressure side wall have the same thickness. Still further, the turbine engine component has a platform with an internal cooling circuit.06-24-2010
20100068034CMC Vane Assembly Apparatus and Method - A metal vane core or strut (03-18-2010
20100068032Turbine Airfoil Cooling System with Diffusion Film Cooling Hole - A cooling system for a turbine airfoil of a turbine engine having at least one diffusion film cooling hole positioned in an outer wall defining the turbine airfoil is disclosed. The diffusion film cooling hole includes a first section extending from an inner surface of the outer wall into the outer wall, a second section extending the first section toward an outer wall, and a third section extending from the second section and terminating at an outer surface of the outer wall. The diffusion film cooling hole may provide a metering capability together with diffusion sections that provide a larger film cooling hole breakout and footprint, which create better film coverage and yield better cooling of the turbine airfoil. The diffusion film cooling hole may provide a smooth transition, which allows the film cooling flow to diffuse better in the second and third sections of the diffusion film cooling hole.03-18-2010
20110262265INSTALLATION HAVING A THERMAL TRANSFER ARRANGEMENT - A gas turbine engine 10-27-2011
20110188994METHOD AND SYSTEM FOR DETERMINING GAS TURBINE TIP CLEARANCE - A system for sensing at least one physical characteristic associated with an engine including a turbine having a plurality of blades turning inside a casing, the system including: a pressure sensor coupled substantially adjacent to the casing and including at least one output; a port in the turbine casing for communicating a pressure indicative of a clearance between the blades and casing to the pressure sensor; a cooling cavity substantially surrounding the pressure sensor; and, an inlet for receiving fluid from the engine and feeding the fluid to the cooling cavity to cool the pressure sensor; wherein, the pressure sensor output is indicative of the clearance between the blades and casing.08-04-2011
20110188993RING SECTOR OF TURBOMACHINE TURBINE - A turbine ring sector comprising: 08-04-2011
20100028131Component for a Turbine Engine - A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.02-04-2010
20120308360OVERLAP SEAL FOR TURBINE NOZZLE ASSEMBLY - Systems for thermally regulating portions of a turbine are disclosed. In one embodiment, a turbine nozzle assembly includes: an outer diaphragm ring; a vane physically connected to the outer diaphragm ring; and an inner diaphragm ring physically connected to the vane, the inner diaphragm ring including a first axial tooth configured to interact and substantially form a seal with a second axial tooth disposed on a bucket shank.12-06-2012
20090067986VORTEX SPOILER FOR DELIVERY OF COOLING AIRFLOW IN A TURBINE ENGINE - A vortex spoiler (03-12-2009
20090324387Aft frame with oval-shaped cooling slots and related method - An aft frame adapted to interface between a combustor transition piece and a first stage turbine nozzle includes: a closed-periphery frame comprised of a top, bottom and pair of side walls. A plurality of cooling holes or apertures having elliptical or oval cross-sectional shapes are provided in one or more of the top, bottom and pair of side walls, extending axially through the closed-periphery frame. The cooling holes have major and minor axes arranged such that the major axes are substantially parallel with the top and bottom walls.12-31-2009
20120148383GAS TURBINE VANE WITH COOLING CHANNEL END TURN STRUCTURE - A vane structure for a gas turbine engine. The vane structure includes a radially outer platform and a radially inner platform, and an airfoil having an outer wall extending radially between the outer platform and the inner platform. A cooling passage is defined within the outer wall and has a plurality of radially extending channels. An outer end turn structure is located at the outer platform to conduct cooling fluid in a chordal direction between at least two of the channels. The outer end turn structure includes an enlarged portion wherein the enlarged portion is defined by an enlarged dimension, in a direction transverse to the chordal direction, between the at least two channels.06-14-2012
20100008760GAS TURBINE ENGINE ASSEMBLIES WITH RECIRCULATED HOT GAS INGESTION - A gas turbine engine assembly includes a housing including an annular duct wall that at least partially defines a mainstream hot gas flow path configured to receive mainstream hot gas flow. The assembly further includes a stator assembly including a stator vane that extends into the mainstream hot gas flow path and a turbine rotor assembly downstream of the stator assembly that includes a turbine disk and a turbine blade extending from the turbine disk into the mainstream hot gas flow path. The stator assembly and turbine assembly define a turbine disk cavity, and the turbine disk cavity includes a recirculation cavity configured to recirculate gas ingested from the mainstream hot gas flow path back into the mainstream hot gas flow path.01-14-2010
20100303610COOLED GAS TURBINE STATOR ASSEMBLY - A stator assembly for a gas turbine engine is provided having an annular body, an inner gas path platform, a plurality of fairings, and at least one nozzle. The annular body has an outer gas path platform and a circumferentially extending annular cavity disposed radially outside of the outer gas path platform. The fairings extend radially between the inner gas path platform and the outer gas path platform. Each fairing includes a gas passage extending from the annular cavity through the inner gas path platform. The at least one nozzle has an inlet orifice disposed outside of the annular cavity and an exit orifice disposed within the annular cavity. The exit orifice is oriented within the annular cavity such that cooling air exiting the nozzle travels in a substantially circumferential direction within the annular cavity.12-02-2010
20120003077ANNULAR MULTI-ROTOR DOUBLE-WALLED TURBINE - An annular single or multi-rotor double-walled turbine. The turbine includes an outer shroud, an inner shroud, and a plurality of driveshafts. The turbine also includes a plurality of rotors coaxially attached to the plurality of driveshafts at spaced intervals. Each of the plurality of rotors comprises a plurality of turbine blades extending between the inner and outer shrouds. Each of the plurality of turbine blades comprises a face. The inner shroud and the outer shroud form a continuous channel for directing a fluid entering the turbine towards the faces of the turbine blades and for directing fluid discharged from a first of the plurality of rotors to the remaining rotors. The channel greatly improves efficiency of power extraction from all augmented and non-augmented fluid streams.01-05-2012
20110064564Pumps or Generators with Flow-Through Impellers - An axial flow pump includes a perforated impeller through which fluid being pumped flows. The pump can carry a stator which can interact with magnetic elements rotatably carried with the impeller to produce rotation thereof.03-17-2011
20100129196COOLED GAS TURBINE VANE ASSEMBLY - A gas turbine vane to improve vane performance by addressing known failure mechanisms. A cooling circuit to the trailing edge of a vane airfoil is fed from the outer diameter platform, which prevents failure due to an oxidized and eroded airfoil trailing edge. The gas turbine includes an outer diameter platform, a hollow airfoil and an inner diameter platform with a plurality of cooling tubes extending radially through the airfoil. The cooling tubes are open at the outer diameter end and closed with covers at the inner diameter end. The inner diameter platform is also cooled and includes a meterplate for a portion of the cooling passageway and includes an undercut to improve thermal deflections of the inner diameter platform.05-27-2010
20090311090WINDWARD COOLED TURBINE NOZZLE - A turbine nozzle includes a hollow vane mounted between inner and outer bands. The inner band includes a mounting flange between forward and aft lips. An aft pocket is found in the inner band between the flange and aft lip. And, an impingement bore extends through the flange into the windward half of the pocket and is directed aft toward the opposite leeward half of the pocket for co-rotation with purge flow during operation.12-17-2009
20120014780FAN DOWNSTREAM GUIDE VANES OF A TURBOFAN ENGINE - Fan downstream guide vane profiles have an optimized form of skeleton line angle distribution in an area situated between an upper and a lower limitation as well as a specific thickness distribution superimposed on the respective skeleton line angle distribution. Such guide vanes are characterized by lower pressure losses and a larger working range than the known downstream guide vanes, thereby reducing fuel consumption of the engine and increasing the operating stability thereof.01-19-2012
20120057960RING SEGMENT WITH FORKED COOLING PASSAGES - A ring segment is provided for a gas turbine engine includes a panel and a cooling system. Cooling fluid is provided to an outer side of the panel and an inner side of the panel defines at least a portion of a hot gas flow path through the engine. The cooling system is located within that panel and receives cooling fluid from the outer side of the panel for cooling the panel. The cooling system includes a plurality of cooling fluid passages that receive cooling fluid from the outer side of the panel. The cooling fluid passages each have a generally axially extending portion that includes at least one fork. The fork(s) divide each cooling fluid passage into at least two downstream portions that each receives cooling fluid from the respective axially extending portion.03-08-2012
20120301275INTEGRATED CERAMIC MATRIX COMPOSITE ROTOR MODULE FOR A GAS TURBINE ENGINE - A rotor module for a gas turbine engine includes a multiple of CMC airfoil rows which extend from a common CMC drum.11-29-2012
20110103932STATOR BLADE FOR A GAS TURBINE AND GAS TURBINE HAVING SAME - A stator blade for a gas turbine with sequential combustion, has a blade airfoil which extends in the radial direction between a blade tip and a shroud, with cooling passages extending inside the blade airfoil, through which a cooling medium can flow for cooling the blade and can then discharge from the stator blade into the hot gas flow flowing through the turbine. The blade airfoil has a sharply curved shape in space in the radial direction, and three cooling passages, which extend in the radial direction, arranged inside the blade airfoil in series in the hot gas flow direction and are interconnected by deflection regions, which are arranged at ends of the blade airfoil, so that the cooling medium flows through the cooling passages one after the other, with change of direction. The cooling passages follow the curvature of the blade airfoil in space in the radial direction.05-05-2011
20120251295GAS TURBINE ENGINE COMPONENT - A component of a gas turbine engine is provided. The component includes an external wall which, in use, is exposed on one surface thereof to working gas flowing through the engine. The component further includes effusion cooling holes formed in the external wall. In use, cooling air blows through the cooling holes to form a cooling film on the surface of the external wall exposed to the working gas. The component further includes an air inlet arrangement which receives the cooling air for distribution to the cooling holes. The component further includes a plurality of metering feeds and a plurality of supply plena. The metering feeds meter the cooling air from the air inlet arrangement to respective of the supply plena, which in turn supply the metered cooling air to respective portions of the cooling holes.10-04-2012
20120121381TURBINE TRANSITION COMPONENT FORMED FROM AN AIR-COOLED MULTI-LAYER OUTER PANEL FOR USE IN A GAS TURBINE ENGINE - A cooling system for a transition duct for routing a gas flow from a combustor to the first stage of a turbine section in a combustion turbine engine is disclosed. The transition duct may have a multi-panel outer wall formed from an inner panel having an inner surface that defines at least a portion of a hot gas path plenum and an intermediate panel positioned radially outward from the inner panel such that at least one cooling chamber is formed between the inner and intermediate panels. The transition duct may also include an outer panel. The inner, intermediate and outer panels may include one or more metering holes for passing cooling fluids between cooling chambers for cooling the panels. The intermediate and outer panels may be secured with an attachment system coupling the panels to the inner panel such that the intermediate and outer panels may move in-plane.05-17-2012
20120128467INTEGRATED VARIABLE GEOMETRY FLOW RESTRICTOR AND HEAT EXCHANGER - One or more heat exchangers mounted in a duct have heat transfer cooling passages therein and a variable geometry flow restrictor is integral with each of the heat exchangers. An annular slide valve axially translatable within the duct is operable to open and close or vary a variable area between the heat exchangers and one of inner and outer casings bounding the duct. The heat exchangers may be being circumferentially distributed around an annular duct and include radial or circumferentially curved heat transfer tubes or vanes.05-24-2012
20100209229Airfoil inserts, flow-directing elements and assemblies thereof - Disclosed are examples of flow-directing elements, airfoil inserts, and assemblies thereof. A flow-directing element has an inner buttress with an airfoil extending outwardly therefrom. The airfoil includes a cavity that extends within the airfoil to an exit port disposed in the inner buttress. A shelf disposed about the buttress defines the exit port, and the shelf includes a discourager extending into the cavity. An airfoil insert has a tubular body, with an outlet at one end. A plate affixed to the body at the outlet partially blocks the outlet, and includes a tab extending away from the body and defining a portion of an outlet periphery. Upon assembly of the flow directing element and the insert, the tab interacts with the discourager to direct a coolant to the exit port while restricting leakage of the coolant back into the cavity, between the airfoil insert and the flow-directing element.08-19-2010
20120134780AXIAL FLOW GAS TURBINE - In an axial flow gas turbine efficient cooling and a long life-time can be achieved by providing the outer blade platforms (05-31-2012
20120134781AXIAL FLOW GAS TURBINE - In an axial flow gas turbine (05-31-2012
20120134779GAS TURBINE OF THE AXIAL FLOW TYPE - In an axial flow gas turbine (05-31-2012
20120134778AXIAL FLOW GAS TURBINE - An axial flow gas turbine (05-31-2012
20120134777ENGINE CASE WITH WASH SYSTEM - A gas turbine engine includes a structure defining a circumferential passage in fluid communication with an internal passage in at least one strut radially extending into the engine, circumferential passage also in fluid communication with a plurality or nozzles or jets to provide a wash manifold integrated with the engine casing structure. One or more nozzles are provided in the manifold for directing a washing fluid injected into the duct.05-31-2012
20120219401ENDWALL COMPONENT FOR A TURBINE STAGE OF A GAS TURBINE ENGINE - A component of a turbine stage of a gas turbine engine is provided, the component forming an endwall for the working gas annulus of the stage. The component has one or more internal plena behind the endwall which, in use, contain a flow of cooling air. The component further has a plurality of exhaust holes in the endwall. The holes connect the plena to a gas-washed surface of the endwall such that the cooling air effuses through the holes to form a cooling film over the gas-washed surface. Each exhaust hole has a flow cross-sectional area which is greater at an intermediate position between the entrance of the hole from the respective plenum and the exit of the hole to the gas-washed surface than it is at said exit.08-30-2012
20120213626EXPLOSION-WELDED GAS TURBINE SHROUD AND A PROCESS OF FORMING AN EXPLOSION-WELDED GAS TURBINE - An explosion-welded turbine shroud and a process of forming an explosion-welded gas turbine shroud are disclosed. The explosion-welded gas turbine shroud includes a first alloy explosion welded to a second alloy. In the explosion-welded gas turbine shroud, the first alloy forms at least a portion of a hot gas path or an expansion region of the gas turbine shroud includes the first alloy. The process includes explosion welding a first alloy to a second alloy to form the gas turbine shroud.08-23-2012
20090116953Turbine airfoil with platform cooling - Convective cooling of gas turbine engine airfoil platforms is enhanced by grooving the interface of the platforms with corresponding platform-to-platform seals, thereby accelerating cooling airflow over the platform surfaces.05-07-2009
20100047056Duplex Turbine Nozzle - A duplex turbine nozzle includes a row of different first and second vanes alternating circumferentially between radially outer and inner bands in vane doublets having axial splitlines therebetween. The vanes have opposite pressure and suction sides spaced apart in each doublet to define an inboard flow passage therebetween, and corresponding outboard flow passages between doublets. The vanes have different patterns of film cooling holes with larger cooling flow density along the outboard passages than along the inboard passages.02-25-2010
20100047057Aerofoil - An aerofoil comprising a pressure-side wall, a suction-side wall and an intermediate wall extending from a free end of the pressure-side wall at an acute angle relative thereto towards the suction-side wall. A cooling fluid passageway extends through a region where the intermediate wall meets the pressure-side wall at an apex. The fluid passageway has an opening, at least in part, in the face of the pressure-side wall.02-25-2010
20120177478IMPINGEMENT PLATE FOR TURBOMACHINE COMPONENTS AND COMPONENTS EQUIPPED THEREWITH - An impingement plate adapted to reduce thermally-induced strains and stresses that may damage the plate or its attachment to a second component. The plate includes an interior region having cooling holes, a peripheral wall surrounding the interior region and projecting out of the plane of the interior region, a peripheral flange surrounding the peripheral wall and lying in a plane spaced apart from the plane of the interior region, and one or more through-thickness rib. One such rib may be disposed in the interior region, project away from and out of the plane of the interior region, and linearly extend across the interior region. Alternatively or in addition, one such rib may be disposed between the peripheral wall and flange and project out of the plane of the flange.07-12-2012
20120177480ROTOR WITH COOLING PASSAGE - A gas turbine engine is disclosed having a cooling passage that rotates with a turbine and is capable of providing cooling flow to the turbine. In one embodiment the cooling passage can receive cooling flow from an interior of a shaft of the gas turbine engine and increase the pressure of the cooling flow before delivering it to a location near a blade of the turbine. In one form the cooling passage can have an inducer section. In one form the cooling passage can have internal vanes useful in increasing the pressure of the cooling flow.07-12-2012
20120177479INNER SHROUD COOLING ARRANGEMENT IN A GAS TURBINE ENGINE - A component in a gas turbine engine includes an airfoil and a shroud. The shroud has an outer surface supporting an end of the airfoil and defines a portion of an annular gas path. The shroud includes axial edges extending between upstream and downstream edges thereof. Each of the axial edges includes a seal slot that receives a seal member extending between the shroud and an adjacent shroud. A cooling air channel extends between the upstream and downstream edges of the shroud. A cooling air supply passage extends from a cooling air chamber at an inner surface of the shroud to the cooling air channel. At least one cooling air exit passage extends from the cooling air channel to one of the axial edges. The cooling air channel is located radially between the outer surface of the shroud and the seal slot.07-12-2012
20100008759METHODS AND APPARATUSES FOR PROVIDING FILM COOLING TO TURBINE COMPONENTS - Methods and apparatuses for film cooling of one or more turbine components are provided. A cooling gas flow passage provides a cooling gas to an turbine component with the hot gas path of a turbine. The cooling gas flow passage includes at least one feed aperture operable to receive cooling gas from at least one cooling gas compartment associated with a turbine component. The cooling gas flow passage also includes at least one slot with a converging portion having a first opening and a second opening, where the first opening receives the cooling gas from the feed aperture, and the second opening provides the cooling gas to at least a portion of an outer surface of the turbine component.01-14-2010
20090060715Cooled component - A component, such as a turbine blade of a gas turbine engine, has an internal cooling system which includes a passage (03-05-2009
20090060714Multi-part cast turbine engine component having an internal cooling channel and method of forming a multi-part cast turbine engine component - A multi-part cast component for a turbine engine includes a first component section having a main body portion including at least one cooling flow passage section, and a second component section having a main body including at least one cooling flow passage section. The first and second component sections are joined along a parting line to form a turbine engine component with the at least one cooling flow passage section of the first component section aligning with the at least one cooling flow passage of the second component section to form a cooling flow channel.03-05-2009
20090060712Turbine airfoil cooling system with rotor impingement cooling - A turbine airfoil cooling system of a turbine engine having a hollow, disc post body positioned between adjacent roots of turbine airfoils and aligned with the roots to cool inner aspects of the turbine engine. The hollow, disc post body may be configured to pass cooling fluids through impingement orifices in the hollow, disc post body to impinge on inner surfaces of platforms of the turbine airfoils. The cooling fluids may then be directed to the internal cooling systems of the turbine airfoils rather than being discharged as film cooling fluids through the platforms of the turbine airfoils.03-05-2009
20090060713DIRECTION-SWITCHABLE PNEUMATIC CYLINDER - A direction-switchable pneumatic cylinder includes: a cylinder body with two intakes, several exhaustion ports and a rotary shaft; and a predetermined number of movable wheels and fixed wheels arranged in the cylinder body and interlaced with each other. Each of the movable wheels and fixed wheels is formed with several vents concentrically arranged into an inner circle and an outer circle. The rotary shaft is fitted through the movable wheels and fixed wheels. The fixed wheels are not rotatable, while the movable wheels are synchronously rotatably with the rotary shaft. The outer circles of vents of the fixed wheels and the movable wheels are aligned with one intake, while the inner circles of vents of the fixed wheels and the movable wheels are aligned with the other intake. When high-pressure gas is guided into the pneumatic cylinder from one intake, the airflow will flow through the outer circles of vents to drive the movable wheels and the rotary shaft in one direction. When high-pressure gas is guided into the pneumatic cylinder from the other intake, the airflow will flow through the inner circles of vents to drive the movable wheels and the rotary shaft in another direction.03-05-2009
20120263576TURBINE SHROUD SEGMENT COOLING SYSTEM AND METHOD - The present embodiments are generally directed toward systems and methods for cooling one or more shroud segments of a gas turbine engine. For example, in a first embodiment, a shroud segment is provided that is configured to at least partially surround a turbine blade of a turbine engine. The shroud segment includes a body and a microchannel disposed in the body. The microchannel is configured to flow a cooling fluid through the body.10-18-2012
20120263575LOW PRESSURE COOLING SEAL SYSTEM FOR A GAS TURBINE ENGINE - A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.10-18-2012
20110038709Turbine Vane for a Gas Turbine Engine Having Serpentine Cooling Channels - A turbine vane for a gas turbine engine having an internal cooling system formed from at least one serpentine cooling channel with enhanced cooling elements. The serpentine cooling channel may include a first turn manifold with purge air discharge orifices inline with a first pass of the serpentine cooling channel. Cooling fluids may be used to cooling the leading edge of the vane and passed through the purge air discharge orifices to purge the rim cavity proximate to the endwall. The first turn manifold may also include a plurality of trip strips. The trips strips may be positioned on the suction and pressure sidewalls and may be offset from trip strips on the opposing sidewall. The cooling system may also include an aft purge rim orifice.02-17-2011
20110217159PREFERENTIAL COOLING OF GAS TURBINE NOZZLES - Turbine nozzle assemblies include a plurality of circumferentially spaced first components and second components, which are designed to provide different amounts of cooling. The second components, which are generally aligned with an opening of transition pieces, are designed to provide more cooling than the first components, which are generally aligned with interfaces between the transition pieces.09-08-2011
20110229306ROTOR BLADE TIP CLEARANCE CONTROL - A gas turbine engine has a row of circumferentially spaced rotor blades and a plurality of seal segments circumscribing the rotor blade tips and attached to a radially inward side of a casing of the engine. The seal segments are spaced from the casing by a spacing cavity. A flow of relatively hot cooling air is routed to the spacing cavity to cool the seal segments. The engine has an external cooling arrangement for impinging relatively cold cooling air on a radially outward side of the casing. The engine has a wall containing a plurality of through-holes which is attached to a radially inward side of the casing adjacent the seal segments. The wall is spaced from the casing to define a heating control chamber between the wall and the casing. The engine has one or more closable ducts which allow air to be exhausted from the heating control chamber.09-22-2011
20100232931HEAT DISSIPATION FAN - A heat dissipation fan includes a base with a plurality of holes defined therein, a stator mounted on the base and being placed around the holes of the base, and an impeller rotatably attached to the base. The impeller includes a hub and a plurality of blades, the hub includes a top wall with a plurality of holes defined therein and an annular wall depending from the top wall. The blades are arranged around the annular wall of the hub. An axial air passage is defined in the stator. The holes of the base communicate with the holes of the top wall via the air passage.09-16-2010
20100232930Gas turbine engine - A gas turbine engine for highly efficient fuel consumption includes as elements a rotor, a stator and a spindle. The rotor includes a system of passageways, a combustion chamber, and a plurality of exhaust ports. The system of passageways comprises a plurality of axial passageways and radial passageways configured to receive a precombustion air-fuel mixture and transport the precombustion air-fuel mixture to the combustion chamber. The exhaust ports provide fluid communication of postcombustion gas between the combustion chamber and the exterior of the rotor.09-16-2010
20110255956Gas turbine having cooling insert - A gas turbine including a plurality of rotor blades assembled into rotor blade rows and arranged on a turbine shaft and including a plurality of guide vanes assembled into guide van rows and mounted on a turbine housing by means of a guide van carrier is provided. The guide vane carrier includes a plurality of cooling air holes, and has a particularly high efficiency, while maintaining maximum operating reliability. Therefore, a cooling insert is introduced into a cooling air hole.10-20-2011
20120321441VENTILATED COMPRESSOR ROTOR FOR A TURBINE ENGINE AND A TURBINE ENGINE INCORPORATING SAME - A turbine engine includes a plurality of compressor rotors that include ventilation slots to vent the spaces between adjacent compressor rotors. Each compressor rotor is formed from a flat disk of material having first and second circular faces. A circular ridge of material protrudes outward from the one of the circular faces of the disc adjacent an outer edge of the disc. The ventilation slots are formed in the circular ridge of material. Each ventilation slot is a depression in the circular ridge of material, the depression having a longitudinal axis that extends substantially in a radial direction of the disc.12-20-2012
20120328413SYSTEM AND METHOD FOR SUPPORTING A NOZZLE ASSEMBLY - A system for supporting a nozzle assembly includes a first member connected to a stationary component and a second member extending from the first member radially through at least a portion of the nozzle assembly. A distal end of the second member is radially displaced from the first member and configured to contact the nozzle assembly. A method for supporting a nozzle assembly includes connecting a first member to a stationary component and extending a second member from the first member radially through at least a portion of the nozzle assembly. The method further includes contacting a distal end of the second member to the nozzle assembly, wherein the distal end is radially displaced from the first member.12-27-2012
20130011238COOLED RING SEGMENT - A ring segment for a gas turbine engine includes a panel and a first mating edge cooling system. Cooling fluid is provided to an outer side of the panel and an inner side of the panel defines at least a portion of a hot gas flow path. A cooling system receives a portion of the cooling fluid provided to the outer side and includes at least one impingement chamber. Each impingement chamber includes at least one metering supply passage and at least one metering discharge passage. The metering supply passage(s) extends from the outer side of the panel to the impingement chamber. Cooling fluid impinges on a surface of the panel defining the impingement chamber as it flows therein through the metering supply passage(s). The metering discharge passage(s) extends from the impingement chamber to a first or second mating edge of the panel.01-10-2013
20130017064GAS TURBINE AIRFOIL WITH SHAPED TRAILING EDGE COOLANT EJECTION HOLES - A turbine blade or vane includes at least one internal radial channel for the circulation of cooling medium bordered on a pressure side by a pressure side wall and on a suction side by a suction side wall joined at a upstream side at a leading edge and at and downstream side at the trailing edge. At least one exit hole extends through at least one of the pressure side wall or the suction side wall for blowing out of cooling medium from the internal radial channel to a medium surrounding the blade or vane. At least one trailing edge exit hole along the trailing edge has a surfacial exit opening disposed at the pressure side of the trailing edge.01-17-2013
20130022450PUMP IMPELLER AND SUBMERSIBLE PUMP HAVING SUCH PUMP IMPELLER - A non-clogging type pump impeller (01-24-2013
20130170954High Pressure Compressor - A high-pressure compressor (07-04-2013
20130177397SLOTTED TURBINE AIRFOIL - A slotted turbine static nozzle airfoil. In one embodiment, the turbine static nozzle airfoil includes a concave pressure wall having a slot extending therethrough; a convex suction wall adjoined with the concave pressure wall at respective end joints; and a pocket fluidly connected with the slot and located between the convex suction wall and the concave pressure wall, wherein at least one of the convex suction wall or the concave pressure wall includes a thinned segment proximate one of the respective end joints, the thinned segment configured to extend the pocket toward a trailing edge of the turbine static nozzle airfoil.07-11-2013
20080226441Method for impingement air cooling for gas turbines - In impingement air cooling of gas turbine components, cooling air velocity packs of a certain amplitude and a given frequency are applied to impingement air openings, with intervallic annular swirl structures being formed which penetrate a cross-flow and hit a component to be cooled with high intensity, thus providing for efficient cooling. In order to obtain annular swirl structures with optimum cooling effect, the Strouhal number, which is determined by a ratio of amplitude, frequency of the velocity packs and size of impingement air cooling openings, ranges between 0.2 and 2.0, and preferably between 0.8 and 1.2.09-18-2008
20130177396Impingement Cooling System for Use with Contoured Surfaces - The present application provides an impingement cooling system for use with a contoured surface. The impingement cooling system may include an impingement plenum and an impingement plate with a linear shape facing the contoured surface. The impingement surface may include a number of projected area thereon with a number of impingement holes having varying sizes and varying spacings.07-11-2013
20080219833Inducer for a Fan Blade of a Tip Turbine Engine - A fan-turbine rotor assembly for a tip turbine engine includes an inducer with an inducer inlet section and an inducer passage section in communication with a core airflow passage within a fan blade. Each inducer inlet section is canted toward a rotational direction of the fan-turbine rotor assembly such that the inducer inlet section operates as an air scoop during rotation of the fan-turbine rotor assembly. Both axial and centrifugal compression of the airflow occurs within the inducer passage section to effectively pump the airflow through the inducer section and into the core airflow passage.09-11-2008
20110217158COOLED TURBINE RIM SEAL - A rim seal assembly includes an annular seal element circumscribing an engine centerline or axis and mounted on an annular platform including a radially inwardly extending annular platform flange disposed between and connected to forward and aft flanges at distal ends of forward and aft annular elements respectively. Annular forward and aft outer rim cavities radially disposed between the forward and aft annular elements and the platform are axially separated by the platform flange. Cooling slots extend radially across axially facing forward and aft surfaces of the forward and aft flanges. The platform flange and the forward and aft flanges are bolted together. The annular seal element may include seal teeth in sealing relationship with an annular seal land such as in a labyrinth seal. The rim seal assembly may be incorporated in a low pressure turbine use a compressor as a source of cooling air.09-08-2011
20080199303Gas Turbine Engine Cooling System and Method08-21-2008
20130149106STEAM TURBINE, BLADE, AND METHOD - A stator blade ring comprising a plurality of stator blade modules defining an annular chamber is provided. The plurality of stator blade modules comprises an elongated blade portion comprising a first and a second blade shell portion, a longitudinal passageway, and at least one opening extending through at least one of the first and the second blade shell portion to the longitudinal passageway, an inner portion brazed to a first longitudinal end of the elongated blade portion, wherein the inner portion comprises a through hole forming a portion of the annular chamber, and an inner passageway extending from the through hole to the longitudinal passageway, and an outer portion brazed to a second longitudinal end of the elongated blade portion and engaged to a steam turbine, the outer portion comprising an outer passageway open to a surface of the steam turbine and the longitudinal passageway.06-13-2013
20100316486COOLED COMPONENT FOR A GAS TURBINE ENGINE - There is disclosed a cooled component for a gas turbine engine, the component preferably taking the form of a shrouded turbine blade, and having a segment region defining a segment of an annulus for the passage of hot gases therethrough. The segment region has a pair of opposed side faces configured to lie substantially adjacent respective corresponding side faces of the segments of similar operationally and circumferentially adjacent components when a series of such components are mounted in an engine such that their respective segments define an annulus. The component of the present invention is characterised by the provision of an elongate cooling slot in at least one of said side faces, said cooling slot being arranged in fluid communication with at least one flow passage within said segment region for the supply of cooling fluid to said slot, the slot being substantially closed at its upstream end and open at its downstream end so as to define an outlet for said cooling fluid at the operationally downstream region of said side face.12-16-2010
20130156549USE OF MULTI-FACETED IMPINGEMENT OPENINGS FOR INCREASING HEAT TRANSFER CHARACTERISTICS ON GAS TURBINE COMPONENTS - An improved nozzle vane for a gas turbine engine, comprising a vane wall having inner and outer wall surfaces, the wall surfaces being spaced from one another to define a plurality of fluid passageways for a cooling medium; discreet cavities formed by interior wall members disposed between the inner and outer wall surfaces and within the fluid passageway for the cooling medium; a plurality of impingement cooling sleeves disposed in the discreet cavities defined by the inner and outer wall surfaces and by interior wall members; and a plurality of non-round, e.g., serrated, openings in each of the impingement cooling sleeves, with the openings being sufficient in size and number to accommodate the flow of a cooling media.06-20-2013
20130183139ENERGY CONVERTER - 1. The invention relates to an energy converter having a supply channel for a medium and a turbine wheel (07-18-2013
20110286834GUIDE VANE FOR A GAS TURBINE - A guide vane is provided for a gas turbine and has an airfoil extending in the radial direction between an inner platform and an outer platform. The airfoil extends transversely to the direction of the hot gas flow between a leading edge and a trailing edge and has a pressure side and a suction side. A cooling slot running parallel to the trailing edge is provided on the pressure side in front of the trailing edge, a cooling medium can exit through the cooling slot from the guide vane over the entire length of the guide vane and can cool the trailing edge of the guide vane. In such a guide vane, the service life is extended by a thermal stress reducing element provided on the inner platform below the trailing edge and the cooling slot.11-24-2011
20110311349ROTOR ELEMENT WITH A FLUID PASSAGE AND PASSAGE-BLOCKING MEMBER AND TURBINE ENGINE INCLUDING THE ROTOR ELEMENT - A rotor element including an annular surface portion about the rotor rotational axis, a fluid passage being formed through the surface portion, a passage-blocking mechanism including a blocking element that is deformable depending on the rotor rotating speed and arranged so as to adjust the fluid flow depending on the rotor rotating speed, and an annular collar with a free edge engaging with the blocking element so as to form the blocking mechanism. The free edge of the annular collar defines, together with the blocking portion of the blocking element, a diaphragm that blocks the fluid passage.12-22-2011
20130189079ROTOR WITH INLET PERIMETERS - A device for use in a molten metal pump helps alleviate jams between rotating rotor blades and a stationary pump base. The device includes inlet perimeters that partially define one or more openings, and one or more rotor blades, wherein each rotor blade has a portion that directs molten metal into a pump chamber, and a portion that directs molten metal outwards. Each rotor blade may also include a recess that makes an opening larger to enable more molten metal to pass through the openings.07-25-2013
20120057961TURBINE STAGE SHROUD SEGMENT - A shroud segment for a turbine stage of a gas turbine engine forms an endwall for the working gas annulus of the stage. The segment also provides a close clearance to the tips of a row of turbine blades which sweep across the segment. In use, a mainstream flow of the working gas passes through the passages formed between adjacent turbine blades. The segment has a plurality of cooling holes and respective air feed passages for the cooling holes. The cooling holes are distributed over that part of the gas-washed surface of the segment which is swept by the blade tips. The cooling holes deliver, in use, cooling air which spreads over the gas-washed surface. The feed passages are configured such that the delivered air has swirl directions which are co-directionally aligned with the swirl directions of the mainstream flow at the segment.03-08-2012
20130202409TURBINE VANE HOLLOW INNER RAIL - A guide vane device for a turbine has an inner platform with a through hole forming a fluid channel for a cooling fluid, wherein the inner platform extends in a circumferential direction around a shaft of the turbine. The guide vane device further includes a hollow aerofoil with a cooling opening for exchanging the cooling fluid passing the through hole into or from the hollow aerofoil, wherein the hollow aerofoil is fixed to a first surface of the inner platform, and a rail with a recess with a cooling fluid passage forming a passage for the cooling fluid to the through hole, wherein the rail is fixed to a second surface of the inner platform and the rail extends along the second surface in the circumferential direction around the shaft. The cooling fluid passage has in the circumferential direction at least the dimension of the through hole.08-08-2013
20130202408GAS TURBINE ENGINE WITH IMPROVED COOLING BETWEEN TURBINE ROTOR DISK ELEMENTS - A gas turbine engine is provided comprising a forward rotor disk and blade assembly capable of rotating; an aft rotor disk and blade assembly capable of rotating; and a row of vanes positioned between the forward rotor disk and blade assembly and the aft rotor disk and blade assembly. The vane row and the forward rotor disk and blade assembly may define a forward cavity. The vane row may comprise at least one stator vane comprising: a main body and an inner shroud structure comprising a cover. The cover may include a first inner cavity receiving cooling air. The cover may further include at least one cooling flow passage. Cooling air flowing from the cooling flow passage has a tangential velocity component.08-08-2013
20130209228GAS TURBINE ENGINE COMPONENT WITH CUSPED COOLING HOLE - A component for a gas turbine engine includes a wall and a cooling hole extending through the wall. The wall has a first surface and a second surface. The cooling hole includes a metering section that extends from an inlet in the first surface of the wall to a transition, a diffusing section that extends from the transition to an outlet in the second surface of the wall, and a cusp on the transition.08-15-2013
20130209229GAS TURBINE ENGINE COMPONENT WITH CONVERGING/DIVERGING COOLING PASSAGE - A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.08-15-2013
20130209230COOLED VANE OF A TURBINE AND CORRESPONDING TURBINE - A vane is provided for use in a fluid flow of a turbine engine. The vane includes a thin-walled radially extending aerodynamic vane body having axially spaced leading and trailing edges, and a radially outer platform. The wall of the vane body includes an outer shell and an inner shell and defines an interior cavity therein for flowing a cooling medium. A radially extending load strut is arranged at the inner shell of the wall of the leading edge of the vane body.08-15-2013
20130209231NOZZLE GUIDE VANE WITH COOLED PLATFORM FOR A GAS TURBINE - A platform for supporting a nozzle guide vane for a gas turbine is provided. The platform has a gas passage surface arranged to be in contact with a streaming operation gas, and a cooling channel for guiding a cooling fluid within the cooling channel formed in an inside of the platform. A cooling portion of an inner surface of the cooling channel is in thermal contact with the gas passage surface. The platform is an integrally formed part representing a segment in a circumferential direction of the gas turbine. The cooling channel has a first cooling channel portion and a second cooling channel portion arranged downstream of the first cooling channel portion with respect to a streaming direction of the operation gas. The first cooling channel portion and the second cooling channel portion are interconnected.08-15-2013

Patent applications in class WITH PASSAGE IN BLADE, VANE, SHAFT OR ROTARY DISTRIBUTOR COMMUNICATING WITH WORKING FLUID