Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


WDM

Subclass of:

398 - Optical communications

398043000 - MULTIPLEX

398066000 - Broadcast and distribution system

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
398070000 Hub or central office 74
398069000 With variable frequency channel assignment 5
20080279554OPTICAL LINE TERMINAL CAPABLE OF ACTIVE BANDWIDTH ALLOCATION FOR PASSIVE OPTICAL NETWORK SYSTEM - In a GPON system conforming to ITU-T Recommendations G.984.3, an optical line terminal is provided which has an active bandwidth allocation function that preferentially puts small bandwidth signals in a particular segment of a frame, e.g., at a head of the frame, to prevent fragmentations that may occur particularly when allocating small bandwidths of about 100 kbits/s.11-13-2008
20090310967METHOD AND APPARATUS FOR TRANSMITTING MULTIPLE CHANNELS IN A WAVELENGTH DIVISION MULTIPLEXED (WDM) OPTICAL COMMUNICATION SYSTEM WITH REDUCED RAMAN CROSSTALK AND NONLINEAR DISTORTIONS - An improved method and apparatus is provided for transmitting a WDM optical signal. The method begins by modulating optical channels that are each located at a different wavelength from one another with (1) a respective one of a plurality of information-bearing electrical signals that all embody the same broadcast information; (2) a respective one of a plurality of RF signals having a common functional broadcast waveform, at least one of the RF signals being out of phase with respect to remaining ones of the plurality of RF signal and (3) at least one of the RF signals being phase adjusted with respect to its original phase. Each of the modulated optical channels is multiplexed to form a WDM optical signal. The WDM optical signal, while maintaining the pre-assigned phase relationships between the modulation signals of the optical channels, is forwarded onto an optical transmission path.12-17-2009
20090080889WDM TYPE PASSIVE OPTICAL NETWORK - In a WDM type PON system, each ONU comprises an optical transmitter capable to transmit optical signals with variable wavelengths, an optical signal receiving filter variable its receiving wavelength, and a control unit. An OLT selects in response to a wavelength allocation request from each ONU, a transmitting wavelength and a receiving wavelength out of currently free wavelengths and allocates these wavelengths to the requester ONT. The control unit of the ONU switches the transmitting wavelength of the optical transmitter and the receiving wavelength of the optical signal receiving filter to the wavelengths specified in a response message from the OLT and starts data communication.03-26-2009
20120082458MULTI-WAVELENGTH TRANSPONDER WITH WAVELENGTH DIVISION MULTIPLEXING MODULES - According to one embodiment, a system for transmitting an optical signal comprises a traffic distribution circuit configured to distribute traffic to a plurality of wavelength division multiplexer (WDM) modules. The system further comprises a first WDM module and a second WDM module. The first and second WDM modules each comprise a plurality of tunable optical transmitters, with each transmitter associated with a different wavelength band of a plurality of wavelength bands. Each transmitter in the first and second WDM modules is also tuned to transmit optical signals in channels included within the associated wavelength band of the transmitter. The first and second WDM modules each comprise a multiplexer configured to combine the optical signals transmitted from the plurality of transmitters into optical signals. The system further comprises a cyclic multiplexer configured to combine the optical signals from the first and second WDM modules into an optical output signal.04-05-2012
20120243873METHOD AND DEVICE FOR CONVEYING DATA ACROSS A SHARED MEDIUM - A method and a device convey data across a shared medium, wherein at least one resource is allocated for an end-to-end connection. Then the data is conveyed across the shared medium via the end-to-end connection. In this manner an efficient data transport throughout a network containing several domains or networks utilizing various technologies is accomplished.09-27-2012
Entries
DocumentTitleDate
20100111533WDM PON SYSTEM - A Wavelength Division Multiplexed Passive Optical Network (WDM-PON) includes: a respective Optical Network Terminal (ONT) at each one of a plurality of customer sites, each ONT comprising an ONT Fabry Perot (F-P) laser for generating a respective broadband multi-mode uplink optical signal; and an Array Waveguide Grating (AWG) for receiving each broadband multi-mode uplink optical signal through a respective branch port, and for multiplexing a portion of each received broadband multi-mode uplink optical signal into a Wavelength Division Multiplexed (WDM) signal. Each ONT F-P laser is non-injection locked. A gain of each ONT F-P laser is sufficiently inhomogeneous that the modes of the respective broadband multi-mode uplink optical signal are independent. A filter function of the AWG includes a pass band that encompasses at least one mode of a broadband multi-mode uplink optical signal.05-06-2010
20130084070OPTICAL TRANSCEIVER INCLUDING OPTICAL FIBER COUPLING ASSEMBLY TO INCREASE USABLE CHANNEL WAVELENGTHS - An optical transceiver may include an optical fiber coupling assembly for coupling optical fibers to transmitter and receiver sub-assemblies to increase the number of usable channel wavelengths by reducing an incident angle on a WDM filter without causing unwanted back reflection to a laser. In one example, the optical fiber coupling assembly may be used to increase the number of usable channel wavelengths between the L-band and the C-band. The optical transceiver may be used, for example, in an optical line terminal (OLT) and/or optical networking unit (ONU) in a wavelength division multiplexed (WDM) passive optical network (PON) capable of transmitting and receiving optical signals on multiple channel wavelengths.04-04-2013
20110150480Data center with free-space optical communications - A data center for executing a data processing application includes processing units, sub-units or servers. Each of the processing units, sub-units or servers can execute a part or all of the data processing application. The processing units, sub-units or servers are electrical disjoint with respect to data communications, but can communicate with each other over free space optical links.06-23-2011
20130163990Provisioning and Commissioning a Communications Network with a Virtual Network Operations Center and Interface - An interface coupled to a virtual network operations center and coupled to a data communications network having at least one optical channel. Equipment on the data communications network is identified by the interface wherein the interface coordinates and correlates communications between the I/O interfaces of a server coupled to the network so that data rates and data protocols are managed properly. The interface receives commands from and transmits commands to the data communications network and translates the commands to be further transmitted and used in the virtual network operations center coupled to the server. The data communications network is represented in a three dimensions virtual world in the virtual network operations center so that events on the network can be represented in real-time in the virtual network operations center.06-27-2013
20100266283WDM PON WITH DISTRIBUTION VIA CYCLIC ARRAY WAVEGUIDE GRATING - In a Wavelength Division Multiplexed Passive Optical Network (WDM-PON) including, a system for distributing uplink, downlink and RF/Video broadcast signalling. An Array Waveguide Grating (AWG) couples respective wavelength channels between a trunk fibre of the WDM-PON and a plurality of branch fibers of the WDM-PON. The AWG has a predetermined free spectral range and implements a channel plan comprising at least three spectral segments, each segment having a width equal to the free spectral range of the AWG. An Optical Line Terminal of the WDM-PON receives wavelength division multiplexed uplink signals within a first one of the spectral segments, and transmits wavelength division multiplexed downlink signals within a second one of the spectral segments. Respective channel plans within the first and second spectral segments are identical. An RF/Video broadcast transmitter generates an RF/Video broadcast signal within a third one of the spectral segments.10-21-2010
20120106965 OPTICAL SOURCE FOR WAVELENGTH DIVISION MULTIPLEXED OPTICAL NETWORK CAPABLE OF HIGH-SPEED TRANSMISSION OF AN OPTICAL SIGNAL BY USING UN-POLARIZED LIGHT SOURCE AND A WAVELENGTH DIVISION MULTIPLEXED-PASSIVE OPTICAL NETWORK HAVING THE SAME - An optical source for wavelength division multiplexed optical network according to the present invention comprises a broadband light source (BLS); an arrayed waveguide grating (AWG) for spectrum-dividing incoherent light outputted from the BLS; a circulator being connected between the BLS and the AWG; and a plurality of un-polarized light sources (UPLS) being respectively connected to the AWG, wherein the incoherent light which is spectrum-divided by the AWG is injected into the plurality of UPLS and thus the plurality of UPLS is wavelength-locked thereto. In case of using an optical source for wavelength division multiplexed optical network and a wavelength division multiplexed-passive optical network having the same according to the present invention. It is especially possible to lower dramatically the power of incoherent light being injected into a wavelength-locked Fabry-Perot laser diode, while to enable a high transmission speed of 1.25 Gb/s or more, and possible to further lower noise intensity of a light source at given power of the incoherent light.05-03-2012
20100150557FTTH RF over Glass (RFoG) Architecture and CPE - Methods and apparatus are described for fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture and customer-premise-equipment (CPE). A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return; transmitting the up-converted upstream data signal and the upstream cable return using a single upstream laser; separating the frequency up-converted data signal from the upstream cable return using an RF diplexer; and down-converting the frequency up-converted upstream data signal back to baseband. An apparatus comprises: a frequency up-converter that up-converts a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; a frequency combiner coupled to the frequency up-converter that combines the up-converted upstream data signal with an upstream cable return; a single upstream laser coupled to the frequency combiner that transmits the up-converted upstream data signal and the upstream cable return; an RF diplexer coupled to the single upstream laser that separats the frequency up-converted data signal from the upstream cable return; and a frequency down-converter that down-converts the frequency up-converted upstream data signal back to baseband.06-17-2010
20120294615Long-distance box and method for processing uplink and downlink light thereof - The disclosure provides a long-distance box and a method for processing uplink light and downlink light of the long-distance box, uplink light and downlink light from different Passive Optical Network (PON) systems are split, the uplink light from the different PON systems is transmitted through a first optical path, and the downlink light from the different PON systems is transmitted through a second optical path; wherein the uplink light from the different PON systems is amplified by an Optical Amplifier (OA) and then output to Optical Line Terminals (OLT) of respective systems; the downlink light from different PON systems with the different wavelengths is transmitted through different optical sub-paths of the second optical path according to the wavelengths of the downlink light, and the downlink light is amplified by different Optical-Electrical-Optical (OEO) conversion devices on the different optical sub-paths and then output to Optical Network Units (ONUs) of the respective systems. The disclosure applies a hybrid long-distance box combining OEO and OA technologies to process a point-to-multipoint fiber access of a coexisting PON system, integrates advantages of both OA and OEO, and has high reliability, such that both uplink light and downlink light from different PON systems are amplified effectively.11-22-2012
20100054740METHOD AND NETWORK ARCHITECTURE FOR UPGRADING LEGACY PASSIVE OPTICAL NETWORK TO WAVELENGTH DIVISION MULTIPLEXING PASSIVE OPTICAL NETWORK BASED NEXT-GENERATION PASSIVE OPTICAL NETWORK - The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sharing the SMF; a second apparatus for combining and splitting wavelength bands being positioned at a front terminal of the splitter; and an arrayed waveguide grating (AWG) being connected to the second apparatus for combining and splitting wavelength bands within the RN, and being connected to a second group of one or more ONTs by a second group of one or more distribution fibers within the RN or within another RN which is located in a position different from the RN.03-04-2010
20100142953Wavelength Division Multiplexing Transmission system and Remote Apparatus and Station Apparatus Used Therein - There is provided a wavelength division multiplexing transmission system and apparatuses used therein, in which a remote apparatus to be newly added to a station apparatus autonomously sets a wavelength to be used in the remote apparatus, thereby avoiding the need for presetting a wavelength to be used in the remote apparatus. The remote apparatus includes wavelength determining means that determines an available wavelength on the basis of an optical signal received from the station apparatus. The wavelength determining means may determine the wavelength of an unreceived optical signal as the available wavelength or may determine the wavelength of a received optical signal as the available wavelength, and may set that wavelength as a transmission and reception wavelength to be used in the remote apparatus.06-10-2010
20090180777SYSTEMS, APPARATUS, METHODS AND COMPUTER PROGRAM PRODUCTS FOR DOWNLOADING AND MAINTAINING IP STREAM WHITELISTS ON OPTICAL NETWORK TERMINALS - Systems, apparatus, methods and computer program products are provided for downloading a whitelist onto a passive optical network including a passive optical network and a management interface communicatively coupled to the passive optical network and configured to provision the whitelist. An optical line terminal also on the passive optical network includes a passive optical network card operable to broadcast the whitelist to optical network terminals which are configured to receive and enforce the whitelist.07-16-2009
20080317468Amplified Wavelength Broadband Video Distribution Architectures Using An External Waveguide - Provided herein are embodiments of a device, method of use and system for a low-cost analog multi-wavelength video distribution transamplifier for CATV and FTTH networks having a broadband overlay. The transamplifier embodiments described herein allow the use of multiple wavelengths to segment logical service groups in a CATV distribution system and a FTTH system having a broadband overlay. Improved optical signal power performance can be achieved by using direct modulating transmitters and modulating the optical signal for with an external waveguide, thereby decreasing SBS and reducing non-linearities.12-25-2008
20080317467Amplified Wavelength Broadband Video Distribution Architectures - Provided herein are embodiments of a device, method of use and system for a low-cost analog multi-wavelength video distribution transamplifier for CATV and FTTH networks having a broadband overlay. The transamplifier embodiments described herein allow the use of multiple wavelengths to segment logical service groups in a CATV distribution system and a FTTH system having a broadband overlay.12-25-2008
20090185806Broadcasting arrayed waveguide - The invention is a data transmission device that includes: an input Free Propagation Region (FPR) receiving a multi-wavelength signal and a single-wavelength signal, and two sets of arrayed waveguides coupled to the input FPR to carry the multi-wavelength signal and the single-wavelength signal, respectively. The arrayed waveguides demultiplex the multi-wavelength signal and create copies of the single-wavelength signal. The output plane of an output FPR receives the demultiplexed wavelengths and the copies of the single-wavelength signal such that one of the demultiplexed wavelengths and one of the copies of the single-wavelength signal focus onto the same position on the output plane. The device allows data (e.g., video stream) to be broadcast to all subscribers in a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) architecture. A multicasting apparatus can be implemented by using a plurality of these devices and using different wavelengths for the single-wavelength signal for the different devices.07-23-2009
20090252495METHOD AND APPARATUS FOR DEMULTIPLEXING OPTICAL SIGNALS IN A PASSIVE OPTICAL NETWORK - Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.10-08-2009
20080260384Optical element integrated module - In an optical element integrated module, first through n-th optical data signals are externally input to first ports of first through n-th optical circulators and are input to first through n-th optical/optical converters via second ports. The first through n-th optical/optical converters modulate first through n-th optical short pulse trains in accordance with the first through n-th optical data signals. First through n-th modulated optical data signals are input to the second ports of the first through n-th optical circulators and are input to an optical time division multiplexing section. The optical time division multiplexing section generates optical time division multiplexed signals by time division multiplexing the first through n-th modulated optical data signals.10-23-2008
20100158523METHODS OF TRANSMITTING AND RECEIVING MULTICAST OR BROADCAST FRAME IN OLT AND ONU FOR WDM-PON, WDM-PON SYSTEM, AND OLT FOR WDM-PON - Provided are methods of transmitting and receiving a multicast or broadcast frame in an optical line terminal (OLT) and an optical network unit (ONU) for a wavelength division multiplexing (WDM)-passive optical network (PON), a WDM-PON system, and an OLT for a WDM-PON. The method of transmitting a multicast or broadcast frame in an OLT for a WDM-PON includes converting and splitting a multicast or broadcast frame input using a single wavelength into a plurality of wavelengths, combining the split wavelengths, and outputting the multicast or broadcast frame. In this way, a multicast or broadcast frame can be transmitted and received, thereby providing a single copy broadcast (SCB) function in a WDM-PON.06-24-2010
20080212965METHOD AND APPARATUS FOR DYNAMICALLY ALLOCATING UPSTREAM BANDWIDTH IN PASSIVE OPTICAL NETWORKS - One embodiment of the present invention provides a system that facilitates dynamic allocation of upstream bandwidth in a passive optical network which includes a central node and at least one remote node. Each remote node is coupled to at least one logical entity, which corresponds to a device or a user, that transmits upstream data to the central node and receives downstream data from the central node. The central node is coupled to an external network outside of the passive optical network through a shared out-going uplink.09-04-2008
20110058813Ethernet Passive Optical Network Over Coaxial (EPOC) - Embodiments of the present invention exploit the existing capabilities of the Ethernet Passive Optical Network (EPON) MAC layer, designed for fiber optics communications, to provide a low cost MAC layer with upper layer connectivity over a hybrid fiber coaxial (HFC) network. In particular, embodiments allow for the EPON MAC to be used end-to-end (i.e., from an optical line terminal (OLT) to a coaxial network unit (CNU)) in a HFC network, thereby fully leveraging the packet processing capabilities, QoS functions, and management features of the EPON MAC. Furthermore, embodiments enable unified provisioning and management for both fiber and coaxial network units in a HFC network.03-10-2011
20100239257LOGICAL PARTITIONING OF A PASSIVE OPTICAL NETWORK - In order to increase the capacity of a deployed passive optical network (PON) without replacing optical network terminators (ONTs), a PON is provided that is partitioned into multiple channels. The upstream and downstream channels in the PON are partitioned into M channels, with the number of channels on the upstream preferably equaling the number of channels on the downstream. In the downstream, the partitioning is accomplished by use of wavelength division multiplexing filters arranged in a way as to place groups of ONTs on M different wavelength bands, where all of the wavelength bands are within the downstream wavelength range of the existing PON. On the upstream, partitioning is accomplished using “injection locking” to narrow the possible wavelength range of each ONT transmitter to a portion of that possible in the existing PON.09-23-2010
20090034974Banded Semiconductor Optical Amplifiers and Waveblockers - Embodiments of the present invention provide an array of semiconductor optical amplifiers, within a photonic integrated circuit (hereinafter, “PIC”), that apply a gain to one or more optical bands within a WDM signal. According to various embodiments of the invention this array of SOAs can function as both an amplifier and a ROADM by adjusting the gain characteristics of one or more of the SOAs within the array. A band within the WDM signal may be blocked by adjusting the SOA, corresponding to the particular band, to attenuate the band below a threshold.02-05-2009
20100135661ETHERNET-BASED NEXT GENERATION OPTICAL TRANSPORT NETWORK APPARATUS AND TRAFFIC GROOMING METHOD THEREOF - An Ethernet-based next generation optical transport network apparatus and a traffic grooming method in the apparatus are disclosed to provide a traffic grooming function to simultaneously transmit Ethernet data and a TDM signal through the same wavelength and provide a differentiated protection switching function by the flows to effectively support an Ethernet service in an optical transport network.06-03-2010
20090317083OPTICAL REMOTE NODE DEVICE AND SUPPORT EQUIPMENT FOR CONSTRUCTING AND EXTENDING FIBER-OPTIC ACCESS NETWORKS - Optical remote node (NR) device which is situated at a remote point in a fibre-optic metropolitan or access network, carries out the functions of connecting, and transmitting information between, various sections of the network in a passive manner without a power supply using various optical components which extract the necessary optical signals and optical pumping power from the network to which the remote node is connected, and introduces the optical signals from the sections which it connects into said network, and support equipment which is situated at a point in the network with a power supply, uses the network to provide the pumping power required by the remote nodes and has the electronics needed to carry out functions of monitoring the operation of the remote nodes and regulating their activity.12-24-2009
20090274462CENTRALIZED LIGHTWAVE WDM-PON EMPLOYING INTENSITY MODULATED DOWSTREAM AND UPSTREAM - An optical system and method includes a source-free optical network unit coupled to an optical fiber for receiving a centralized lightwave carrier signal with downstream data over the optical fiber. The optical network unit includes a coupler configured to split the original carrier signal into a first path and a second path. The first path includes an optical filter configured to reduce fading effects of the carrier signal. The second path includes a modulator configured to remodulate the centralized lightwave carrier signal with upstream data to produce an upstream data signal for upstream transmission.11-05-2009
20100067911INJECTION LIGHT GENERATOR FOR USE IN WAVELENGTH DIVISION MULTIPLEXED-PASSIVE OPTICAL NETWORK - The invention is related to an injection light generator for use in a wavelength division multiplexed-passive optical network, which generates A-band injection light having a spectrum range separated into N wavelength ranges (N is a natural number equal to or greater than 2) to be used for a transmission of a downstream optical signal and B-band injection light having a spectrum range separated into N wavelength ranges to be used for a transmission of an upstream optical signal.03-18-2010
20120020666Wavelength Assignment for Multiple Operator Support - An apparatus comprising a plurality of optical line terminals (OLTs) corresponding to different providers that share an optical distribution network (ODN), a plurality of optical network units (ONUs) coupled to the OLTs via the same ODN and configured to communicate with the different OLTs using different corresponding pairs of upstream and downstream channels, wherein the upstream and downstream channels are interleaved across a plurality of wavelength bands and comprise a sequence of alternating and contiguous upstream and downstream channels, are aligned with a plurality of wavelength division multiplexing (WDM) channels, and satisfy a plurality of design requirements for the OLTs and ONUs.01-26-2012
20120155878TRANSMISSION APPARATUS AND TRANSMISSION METHOD FOR SUBSCRIBER NETWORK IN CABLE NETWORK - Provided are a transmission apparatus and a transmission method for a subscriber network in a cable network. A passive optical network (GPON) receiver receives data packets through a fiber line using a plurality of optical wavelengths from a head end. A micro cable modem termination system (CMTS) converts the data packets into a data over cable service interface specification (DOCSIS)-based DOCSIS frame and transmits the DOCSIS frame to at least one subscriber device through a coaxial line.06-21-2012
20090148165OPTICAL FILTERING APPARATUS AND OPTICAL COMMUNICATION SYSTEM - Provided is an optical filtering apparatus which is applied to a Time Division Multiplexing Passive Optical Network (TDM-PON) based on a wavelength division multiplexing (WDM) method. The optical filtering apparatus includes: an optical signal distributing unit dividing an optical signal received from an optical line terminal into at least one optical signal with uniform output intensity, and distributing the at least one optical signal into at least one optical network unit; and a multiplexing unit combining a plurality of optical signals having different wavelengths received from the at least one optical network unit using a wavelength division multiplexing (WDM) method, and outputting the combined optical signal to the optical line terminal. Therefore, by using the optical filtering apparatus, it is possible to connect a large number of subscribers to an Optical Line Terminal (OLT) on a network such as Fiber To The Home (FTTH), thereby increasing efficiency in costs.06-11-2009
20110091213PASSIVE OPTICAL NETWORK SYSTEM AND WAVELENGTH ASSIGNMENT METHOD - In a PON system with WDM, at the time of initial setting, each ONU negotiates with an OLT, and automatically acquires a wavelength which can be used by the ONU. One wavelength for negotiation of assigned wavelength is fixed as a default, and a newly connected ONU first uses the wavelength. The OLT 04-21-2011
20090142060METHOD AND APPARATUS FOR TRANSFERRING WDM SIGNALS BETWEEN DIFFERENT WAVELENGTH DIVISION MULTIPLEXED OPTICAL COMMUNICATIONS SYSTEMS IN AN OPTICALLY TRANSPARENT MANNER - In a WDM optical communication system that includes a plurality of nodes interconnected by communication links, a node is provided which includes an optical coupling arrangement having at least one input port for receiving a WDM signal and a plurality of output ports for selectively receiving one or more wavelength components of the WDM optical signal. The optical coupling arrangement is adaptable to reconfigure its operational state to (i) selectively direct any one of the wavelength components received on the input port to any of the output ports independently of any other of the wavelength components and (ii) selectively direct any combination of two or more of the wavelength components from the input port to at least two of the output ports that serve as WDM output ports. At least one optical WDM interface is optically coupled to a first of the WDM output ports. The optical WDM interface is adapted to receive, at different times, a transponder and a transmission link through which a WDM signal can be communicated. At least one transponder is coupled to a second of the WDM output ports.06-04-2009
20120076496Optical communication system, optical network management apparatus and optical network management method - An optical communication system includes a plurality of wavelength selective switches arranged on an optical network; and an optical network management apparatus configured to manage and control the optical network. In response to a path establishing request, the optical network management apparatus determines power consumption of each path that satisfies the path establishing request in the optical network based upon a wavelength being used at a connection port of each of the wavelength selective switches, selects a route based upon the determined power consumption of each of the path, and sets the selected route in the optical network.03-29-2012
20100046945Multiple Star Wavelength Division Multiplexing Passive Optical Networks Using a Wavelength Assignment Method - The present invention discloses a multiple star wavelength division multiplexing passive optical network system using a wavelength assignment method. In a multiple star wavelength division multiplexing passive optical network system using a wavelength assignment method according to the present invention, only one WDM-PON system can provide services for a plurality of subscribers who is distributed in a wide range of area through multiple starring, by setting one or more band for transmitting up-stream signals as an up-stream basic band and one or more band for transmitting down-stream signals as a down stream basic band, respectively, and by dividing each of the up-stream basic band and the down stream basic band into a plurality of wavelength sub-bands and assigning the divided sub-bands to different areas using a wavelength division multiplexer/de-multiplexer which splits a band into two or more sub-bands.02-25-2010
20090016722ONT DISCOVERY IN A DWDM HYBRID PON LT CONFIGURATION - A method, a computer readable medium, and a system for discovering an Optical Network Terminal (ONT) in a Dense Wave Division Multiplex (DWDM) hybrid Passive Optical Network (PON) Line Terminal (LT), comprises implementing, by an Optical Line Termination (OLT), a ranging procedure on at least one downstream link, wherein the OLT is communicably coupled to the ONT, discovering at least one new ONT, by the OLT, on the at least one downstream link based on the ranging procedure, discovering an unranged ONT, by the OLT, during the ranging procedure, and determining, by the OLT, that the unranged ONT resides on the at least one downstream link.01-15-2009
20100232794AGGREGATION NODE DEVICE OF PASSIVE OPTICAL NETWORK AND PASSIVE OPTICAL NETWORK SYSTEM - An aggregation node device of a passive optical network (PON) is provided which includes an aggregation optical line terminal (OLT) and an aggregation optical network unit (ONU). The aggregation OLT is connected to a user-side ONU. The aggregation OLT aggregates service data transmitted by a user-side ONU and transmits the aggregated service data to the aggregation ONU. The aggregation ONU is adapted to transmit the received aggregated service data to a network-side OLT. A PON system is further provided. The device and system can not only support the conventional time division multiplexing (TDM) services but also support the services based on variable-length packets and the multicast service. Moreover, it is not necessary to build an equipment room and supply power for an intermediate optical distribution network (ODN) which greatly reduces the network construction and operation costs.09-16-2010
20110135306APPARATUS AND METHOD FOR RELAYING IN GIGABIT PASSIVE OPTICAL NETWORK - A relaying method of an optical signal of a hybrid relaying apparatus in a gigabit passive optical element includes: selecting and receiving any one of a first serial electrical signal corresponding to a downlink wavelength division multiplexing-passive optical line terminal (WDM-PON OLT) optical signal and a second serial electrical signal corresponding to a downlink gigabit passive optical network optical line terminal (GPON OLT) optical signal; modulating the downlink serial electrical signal to a downlink GPON transmission convergence (GTC) frame; extracting control information for uplink transmission from the downlink GTC frame; converting the downlink GTC frame into the downlink serial electrical signal; and converting the converted serial electrical signal into an optical signal and transmitting the converted optical signal in a GPON OLT optical transceiver.06-09-2011
20130094861Wavelength Indication in Multiple-Wavelength Passive Optical Networks - An apparatus of a passive optical network (PON) comprising an optical line terminal (OLT) component configured to couple to an optical network unit (ONU) and send downstream wavelength identification to the ONU to indicate a wavelength that corresponds to the ONU, wherein the downstream wavelength identification is transmitted using a Media Access Control (MAC) layer frame for an embedded channel, a control message channel, or a data channel. Also included is an apparatus of a PON comprising an ONU component configured to couple to an OLT and send upstream wavelength feedback to the OLT to indicate a wavelength that corresponds to the ONU, wherein the upstream wavelength feedback is transmitted using a MAC layer frame for an embedded channel, a control message channel, or a data channel.04-18-2013
20130094862Wavelength Management in Multiple-Wavelength Passive Optical Networks - A system for supporting wavelength management in a passive optical network (PON), comprising an optical line terminal (OLT) configured to send an wavelength assignment for optical network unit (ONU) communications based on a wavelength tunability capability, and an ONU coupled to the OLT and configured to send the wavelength tunability capability to the OLT, wherein the wavelength assignment and the wavelength tunability capability are sent in media access control (MAC) messages. Also disclosed is an apparatus of an OLT for supporting wavelength management, comprising one or more component configured to couple to an ONU and exchange a wavelength assignment for transmission with the ONU based on a wavelength tunability of the ONU, wherein the wavelength indication and the wavelength tunability are exchanged via MAC layer frames.04-18-2013
20120281984METHOD AND APPARATUS FOR ENABLING MULTIPLE PASSIVE OPTICAL NETWORKS TO SHARE ONE OR MORE SOURCES - A method and apparatus for implementing a hybrid SOA-Raman amplifier in a central office in order to enable multiple passive optical networks to share one or more enhancement service sources, e.g., to share a source for a broadcast service are disclosed.11-08-2012
20130188954RFoG CPE Devices with Wavelength Collision Avoidance Using Laser Transmitter Local and/or Remote Tunability - Methods and apparatus are described for RFoG CPE devices with wavelength collision avoidance using local and/or remote tunability. A method includes tuning each of a plurality of optical transmitters to a plurality of non-overlapping frequency bands to avoid wavelength collisions in an upstream portion of a multipoint-to-point RFoG network where multiple optical transmitters from different RFoG CPE units transmit at the same time to a single shared optical receiver.07-25-2013

Patent applications in class WDM

Patent applications in all subclasses WDM