Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Broadcast and distribution system

Subclass of:

398 - Optical communications

398043000 - MULTIPLEX

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
398068000 WDM 118
398067000 Bidirectional 57
Entries
DocumentTitleDate
20100150556SYSTEM AND METHOD FOR A SUBSCRIBER POWERED NETWORK ELEMENT - A system for powering a network element of a fiber optic wide area network is disclosed. When communication data is transferred between a central office (CO) and a subscriber terminal using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and twisted wire pair, coaxial cable or Ethernet cable transmission lines from the subscriber terminal, techniques related to local powering of a network element or drop site by the subscriber terminal or subscriber premise remote powering device are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges and does not require a separate power network.06-17-2010
20100008668Secure upstream transmission in passive optical networks - A method and system for ensuring confidentiality of signal transmission in a point-to-multipoint data transmission network like Ethernet passive optical network, including at least one hub, at least one transmission medium and at least one station connected to the hub via the transmission medium. When an upstream signal is transmitted from a first station, the upstream signal is reflected by at least one disturbing reflector for producing a disturbing reflection. The disturbing reflection combines with a second reflection of the upstream signal and renders the second reflection undecodable by a second station.01-14-2010
20130077974SYSTEM AND METHOD FOR IDENTIFYING A TARGET SIGNAL IN AN OPTICAL TRANSPORT NETWORK FRAME STRUCTURE - In accordance with embodiments of the present disclosure, a method for identifying a target signal in an optical transport network frame structure may be provided. The method may include determining an Access Identifier (AID) for the target signal. The method may also include determining at least one attribute for the target signal. The at least one attribute may define at least one of an Optical Transport Network (OTN) multiplexing structure associated with the target signal and one or more attributes associated with one or a higher order or an intermediate higher order optical data unit entity for a supporting entity of a lower order optical data unit associated with the target signal. The method may further include identifying the target signal based on the AID and the at least one attribute.03-28-2013
20130077975SYSTEM AND METHOD FOR PERFORMING IN-BAND REFLECTION ANALYSIS IN A PASSIVE OPTICAL NETWORK - A system for performing in-band reflection analysis in a passive optical network. The system comprises an optical line terminal (OLT) that includes a transceiver for transmitting continuous downstream data modulated on a first wavelength and receiving upstream burst data modulated on a second wavelength, the OLT further includes a receiver for receiving signals reflected from the PON that are modulated on the first wavelength, wherein the continuous downstream data comprises user data and a test data pattern; and a reflection analysis unit for cross-correlating between a time-shifted version of the transmitted test data pattern and the reflected signals, wherein the test data pattern is time-shifted relatively for an optical location to be tested.03-28-2013
20100104285Collecting Status From a Partner Management Domain - An apparatus comprising a Generic Status Portal (GSP) configured to grant access to a Managed Entity (ME) via an Optical Network Terminal (ONT) Management and Control Interface (OMCI), wherein the ME comprises status information about a non-OMCI management domain at the ONT. Also included is an apparatus comprising at least one processor configured to implement a method comprising initializing an ONT ME, adding status information associated with a managed function to the ONT ME, indicating a status information update of the ONT ME, and providing the status information via an OMCI. Included is a method comprising providing status and performance monitoring (PM) information from an ONT via an OMCI at the ONT, wherein the status and PM information is associated with at least one managed function instance of at least one non-OMCI domain.04-29-2010
20100104286OPTICAL ACCESS SYSTEM AND OPTICAL LINE TERMINAL - Provided is an optical access system comprising: an optical line terminal connected to another network; a plurality of optical network units, each connected to a user terminal; and at least one of an optical switching unit and an optical splitter, which is installed between the optical line terminal and the plurality of optical network units. The optical line terminal allocates a length of time to a discovery phase for detecting the plurality of optical network units, and a length of time to data transmission phases for transferring data from the plurality of optical network units; and changes a ratio of the length of time of the discovery phase to the length of time of the data transmission phases so that the length of time of the discovery phase is shortened in the case where a number of the optical network units that are registered in the optical line terminal increase.04-29-2010
20130045012Multi-Service Provisioning in Orthogonal Frequency Division Multiplexing-Passive Optical network OFDMA-PON - A method for multi-service provisioning in an OFDMA-PON that includes linking communicatively to a core network and bandwidth provisioning, dynamically within a single wavelength, traffic from the core network to a network of multiple virtual passive optical networks VPONs for multi-service provisioning to the VPONs.02-21-2013
20130089330Method And Apparatus For Efficient Operation Of A Passive Optical Communications Access Network - A method and apparatus for providing an efficient optical access network. In a preferred embodiment, a single light source is used to generate light in a network node, such as an OLT (optical line terminal). The generated light is then distributed using an optical splitter to a plurality of outputs, each associated with an ONU. The distributed light intended for a particular ONU (optical network unit) is modulated, for example by an EOM (electro-optical modulator), with a signal carrying communications for the intended ONU. The OLT includes a bank of EOMs or other kind of optical modulators, such as EAMs for serving a plurality of ONUs. The OLT may also include a second light source for generating light that is propagated to one or more of the ONUs for their use in forming upstream transmissions.04-11-2013
20120219295OPTICAL TRANSMISSION DEVICE AND OPTICAL TRANSMISSION METHOD - An output control unit outputs data of bit rate A to a first header-attaching unit and data of bit rate B to a second header-attaching unit. An instructing unit instructs the first or the second header-attaching unit to attach a header of bit rate being the least bit rate to the data of bit rate A or B. The first header-attaching unit creates a header of bit rate A, including an ID of a destination ONU of the data of bit rate A and information concerning the data length, and attaches the header of bit rate A to the data of bit rate A. The second header-attaching unit creates a header of bit rate A, including an ID of the destination ONU of the data of bit rate B and information concerning the data length, and attaches the header of bit rate A to the data of bit rate B.08-30-2012
20090041459Optical fan-out and broadcast interconnect methodology - Methods are described for an optical fan-out and broadcast interconnect. A method includes operating an optical fan-out and broadcast interconnect including: fanning-out an optical signal from an optical signal emitter, of one of a plurality of nodes, with a diverging element of one of a plurality of optics; and broadcasting the optical signal to one of a plurality of receivers of all of the plurality of nodes with a light collecting and focusing element of all of the plurality of optics, wherein the plurality of optics are positioned to define an optics array, the plurality of receivers are positioned to define a receiver array that corresponds to the optics array and the plurality of nodes are positioned to define a node array that substantially corresponds to the receiver array and the optics array.02-12-2009
20130071120DIGITIZER FOR USE IN AN OVERLAY SYSTEM WITH DIGITAL OPTICAL TRANSMITTER FOR DIGITIZED NARROWCAST SIGNALS - Methods and apparatuses are provided to digitize an analog multi-channel RF narrowcast signal in an overlay system by dividing the signal into a plurality of subband signals and digitizing each subband signal using practical A/D converters.03-21-2013
20130129353Signal Transmission Processing Method and Apparatus and Distributed Base Station - The disclosures provide a method and apparatus for transmitting and receiving interface signals of a distributed base station. At least one channel of Common Public Radio Interface (CPRI) signals of a distributed base station are encapsulated into optical transport unit x (OTUx) signals in a frame structure of OTUx by adopting Generic Mapping Procedure (GMP) mapping scheme, wherein the x represents a transmission capacity and wherein the OTUx is adopted for providing a bandwidth required by the at least one channel of CPRI signals, and then the OTUx signals that bear the at least one channel of CPRI signals are sent.05-23-2013
20130058655TRANSMISSION APPARATUS FOR OPTICAL TRANSPORT NETWORK, AND STAFF CONTROL METHOD THEREFOR - A transmission apparatus for an optical transport network includes maps client data to a payload of an optical transport unit in order to obtain a higher layer frame generated based on a clock on the optical transport network side, and sends the higher layer frame to the optical transport network. A Cn value indicating an amount of the client data to be mapped to the payload of the optical transport unit is computed based on a counted value, counted using a clock of the client data, of a time period corresponding to the payload of the optical transport unit in the higher layer frame generated using a clock of the optical transport network.03-07-2013
20130058654Gigabit-Capable Passive Optical Network (GPON) system and Point-to-Point Protocol over Ethernet (PPPOE) configuration method implemented thereby - The disclosure discloses a Point-to-Point Protocol over Ethernet (PPPOE) configuration method for a Gigabit-Capable Passive Optical Network (GPON) system. The method comprises: an Optical Line Terminal (OLT) instructing an Optical Network Unit (ONU) to create or delete a PPPoE management object instance and associate the PPPoE management object instance with an IP host config data management object instance; and the ONU creating the PPPoE management object instance according to the creation instruction from the OLT, and turning on a PPPoE function switch in the IP host config data management object instance; or the ONU deleting the PPPoE management object instance according to the deletion instruction from the OLT, and turning of the PPPoE function switch in the IP host config data management object instance. The disclosure also discloses a GPON system. With the disclosure, the problem that the existing GPON system cannot support accessing in a manner of PPPoE dial-up is solved, and the PPPoE scenario requirements are met.03-07-2013
20130058656OPTICAL TRANSMISSION DEVICE, SCRAMBLING METHOD, AND DESCRAMBLING METHOD - A first header-attaching unit attaches to data of a low speed bit rate A, a header of the bit rate A. A second header-attaching unit attaches the header of the bit rate A to data of a high speed bit rate B. A combining unit combines outputs of the first and the second header-attaching units. A low speed scrambling unit performs a scrambling process on combined data by using a clock corresponding to the bit rate A. A high speed scrambling unit performs a scrambling process on the data of the bit rate B by using a clock corresponding to the bit rate B. During a timing corresponding to the bit rate A in the frame, a selector selects an output of the low speed scrambling unit. During a timing corresponding to the bit rate B in the frame, the selector selects an output of the high speed scrambling unit.03-07-2013
20090269063Method and apparatus for enabling activation of services via an Optical Network Terminal (ONT) - Cell phones or other wireless devices are becoming increasingly more accessible to customers, but cell phone features are primarily focused on communications services. A system employing an example embodiment activates services for an Optical Network Terminal (ONT) in the presence of wireless devices. In particular, the ONT responds to a ranging request from an Optical Line Terminal (OLT) with an ONT Identifier (ID) and an ID of a wireless device. If the ID of the wireless device is known, the ONT may enable activate a service, such as a security service for a homeowner. If the ID of the wireless device is unknown, the system may employ security measures, such as notifying the homeowner that a person with a wireless device having an unknown ID is on the premises. Thus, the example embodiment enables or disables premises security or other security based on the ID of the wireless device.10-29-2009
20120224854USE OF THE SAME SET OF WAVELENGTHS FOR UPLINK AND DOWNLINK SIGNAL TRANSMISSION - The present invention relates to the field of signal transmission using orthogonal optical frequency division multiplexing transceivers and to the use of the same set of wavelengths for the downlink and uplink signal transmission. 09-06-2012
20120224853METHOD AND DEVICE FOR SENDING UPLINK BURST DATA IN PASSIVE OPTICAL NETWORK SYSTEM - A method for sending uplink burst data in a passive optical network (PON) system includes: sending a synchronization pattern of the uplink burst data, the synchronization pattern being of a length, which is an integer multiple of 66 bits, and being formed by connection of 66-bit unit gene blocks; sending a burst delimiter (BD) of the uplink burst data; sending a forward error correction (FEC)-protected data in the uplink burst data; and sending an end of burst (EOB) delimiter of the uplink burst data. The technical solutions in the embodiments allow the use of a less complex equalizer at the reception end of a high-speed PON system.09-06-2012
20090232501Adaptive Injection Current Controlled Burst Mode SOA for Long and Wide Reach High Speed PON - An apparatus comprising an optical power splitter, an optical delay line coupled to the optical power splitter, an optical amplifier (OA) coupled to the optical delay line, and an adaptive injection current (AIC) controller coupled to the optical power splitter and the OA. Also disclosed is an apparatus comprising at least one component configured to implement a method comprising converting an optical signal into a voltage signal, calculating an amplitude correction value for the voltage signal, inverting an amplitude of the voltage signal, adjusting the amplitude of the inverted voltage signal according to the amplitude correction value, and converting the adjusted voltage signal into a current signal. Included is a network comprising an optical line terminal (OLT) comprising an optical receiver and an AIC controlled OA coupled to the optical receiver, wherein the AIC controlled OA provides optical power equalization for any upstream optical signals.09-17-2009
20090028564Dual Broadcast and Narrowcast Systems and Methods - Various embodiments of dual broadcast and narrowcast systems and methods are disclosed. One method embodiment, among others, comprises the steps of receiving optical narrowcast signals and converting the optical narrowcast signals to a radio frequency (RF) domain at a first photodiode, receiving optical broadcast signals and converting the optical broadcast signals to the radio frequency (RF) domain at a second photodiode, and combining the RF domain narrowcast and broadcast signals for transmission over a medium.01-29-2009
20110280576Optical power distribution system - A system for delivering optical power over optical conduits includes more than one optical power source and an optical power distribution node configured for selectively delivering optical power to multiple optical power sinks.11-17-2011
20120288279POWER CONTROL IN AN OPTICAL NETWORK UNIT - There are disclosed techniques for power control in an Optical Network Unit (ONU) of a Passive Optical Network (PON). In one embodiment, the supply of power to an optical transmitter is controlled in accordance with information defining a plurality of transmission windows during which data can be transmitted from the ONU, in order to achieve the following: (1) to provide power to the optical transmitter beginning at a predetermined time in advance of a transmission window to ensure a laser in the optical transmitter is ready to begin transmitting the data at the start of the transmission window; and (2) to refrain from providing full power to the optical transmitter between transmission windows when the duration of time between the transmission windows is greater than a predetermined length.11-15-2012
20110129226OPTICAL FIBRE NETWORKS - An optical fibre transmission distribution assembly, wherein the assembly comprises at least a first splitter having a first split ratio of 1:x (where x is an integer) connected to optical drop cables leading to subscribers, and at least a second splitter having a second split ratio of 1:y (where y is an integer and is different from x), and transfer means whereby an optical drop cable connected to the first splitter can be transferred to receive split optical signals from the second splitter, thereby enabling the signal in the transferred drop cable to be further split by addition of a third splitter at a ratio of 1:p (where p is an integer), to provide p subscriber connection points each having a 1:p*y split ratio at the subscriber end of the transferred drop cable.06-02-2011
20130163989METHOD AND APPARATUS FOR AUTHENTICATION IN PASSIVE OPTICAL NETWORK - A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a PLOAM message is sent from an ONU to an OLT, where the PLOAM message includes a first field for carrying an ONU identifier (ONU-ID) and a second field for carrying a first logic registration code, where the ONU-ID is assigned by the OLT to identify the ONU and wherein the first logic registration code is assigned to a user by an operation management system communicatively connected to the OLT and provisioned to the user for authentication. The OLT is configured to judge whether the first logic registration code received from the ONU matches with a second logic registration code provisioned by the operation management system to the OLT and to promote the ONU into service if the first logic registration code matches with the second logic registration code.06-27-2013
20110293277RECONFIGURABLE MULTI-ZONED FIBER OPTIC NETWORK ARCHITECTURE HAVING FIBER OPTIC DEVICES - A fiber optic network having one or more zones is disclosed. Each zone of the fiber optic network includes one or more zone terminals or devices. Such zone terminals or devices may be located at a mid-span access point of a distribution cable optically connected to a service provider's feeder cable. The zone terminal has a plurality of connector ports with at least one adapter positioned within one of the plurality of connector ports. The adapter is configured to establish an optical connection with one or more optical fibers of the distribution cable. The second multi-fiber optical connector is suitable for outside-plant installation, and the terminal is configured to extend optical service from a service provider toward at least one subscriber premises in a zone. The fiber optic terminal is reconfigurable based on at least one of, a number of subscriber premises in the zone, a geographical relationship of the subscriber premises in the zone, and a demographic make-up of the subscriber premises in the zone.12-01-2011
20100290783PASSIVE OPTICAL NETWORK SYSTEM AND OPERATION METHOD THEREOF - A master station includes an optical transmission interface for transmitting signals to a plurality of slave stations at a first transfer rate or a second transfer rate which is higher than the first one, packet buffers for accumulating the signals addressed to each of the plurality of slave stations, and a control unit for determining transmission timings and transfer rates of the signals on the basis of an amount of the signals accumulated in the packet buffers, transmitting the signals with the determined timings and rates, and notifying each of the slave stations about the determined timings and rates. Each of the slave stations includes an optical reception interface for receiving the signals of the first transfer rate or the second transfer rate, and a control unit for controlling the optical reception interface on the basis of the timings and rates which the slave stations is notified.11-18-2010
20110262139METHOD FOR LOCALIZING AN OPTICAL TERMINATION DEVICE IN A PASSIVE OPTICAL NETWORK - A method for localizing an optical network termination (ONT) of a passive optical network is disclosed. The passive optical network comprises an optical line terminal (OLT) and an optical distribution network (ODN) having a plurality of optical links. The ONT is connectable to the OLT by a given optical link of the optical distribution network. The method includes the steps of detecting that the ONT has been connected to the OLT by an optical link of the optical distribution network; determining length information indicative of a length of the optical link; comparing the length information with a reference length information indicative of a length of the given optical link; and if the length information matches the reference length information, localizing the ONT by confirming that it is connected to the OLT by the given optical link.10-27-2011
20100080558Passive Optical Network System and Operating Method Thereof - The passive optical network includes a master station and slave stations connected via an optical fiber network including an optical splitter and a plurality of optical fibers. The master station includes a bandwidth control unit which decides a volume of a transmission signal to be granted to each slave station in every first period and in accordance with a request from the slave station, and a transmission timing control unit which decides, in one of a plurality of second periods and in accordance with the decided volume of the signal, transmission timing in which the slave station should transmit a signal. When the signal is to be transmitted by division over the plurality of second periods, the bandwidth control unit or the transmission timing control unit is controlled based on a volume of a signal to be attached by division processing, so that the granted signal can be transmitted in the first period.04-01-2010
20120106963System, Method And Relevant Device For Signal Transmission - A system, a method and a related device for signal transmission are provided in order to improve utilization efficiency of the fiber. The system includes an optical line terminal (OLT), a plurality of optical network units (ONU), a base band unit (BBU), a plurality of remote radio units (RRU), a first signal-processing device and a plurality of second signal-processing devices, wherein the first signal-processing device sends a multiplexed signal to a plurality of second signal-processing devices after a plurality of signals sent by the OLT and the BBU are multiplexed, and demultiplexes a signal sent by the second signal-processing device in order to obtain a plurality of signals sent by the ONU and a plurality of different RRUs and sends these demultiplexed signals to the OLT and the BBU; one of a plurality of second signal processing devices sends a multiplexed signal to the first signal-processing device after a plurality of signals sent by the ONU and a plurality of different RRUs are multiplexed, and demultiplexes a signal sent by the first signal-processing device in order to obtain a signal sent by the OLT and a plurality of signals sent to a plurality of different RRUs by the BBU and sends these demultiplexed signals to the ONU and the RRUs.05-03-2012
20090274461PON MULTICAST COMMUNICATION SYSTEM, MULTICAST MANAGEMENT METHOD, AND CORRESPONDING DEVICES - A Passive Optical Network (PON) multicast management method includes: an Optical Line Terminal (OLT) performs multicast control according to multicast control information, and generates a corresponding multicast downstream command; the OLT sends the multicast downstream command to an Optical Network Unit (ONU); and the ONU resolves the multicast downstream command, and performs multicast control according to the multicast downstream command. Accordingly, a PON multicast communication system, an OLT, and an ONU are disclosed. Through the multicast control mechanism introduced into the PON system, the PON multicast functions are enhanced, and the same data destined for multiple ONUs is prevented from being sent repeatedly in the network, and thus the network bandwidth resources are saved.11-05-2009
20110170871APPARATUS OF ADJUSTING OPTICAL SIGNAL TRANSMISSION TIMING - In a light reception element such as an APD (Avalanche Photo Diode) used for receiving a high-speed and weak optical signal, it is possible to prevent the phenomenon of distortion of a signal inputted after a large-level light is received. A PON (Passive Optical Network) system includes an OLT (Optical Line Terminal) which can impartially and effectively transmit light reception data to each ONU (Optical Network Unit). According to a light reception amplitude received by each ONU, an inter-frame gap of an appropriate length is assigned for each ONU. The OLT includes a unit for measuring and accumulating the reception light amplitude and data on the inter-frame gap of an appropriate length decided in advance according to the characteristic of the light reception device and generates a grant value for assuring an inter-frame gap of an appropriate length by using the both information.07-14-2011
20090162065NETWORK SYSTEM AND OPTICAL LINE TERMINAL - It is necessary to completely remove overlapping of signals between plural PONs in order to make the PONs coexist. Accordingly, it is required to share or intensively manage bandwidth use conditions over an optical fiber that serves as a common band between plural systems. Therefore, transmission clocks should be synchronized with high accuracy between plural systems. A reference clock is provided from an external device or a representative OLT to the entire systems to perform clock synchronization between plural systems, so that the overall systems are synchronized by synchronizing each OLT with the reference clock. A hierarchical management method is selected that manages ONUs under the control of each OLT by managing band use information arranged for each OLT with respect to an external device or a representative OLT for sharing of bandwidth use conditions between plural systems.06-25-2009
20090162064NETWORK SYSTEM AND OPTICAL LINE TERMINAL - It is necessary to completely remove overlapping of signals between plural PONs in order to make the PONs coexist. Accordingly, it is required to share or intensively manage bandwidth use conditions over an optical fiber that serves as a common band between plural systems. Therefore, transmission clocks should be synchronized with high accuracy between plural systems. A reference clock is provided from an external device or a representative OLT to the entire systems to perform clock synchronization between plural systems, so that the overall systems are synchronized by synchronizing each OLT with the reference clock. A hierarchical management method is selected that manages ONUs under the control of each OLT by managing band use information arranged for each OLT with respect to an external device or a representative OLT for sharing of bandwidth use conditions between plural systems.06-25-2009
20090245792NETWORK SYSTEMS AND COMMUNICATIONS EQUIPMENT - A duplicate system includes an active side (0 side) and a standby side (1 side). An OLT includes an autodiscovery function which, when the OLT is active, determines the next starting time of autodiscovery procedure of the standby side and notifies the standby side of the above starting time, a table of management information that holds the line information of a partner with which the OLT forms the duplicate system and the next starting time of autodiscovery procedure of the OLT, and a function of switching active side that calculates a timing of switching active side. A function of receiving data from ONT in the OLT includes a function of detecting data sequence number and a function of detecting queue length. Moreover, a function of sending data of ONT includes a function of assigning sequence number and a function of discarding data.10-01-2009
20090263132METHOD OF INTRODUCING AN OUTSTATION INTO AN OPTICAL NETWORK AND OUTSTATION THEREFOR - The present invention relates to the introduction of an outstation into an optical network. The optical network has a central station, and a plurality of previously introduced outstations which are optically connected to the central station. The network is operable in: a normal operating state in which data traffic is received from previously introduced outstations at a normal data rate; and, a set-up state in which the transmission of data traffic from the previously introduced outstations is restricted relative to the normal state, the method including the step of: when the network is in the set-up state, performing a set-up operation for introducing the outstation into the optical network, the set-up operation involving the transmission of set-up data from the outstation being introduced, wherein the set-up data is transmitted at a reduced rate relative to the normal operating rate.10-22-2009
20100003029Optical fan-out and broadcast interconnect methodology - Methods are described for an optical fan-out and broadcast interconnect. A method includes operating an optical fan-out and broadcast interconnect including: fanning-out an optical signal from an optical signal emitter, of one of a plurality of nodes, with a diverging element of one of a plurality of optics; and broadcasting the optical signal to one of a plurality of receivers of all of the plurality of nodes with a light collecting and focusing element of all of the plurality of optics, wherein the plurality of optics are positioned to define an optics array, the plurality of receivers are positioned to define a receiver array that corresponds to the optics array and the plurality of nodes are positioned to define a node array that substantially corresponds to the receiver array and the optics array.01-07-2010
20100014860COMMUNICATION APPARATUS AND COMMUNICATION METHOD - A communication apparatus configured to transmit moving image data to a receiving apparatus via a network. The communication apparatus includes a coding unit configured to code the moving image data, a control information generation unit configured to determine a degree of importance of each packet of the moving image data coded by the coding unit and transmission quality of the network, and generate, for each packet, control information to control communication service quality according to the determined degree of importance and transmission quality, a packet generation unit configured to generate a packet based on the moving image data coded by the coding unit and the control information generated by the control information generation unit, and a communication control unit configured to transmit the packet generated by the packet generation unit.01-21-2010
20100183304DYNAMIC BANDWIDTH ALLOCATION IN A PASSIVE OPTICAL NETWORK IN WHICH DIFFERENT OPTICAL NETWORK UNITS TRANSMIT AT DIFFERENT RATES - An OLT allocates a bandwidth budget and assigns upstream transmission order by receiving upstream transmission requests from a plurality of ONUs. Each ONU's request includes a requested guaranteed bandwidth and a requested best effort bandwidth. Each ONU has respective first and second attribute values. One attribute is given allocation priority over the other attribute. One attribute is given scheduling priority over the other attribute. Within each attribute, an allocation rank and a transmission rank is assigned to the possible attribute values. The bandwidth budget is allocated in accordance with the allocation priority and ranks. The upstream transmissions are scheduled in accordance with the scheduling priority and ranks.07-22-2010
20100239256DATA TRANSMISSION METHOD OF OPTICAL ACCESS NETWORK, AND SYSTEM AND DEVICE THEREOF - An optical access network (OAN) system is provided. In the system, a remote radio unit (RRU) receives and sends a wireless signal and implement conversion between the wireless signal and a first frequency signal; an optical network device receives and sends the wireless signal, and implement conversion between the wireless signal and the first frequency signal and conversion between the first frequency signal and a fiber transmission signal; an optical distribution network (ODN) connected to the optical network device transmits the fiber transmission signal; an optical line terminal (OLT) device receives and sends the fiber transmission signal, and implements conversion between the fiber transmission signal and a second frequency signal, conversion between the second frequency signal and a base band signal, and conversion between the base band signal and a signal of another standard protocol.09-23-2010
20100239255OPTICAL LINE TERMINAL, PASSIVE OPTICAL NETWORK SYSTEM, AND BANDWIDTH ASSIGNMENT METHOD - An OLT of a station-side device in a PON system, the OLT including: an MPCP control unit for receiving bandwidth requirements from each of a plurality of ONUs of home-side devices; a bandwidth assignment period calculation unit for calculating the following bandwidth assignment period for each request source based on the received bandwidth requirements for each request source; a dynamic bandwidth assignment calculation unit for calculating the following bandwidth assignment for each request source based on the received bandwidth requirements for each request source; and the MPCP control unit for transmitting transmission allowance based on the calculated bandwidth assignment to each of the plurality of ONUs.09-23-2010
20130216229ORTHOGONAL FREQUENCY DIVISION MULTIPLE ACCESS TIME DIVISION MULTIPLE ACCESS-PASSIVE OPTICAL NETWORKS OFDMA TDMA PON ARCHITECTURE FOR 4G AND BEYOND MOBILE BACKHAUL - Systems and methods are provided for network communication using wireless base stations and an optical orthogonal frequency division multiple access (OFDMA) signal generated on an optical wavelength, with the optical OFDMA signal being composed of a plurality of OFDMA subcarriers. A multi-level modulator modulates each of the plurality of OFDMA subcarriers. A single optical wavelength propagates each of the plurality of OFDMA subcarriers to different base stations; a passive optical splitter delivers the optical OFDMA signal to different base stations; and an OFDMA subcarrier de-multiplexer delivers and extracts traffic for each of the base stations in an electronic-domain, wherein the extracted traffic is remodulated in a wireless signal format. Antennas at each of the base stations transmit wireless signals, and the wireless signals are recovered and processed from the base stations.08-22-2013
20100226648FRAME GENERATING APPARATUS AND FRAME GENERATING METHOD - A frame generating apparatus accommodating a client signal in an optical data transfer unit frame with a higher bit rate than the client signal includes a deserializer, a plurality of generic mapping procedure circuits, and a serializer. The deserializer deserializes the client signal into parallel signals, the number of parallel signals corresponding to the number of tributary slots used in the optical data transfer unit frame. The plurality of generic mapping procedure circuits inserts data and stuff into a frame accommodating portion of the optical data transfer unit frame based on a difference in the bit rate between the client signal and the optical data transfer unit frame. The serializer serializes the parallel signals output from the plurality of generic mapping procedure circuits.09-09-2010
20110058812Optically Enabled Broadcast Bus - Embodiments of the present invention are directed to optical multiprocessing buses. In one embodiment, an optical broadcast bus includes a repeater, a fan-in bus optically coupled to a number of nodes and the repeater, and a fan-out bus optically coupled to the nodes and the repeater. The fan-in bus is configured to receive optical signals from each node and transmit the optical signals to the repeater, which regenerates the optical signals. The fan-out bus is configured to receive the regenerated optical signals output from the repeater and distribute the regenerated optical signals to the nodes. The repeater can also serve as an arbiter by granting one node at a time access to the fan-in bus.03-10-2011
20120141129SIGNAL TRANSMISSION METHOD FOR PEER-TO-PEER OPTICAL NETWORK AND SYSTEM THEREOF - A signal transmission system for a peer-to-peer optical network. The system includes an optical line terminal, an optical distribution node, and a plurality of optical network units. The optical network unit and the optical distribution node are connected in a tree distribution having an ordered relation. The optical line terminal transmits optic signals via the optical distribution node to a first ordered optical network unit, to allow the first ordered optical network unit to process the optic signals and to generate combined optic signals, which are transmitted to a next ordered optical network unit via the optical distribution node. The above steps are iterated, until a last ordered optical network unit transmits combined optic signals to the optical line terminal via the optical distribution node.06-07-2012
20100119228METHOD, SYSTEM AND DEVICE FOR PROTECING LONG-REACH PASSIVE OPTICAL NETWORK - A method, system and device for protecting a Long Reach Passive Optical Network (LR-PON) system are provided. The Electrical Relay (E-R) device receives the optical signal transmitted on two fiber transmission paths by the Optical Line Terminal (OLT) or Optical Network Unit (ONU) on one side, performs optical-to-electrical (O/E) conversion, signal regeneration, and electrical-to-optical (E/O) conversion for the optical signal, and sends the signal to the ONU or the OLT on the other side through the two fiber transmission paths. Through backup of the fiber transmission path, an LR-PON system protection method is provided to improve the reliability of the LR-PON system. The method, system, and device for protecting the LR-PON system under the present invention all support and are compatible with the existing functions of all devices in the existing LR-PON system.05-13-2010
20130142512Self-Seeded Colorless Burst-Mode Transmitter Using Reflective Semiconductor Optical Amplifier and Injection-Locked Fabry-Perot Laser - An apparatus comprises an optical port; a first optical transmitter; a second optical transmitter; a partially reflective mirror positioned between the first optical transmitter, the second optical transmitter, and the optical port; and an optical rotator positioned between the partially reflective minor and the first optical transmitter.06-06-2013
20090214211APPARATUS OF ADJUSTING OPTICAL SIGNAL TRANSMISSION TIMING - In a light reception element such as an APD (Avalanche Photo Diode) used for receiving a high-speed and weak optical signal, it is possible to prevent the phenomenon of distortion of a signal inputted after a large-level light is received. A PON (Passive Optical Network) system includes an OLT (Optical Line Terminal) which can impartially and effectively transmit light reception data to each ONU (Optical Network Unit). According to a light reception amplitude received by each ONU, an inter-frame gap of an appropriate length is assigned for each ONU. The OLT includes a unit for measuring and accumulating the reception light amplitude and data on the inter-frame gap of an appropriate length decided in advance according to the characteristic of the light reception device and generates a grant value for assuring an inter-frame gap of an appropriate length by using the both information.08-27-2009
20110044690SYSTEM OF DEVICES OF WHICH SOME INCLUDE AN INFARED REMOTE CONTROL INTERFACE - Infrared control signals are communicated between an infrared remote control unit (02-24-2011
20110129225Optical Polymorphic Computer Systems - Embodiments of the present invention are directed to high-bandwidth, low-latency optical fabrics for broadcasting between nodes. In one embodiment, an optical fabric includes an optical communication path optically coupled to a broadcasting node and optically coupled to one or more broadcast receiving nodes. The optical fabric also includes a first optical element optically coupled to the optical communication path and configured to broadcast an optical signal generated by the broadcasting nodes onto the optical communication path, and one or more optical elements optically coupled to the optical communication path and configured to divert a portion the broadcast optical signal onto each of the one or more receiving nodes.06-02-2011
20120243872OPERATION METHODS IN AN ETHERNET PASSIVE OPTICAL NETWORK THAT INCLUDES A NETWORK UNIT WITH MULTIPLE ENTITIES - A method for registration of multiple entities belonging to a specific optical network unit (ONU). In one embodiment, the multiple entity registration method comprises checking by an optical line terminal (OLT) if a registration request message received from the specific ONU belongs to a certain grant, and based on the check result, registering an entity as either a first or as an additional entity of the specific ONU. In another embodiment, the method comprises checking by an OLT of a reserved value of a flags field inside a registration request message, and based on the check result, registering an entity as either a first or as an additional entity of the specific ONU. The knowledge by an OLT that multiple entities belong to a specific ONU is used for grant optimization and packet data flow optimization.09-27-2012
20110076022Optical communications network, power supply controlling method, station-side equipment, subscriber-side equipment, and semiconductor chip - An optical communications network that is composed of one station-side equipment being connected to plural subscriber-side equipments. The station-side equipment refers to downstream data signals and prepares transmission plans, and generates downstream control signals that include the transmission plans, and converts downstream signals, that include the downstream data signals and the downstream control signals to which identifiers indicating the subscriber-side equipments that are addressees are assigned, into downstream optical signals, and sends the downstream optical signals out toward the subscriber-side equipments. The subscriber-side equipment converts downstream optical signals into downstream electric signals, and refers to identifiers and extracts downstream electric signals addressed to itself, and reads the transmission plans, and generates timer control signals including information of receiving start times and receiving stop times, and, on the basis of the timer control signals, opens and closes a path connecting a receiving section and an electricity supply section.03-31-2011
20090290875Broadband optical network apparatus and method - Methods and apparatus for providing enhanced optical networking service and performance which are particularly advantageous in terms of low cost and use of existing infrastructure, access control techniques, and components. In the exemplary embodiment, current widespread deployment and associated low cost of Ethernet-based systems are leveraged through use of an Ethernet CSMA/CD MAC in the optical domain on a passive optical network (PON) system. Additionally, local networking services are optionally provided to the network units on the PON since each local receiver can receive signals from all other users. An improved symmetric coupler arrangement provides the foregoing functionality at low cost. The improved system architecture also allows for fiber failure protection which is readily implemented at low cost and with minimal modification.11-26-2009
20080267626SYSTEM, APPARATUS AND METHOD FOR CONTROLLING MULTICAST FLOW IN PASSIVE OPTICAL NETWORK - The present invention discloses a method for controlling multicast flow in passive optical network includes: receiving multicast data from the optical line terminal, determining whether the received multicast data satisfies a multicast right control condition, transmitting the multicast data to the user side if the received multicast data satisfies the multicast right control condition, or discarding the multicast data if the received multicast data does not satisfy the multicast right control condition. The present invention also discloses an optical network terminal, an optical line terminal, and a system consisting of an optical network terminal and an optical line terminal and an optical distribute network, which implement the above mentioned method. The present invention could prevent the optical network terminal from receiving illegal multicast data and enhance the multicast security of the whole passive optical network system.10-30-2008
20110164877METHOD, DEVICE, AND SYSTEM FOR TRANSMITTING CONSTANT RATE DATA STREAM - In the field of optical network communication technologies, a method, a device, and a system for transmitting a constant rate data stream are provided. The method for transmitting the constant rate data stream by the first network device includes: receiving a constant rate data stream; calculating an input rate of the constant rate data stream or a rate difference between the input rate and a standard rate of the constant rate data stream in each cycle of a reference clock; encapsulating the constant rate data stream into a Gigabit-Passive Optical Network (GPON) Encapsulation Method (GEM) frame by using a bit as a minimum encapsulation unit; and encapsulating the GEM frame into a GPON Transmission Convergence Layer (GTC) frame, and sending the GTC frame to the second network device through a GPON network. Therefore, the technical solutions may be widely applied to the GPON network.07-07-2011
20110262138Method and Device for Processing Broadcast Packets/Multicast Control Messages - The present invention discloses a method for processing broadcast packets/multicast control messages, comprising: replicating data to different broadcast/multicast logical channels in accordance with ONU types of users who join a VLAN when an OLT, on which a same port is connected to different types of ONUs, transmits the downlink broadcast packets/multicast control messages. The present invention also discloses a device for processing broadcast packets/multicast control messages. In accordance with the present invention, efficient processing of downlink broadcast packets and multicast control messages is realized when different types of ONUs coexist, unnecessary interference with ONUs from excessive data is avoided, and meanwhile the bandwidth between an OLT and an ONU can be utilized efficiently and meaningless bandwidth occupation by data streams can be avoided.10-27-2011
20090110399STORAGE SYSTEM AND OPTICAL MODULE SWITCHING METHOD FOR STORAGE SYSTEM - An object of the present invention is to continue to send and receive to/from a host when a failure has occurred in a storage device interface. A storage system includes a host and a storage device connected to the host via a communication line, wherein the storage device comprises a communication controller performing data communication with the host by using optical modules, and wherein the communication controller is provided with first optical modules performing data communication with the host; a second optical module performing data communication with the host, in place of a first optical module; and a controller switching, when a failure has occurred in any of the first optical modules, the first optical module in which the failure has occurred to the second optical module.04-30-2009
20110188858OPTICAL BACKHAUL NETWORK FOR WIRELESS BROADBAND SERVICE - An optical backhaul network for a wireless broadband service is provided. The optical backhaul network for a wireless broadband service includes: a plurality of optical network units for outputting an uplink optical signal having a multiplexed wavelength; an optical line termination for outputting a downlink optical signal of a single mode in order to transmit the downlink optical signal to the plurality of the optical network units in a broadcasting form; and a plurality of remote nodes for outputting a part of the downlink optical signal to the plurality of the optical network units and for outputting the uplink optical signal to the optical line termination. Therefore, one center and a plurality of access points can be efficiently connected.08-04-2011
20130195457METHOD AND SYSTEM FOR PERFORMING DISTRIBUTED DEEP-PACKET INSPECTION - A method for deep-packet inspection of packets flowing through an end unit in a point-to-multipoint network. The method comprises classifying packet flows through the end unit using their flow-identification (ID) to determine which of the packet flows should be deep-packet inspected, wherein the packet flows include incoming packets received from a central unit and outgoing packets sent to the central unit of the point-to-multipoint network; duplicating packets determined to be deep-packet inspected; saving all duplicated packets in a memory; upon collection of a predefined number of duplicated packets belonging to a certain flow-ID, performing deep-packet processing based on at least one deep-packet inspection application; and saving the deep-packet processing results in the memory.08-01-2013
20120121265Apparatus And Method For Two-Stage Optical Network - A manner of providing an energy-efficient two-stage PON using a multistage-PON repeater to forward data traffic and other communications between the first stage and the second stage. The multistage-PON repeater receives BI-PON transmission frames from and OLT and decimates them, forwarding data intended for end devices of the second stage. The multistage-PON repeater rate adapts the transmissions so that faster speeds may be associated with PON first stage communications and slower speeds are associated with PON second stage communications. Many though not all of the multistage-PON components are configured to operate at the slower clock speed, conserving energy. Upstream transmissions from the end devices of the second stage are buffered in the multistage-PON repeater and forwarded to the OLT according to an allocation schedule received from the OLT in a BI-PON frame.05-17-2012
20120039609METHOD AND APPARATUS FOR TRANSPORTING CLIENT SIGNALS IN AN OPTICAL TRANSPORT NETWORK - Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: receiving a client signal; determining a quantity of n-bit data units of the client signal based on a clock of the client signal and a local clock; mapping the quantity of n-bit data units of the client signal to an overhead of a first Optical Channel Data Tributary Unit (ODTU) frame; mapping the n-bit data units of the client signal to a payload area of a second ODTU frame next to the first ODTU frame according to the quantity of n-bit data units mapped in the overhead of the first ODTU frame; mapping each n-bit data unit of the second ODTU frame to an Optical Channel Payload Unit-k Tributary Slot (OPUk TS) in an OPUk frame; and forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.02-16-2012
20110305458METHOD AND DEVICE FOR SERVICE ADAPTATION - A service adaptation device includes: a service access unit, configured to obtain service data, where the service data includes a Gigabit-Passive Optical Network (GPON) Encapsulation Method (GEM) frame, Time Division Multiplex (TDM) service data, and Ethernet (ETH) service data; and an Enhanced GPON Encapsulation Method (E-GEM) adaptation unit, configured to encapsulate the service data obtained by the service access unit into an E-GEM frame. A service adaptation method includes: obtaining service data, where the service data includes a GEM frame, TDM service data, and ETH service data; and encapsulating the obtained service data into an E-GEM frame.12-15-2011
20120148249CABLE NETWORK USING GIGA BAND FREQUENCY - The present invention relates to a cable network using the frequency of a giga band. The optical signal transmission apparatus includes an optical transmission/reception unit converting received RF signals into RF optical signals and transmitting the RF optical signals, an optical line terminal converting received digital signals into digital optical signals and transmitting the digital optical signals, and a multiplexer receiving the optical signals from the optical transmission/reception unit and the optical line terminal and multiplexing the received optical signals.06-14-2012
20120099865OPTICAL ACCESS SYSTEM, STATION-SIDE TERMINATION APPARATUS, AND SUBSCRIBER-SIDE TERMINATION APPARATUS - In an optical access system, the OLT includes a CP inserting unit that inserts a CP into a downlink signal; a CP removing unit that removes a CP from an uplink signal received from the ONU; and an FFT unit, an EQ unit, and an inverse FFT unit that perform equalization on the uplink CP-removed signal according to a frequency domain equalization scheme based on an inverse characteristic of the characteristic of a transmission line leading to the ONU. The ONU includes a CP inserting unit; a CP removing unit; and an FFT unit, an EQ unit, and an inverse FFT unit that perform equalization on the downlink CP-removed signal according to the frequency domain equalization scheme based on an inverse characteristic of the prestored characteristic of the a transmission line leading to the OLT.04-26-2012
20110318008OPTICAL LINE TERMINAL AND OPTICAL NETWORK UNIT - An optical line terminal which includes an observing unit that observes information of any one or all of an arrival interval of frames, an instantaneous bandwidth under use of a flow, a queue length of a queue temporarily storing the frames, and a traffic type, and a stop determining unit that dynamically determines a sleep time to be a period in which a sleep state where partial functions of the ONU are stopped is maintained, on the basis of the information obtained by the observing unit. The ONU is entered into a sleep state, immediately after communication ends, after a predetermined waiting time passes from when the communication ends, or after a waiting time determined on the basis of the information passes from when the communication ends.12-29-2011
20120045210OPTICAL SUBSCRIBER NETWORK - An optical subscriber network for power reduction is provided. The optical subscriber network may include an Optical Line Terminal (OLT) and an Optical Network Terminal (ONT). The OLT may manage a plurality of ONTs by classifying the plurality of ONTs into a sleep group, and may multicast a sleep allowance message only to ONTs included in a predetermined sleep group.02-23-2012
20120045211SIGNAL TRANSMISSION PROCESSING METHOD AND APPARATUS AND DISTRIBUTED BASE STATION - A signal transmission processing method and apparatus and a distributed base station are provided according to the embodiments of the present invention. The distributed base station includes a Base Band Unit (BBU) and a Remote Radio Unit (RRU). A transmitting end connected to one of the BBU and the RRU receives at least one of interface signals from the one connected thereto, performs optical transport network (OTN) electrical layer multiplexing to obtain OTN signal frames and transmit optical signals including the OTN frames to a receiving end connected to the other of the BBU and the RRU. The receiving end performs frame processing for the OTN frames received from the transmitting end to obtain the interface signals, and transmit the interface signals to the other connected thereto.02-23-2012
20120045209Cost-Effective Multi-Rate Upstream for 10GEPON Based on High Efficiency Coding - Systems and methods are disclosed to provide an upstream rate between 1 Gbps and 10 Gbps in a cost effective manner in a 10GEPON. In an embodiment, an optical network unit (ONU) transmitter includes a burst transceiver and a physical layer (PHY) including a high performance digital to analog converter (DAC), a pulse amplitude modulation (PAM) module configured to encode end user data using a modulation scheme having more than two levels, and a laser. The ONU transmitter transmits the encoded end user data to an optical line terminal (OLT) receiver, which demodulates the data using a PAM demodulator and sends it to a service provider.02-23-2012
20120002966TECHNOLOGY FOR SIMULATING AND/OR CONTROLLING COMMUNICATION OPTICAL NETWORKS - A technique for controlling power of a network node in an optical mesh network, comprising: determining a number of optical paths ingressing or expected to ingress the node, determining capacity or expected capacity of each of the paths; calculating for each of the paths a virtual input power P01-05-2012
20120008953METHOD AND SYSTEM FOR TRANSMITTING TIME IN PASSIVE OPTICAL NETWORK - The present invention discloses a method and system for accurate time transfer in PON. An Optical Line Terminal (OLT) ranges Optical Network Units (ONUs) and obtains ranging information, then, triggered by the periodic Pulse per n Second (PPnS), generates a PPnS timestamp based on the local reference counter and the Time of Day (TOD) above second; OLT transmits the ranging information, the periodic PPnS timestamp and TOD to ONUs; ONUs predicts the time of the next second according to said periodic PPnS timestamp, TOD and ranging information, and outputs the corresponding PPnS. The invention is characterized by the combination of the features of PON point to multi-point and PON ranging into its time transfer method, the high accuracy of time transfer, and the low hardware costs for OLT and ONU, as well as the extremely small bandwidth occupancy.01-12-2012
20120301147TIME SYNCHRONIZATION METHOD AND DEVICE IN PASSIVE OPTICAL NETWORK AND PASSIVE OPTICAL NETWORK - A time synchronization method and a time synchronization device in a passive optical network (PON), and a PON are provided. The method includes receiving a synchronization packet sent after time synchronization of an optical line terminal (OLT) with a master clock (MC) is achieved, wherein the synchronization packet carries a timestamp TMt11-29-2012
20120155877Optical Network Terminal Management and Control Interface over Ethernet - An apparatus comprising a data framer configured to frame an external protocol extension message for transmission, the external protocol extension message comprising a header that indicates an external protocol extension and at least one type-length-value (TLV) comprising a type field, a length field, and a value field, wherein a format of the TLV is specified by a specific organization, and wherein the value field comprises information related to protocol functions external to the network. Also included is an apparatus comprising at least one component configured to implement a method comprising compiling an external protocol extension message comprising a plurality of TLVs and a header that indicates an external protocol extension, and transmitting the external protocol message.06-21-2012
20110091212PACKET TRANSFER DEVICE - An optical multi-drop path is set to a downstream direction, an optical path between adjacent nodes is set to a upstream direction, a packet sorting unit is provided for appropriately controlling packet streams in the downstream direction and upstream direction, and one-to-one or one-to-N communication can be performed not only between servers and clients but also between the clients even when a multi-drop transmission is used in the downstream direction.04-21-2011
20100172647Field Framing With Built-In Information - An apparatus comprising a frame alignment processor coupled to a receiver, wherein the frame alignment processor is configured to align a first frame and a second frame in the receiver by matching a first synchronization (sync) pattern predicted using a first sync field in the first frame with a second sync pattern obtained from a second sync field in the second frame. Included is an apparatus comprising at least one component configured to implement a method comprising receiving a first frame, subsequently receiving a second frame that was transmitted after the first frame, predicting a first sync pattern from a first sync field in the first frame, obtaining a second sync pattern from a second sync field in the second frame, and determining that the first frame and the second frame are aligned when the first sync pattern matches the second sync pattern.07-08-2010
20100290784COMMUNICATION CONTROL METHOD, STATION SIDE DEVICE, SUBSCRIBER SIDE DEVICE, AND COMMUNICATION SYSTEM - A communication control method performing Discovery processing, which is a procedure at an OLT to detect an ONU newly connected, in a PON system, the method includes: a transmission-permission-signal transmitting step of transmitting, by the OLT, a transmission permission signal for discovery, which includes an individual number of an ONU that is permitted to respond and mask information for designating a match-detection target bit for the individual number; and a registration-request-signal transmitting step of comparing, by an ONU, which is not registered in the OLT, a match-detection target bit for the individual number designated in the mask information with an individual number of the ONU based on a received transmission permission signal, and when the target bit and the individual number match each other, transmitting a registration request signal to the OLT.11-18-2010
20100209107METHOD AND DEVICE FOR MULTIPLEXING AND MAPPING SERVICES TO AN OTU - A method for multiplexing and mapping services to an Optical channel Transport Unit (OTU) includes: filling the service data into a container block covering an Optical channel Payload Unit (OPU) area container having at least one frame. The container block includes at least one OPU area container having a frame. The OPU area container is composed of at least one OPU area sub-timeslot, and is configured to fill the service clock information into the Optical Channel Payload Unit Overload (OPU OH) area. A device for multiplexing and mapping services to an OTU is provided in an embodiment of the present invention.08-19-2010
20120315045DYNAMIC BANDWIDTH ALLOCATION FOR UPSTREAM TRANSMISSION IN PASSIVE OPTICAL NETWORKS - Methods for dynamic bandwidth allocation among optical networks units for upstream transmission, performed by an optical line terminal of a passive optical network, which compensate for unused guaranteed bandwidth, which compensate for inability to use allocated bandwidth due to lack of data frame fragmentation, and which provide fair bandwidth allocation between mixed high transmission rate and low transmission rate optical network units.12-13-2012
20120251114Optical Network Terminal Management and Control Interface Over Ethernet - An apparatus comprising a data framer configured to frame an external protocol extension message for transmission, the external protocol extension message comprising a header that indicates an external protocol extension and at least one type-length-value (TLV) comprising a type field, a length field, and a value field, wherein a format of the TLV is specified by a specific organization, and wherein the value field comprises information related to protocol functions external to the network. Also included is an apparatus comprising at least one component configured to implement a method comprising compiling an external protocol extension message comprising a plurality of TLVs and a header that indicates an external protocol extension, and transmitting the external protocol message.10-04-2012
20120315044OPTICAL NETWORK CONFIGURATIONS WITH MULTIPLE BAND MULTIPLEXING AND DE-MULTIPLEXING AND AWG STRUCTURES WITH MULTIPLE BAND PROCESSING - Optical networks can comprise a branch structure with the de-multiplexing/multiplexing structure that operates to disperse a plurality of optical bands. Thus, the optical network comprises an optical network connection with a common optical channel, a plurality of de-multiplexed branch optical service connections and the de-multiplexing/multiplexing structure. In some embodiments, one optical band can be used to deliver input from a common channel to the branch node and the other optical band can carry output along the common channel from the branch node. The de-multiplexing/multiplexing element can be an arrayed waveguide grating. The AWG can have desirable architecture to efficiently provide the corresponding functions with respect to the two optical bands. Appropriate photodetectors and light sources can be associated with the AWG.12-13-2012
20100008669HYBRID NETWORK OPTICAL COMMUNICATION SYSTEM - A hybrid network optical communication system is provided. The system may include a central office, at least one network group coupled to the central office. The network group may include a plurality of external rings, and each of the external rings may include a plurality of nodes having a ring connection. This system may have economical advantages of reducing the number of optical cores and easily switching directions for protecting the system when any problems occur on the optical cores and the devices at nodes.01-14-2010
20090060509CUSTOMER PREMISES OPTICAL NETWORK UNIT AND OPTICAL TRANSMISSION SYSTEM - A customer premises optical network unit (ONU) comprises: an electrical/optical transform unit 03-05-2009
20120263469Method for Reducing Power Consumption of a Passive Optical Network - A method for reducing energy consumption of a passive optical network includes optical network units of the network which infer their downstream queue status rather than being explicitly notified by an optical line terminal of the network. Based on the inferred queue status, the optical network units make their own sleep mode decisions without assistance from optical line terminal. Both downstream traffic inference and sleep decision making at the optical network units are based on common information possessed by optical line terminal and optical network units. Accordingly, the optical line terminal can accurately infer the status of each optical network unit if the sleep control scheme implemented at an optical network unit is known by the optical line terminal.10-18-2012
20120230693SIGNAL PROCESSING METHOD, DEVICE, AND SYSTEM IN A PASSIVE OPTICAL NETWORK - A signal processing method, device, and system in a passive optical network are provided. The signal processing method in the passive optical network includes: performing baseband encoding processing on a received service signal; modulating the service signal after baseband encoding processing onto allocated Orthogonal Frequency Division Multiple Access subcarriers through an Orthogonal Frequency Division Multiplexing modulation manner; performing digital/analog conversion on the modulated OFDMA subcarriers to obtain an electric domain Orthogonal Frequency Division Multiple Access signal; modulating the electric domain Orthogonal Frequency Division Multiple Access signal to an uplink optical signal to obtain an optical domain Orthogonal Frequency Division Multiple Access signal; and transmitting the optical domain Orthogonal Frequency Division Multiple Access signal.09-13-2012
20120230692Sub-Octave RF Stacking for Optical Transport and De-Stacking for Distribution - A system for transporting a plurality of digital signals includes a head-end unit for routing each digital signal to a particular modem, according to address information in the signal. At its respective modem, each digital signal is mixed for further transmission on a unique, modem-specific, radio frequency (f09-13-2012
20110123196METHOD, DEVICE AND SYSTEM FOR SENDING AND RECEIVING CLIENT SIGNALS - A method, a device and a system for sending and receiving client signals are provided. The method for sending includes: distributing, in round-robin mode, OTU data frames into which client signals are encapsulated to VLs, in which the number of the VLs is a common multiple of the number of lanes of an OTN encapsulating module adaptation interface and the number of optical module adaptation lanes; inserting VL alignment identifiers that carry VL serial numbers and position information to the VLs, in which the VL alignment identifiers are adapted to compensate a transmission rate difference among the VLs; distributing, in bit-by-bit interleaving mode, the data on the VLs with the inserted VL alignment identifiers onto the OTN encapsulating module adaptation interface; converting data on the OTN encapsulating module adaptation interface by bit onto optical module adaptation lanes; modulating data on the optical module adaptation lanes and transmitting the modulated data onto an optical fiber for transmission, so as to compensate a transmission rate difference among different data lines caused by OTN long-distance transmission.05-26-2011
20120321314DISTRIBUTED ANTENNA SYSTEM FOR MIMO TECHNOLOGIES - The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.12-20-2012
20120269514High Speed IO with Coherent Detection - In one embodiment, a first module of a server system modulates a common-source optical signal to generate a modulated optical data signal, transmits the modulated optical data signal to a second module of the server system via an optical link, and the second module demodulates the optical data signal using a coherent detection technique using the common-source optical signal.10-25-2012
20110236020LOW COST HIGH BIT RATE TRANSCEIVING TECHNIQUE FOR OPTICAL NETWORKS - Technique for low cost delivery of a high bit rate electric signal via an optical network, by using a group of optical channels in the network for respectively delivering there-through a number of component electric signals of the high bit rate signal, The optical channels are respectively associated with different wavelengths, and each of the optical channels comprises optical elements suitable for conducting an optical signal having bandwidth significantly narrower than bandwidth of any of the component signals. The high bit rate electric signal is then successively restored from the optical signals delivered via the optical channels.09-29-2011
20110249972FRAME TRANSMISSION METHOD - An apparatus for decreasing the hardware load from L2 switch MAC address learning for Ethernet-Over-SONET technology that uses VLAN, simplifying frame transmission between Ethernet and SONET, and improving the reliability of each device is disclosed. An Ethernet frame and SONET frame convertible interface part establishes a register that holds an Ethernet frame specific VLANID and SONET frame specific STS path ID in opposition, and a multiplexing part that multiplexes an Ethernet frame having a specific VLANID corresponding to a specific STS path ID that is held by a register among an input plurality of Ethernet frame VLAN ID's.10-13-2011
20120087664EFFICIENT MAC PROTOCOL FOR OFDMA PASSIVE OPTICAL NETWORKS (PONS) - Systems and methods are disclosed for providing media access control (MAC) in an optical network by providing a separate control channel and data channel; dedicating each optical network unit (ONU) with one control channel, wherein the control message is transmitted at any time without constraints; sending a grant message to an ONU just before an allocated time is about to start; and sending data traffic from the ONU immediately after receiving the grant message without synchronizing with an optical line terminal (OLT) clock.04-12-2012
20120087663Subscriber Premises-Side Optical Network Unit04-12-2012
20120087662PASSIVE OPTICAL NETWORK AND SUBSCRIBER LINE TERMINAL - The OLT manages information of optical intensity and communication bit rate receivable by each ONU, and transmits a signal at suitable optical intensity and a bit rate. The OLT decides a signal transmission plan for each ONU according to a status of accumulated information waiting to be transmitted in the OLT's own device buffer, and inserts the signal transmission plan in a header or payload of a downlink frame, thereby notifying the ONUs of the information prior to transmitting accumulated information (primary signal). The ONU recognizes the signal transmission plan of the OLT according to the time information in a downlink intensity map, receives only a signal having the optical intensity and bit rate suitable for the ONU's own device, and blocks other signals.04-12-2012
20120321313METHOD AND APPARATUS FOR PROCESSING DOWNLINK FRAME SYNCHRONIZATION IN GIGABIT-CAPABLE PASSIVE OPTICAL NETWORK SYSTEM - Disclosed in the present invention are a method and apparatus for processing downlink frame synchronization in a Gigabit-capable passive optical network (GPON) system, wherein the method comprises: carrying out forward error correction (FEC) encoding on data in a synchronization domain of a downlink frame of the GPON system, wherein the synchronization domain includes a physical synchronization (Psync) domain and an identifier (Ident) domain; filling the FEC encoded data into an FEC check domain provided in the downlink frame; and sending the downlink frame. By virtue of the present invention, the effect of improving the reliability of GPON downlink frame synchronization is achieved.12-20-2012
20120321312GRANT SCHEDULER FOR OPTICAL NETWORK DEVICES - In general, techniques are described for performing grant scheduling in optical networks. An optical line terminal (OLT) comprising a control unit may implement the techniques. The control unit determines an amount of upstream data associated with a category of service that is waiting at a first one of a plurality of ONTs to be transmitted upstream to the OLT and computes a number of GCPs for each of the ONTs based on a determined amount of data associated with the category of service that is waiting to be transmitted upstream to the OLT for each of the ONTs. After computing the number of GCPs, the control unit then grants time slots to the one or more of the ONTs based on the number of GCPs computed for each of the ONTs, wherein the time slots comprise time slots for upstream communication form the ONTs to the OLT.12-20-2012
20120328294HIGH SPEED PASSIVE OPTICAL NETWORK ARCHITECTURE - A system may include one or more single-mode optical fibers that connect an optical line terminal at a central office to an input cable of an optical splitter in a fiber distribution hub, and one or more dispersion compensating optical fibers that connect an output cable of the optical splitter to an optical network terminal at customer premises. The one or more single-mode optical fibers, the optical splitter, and the one or more dispersion compensating optical fibers may form a communication path, for an optical signal, from the optical line terminal at the central office to the optical network terminal at the customer premises, When the optical signal travels from the optical line terminal at the central office to the optical splitter over the one or more single-mode optical fibers, the optical signal may gain positive dispersion. When the optical signal travels from the optical splitter to the optical network terminal at the customer premises, the optical signal may gain negative dispersion that partially or fully cancels the positive dispersion that the optical signal has gained over the one or more single-mode optical fibers.12-27-2012
20120288280METHOD, APPARATUS, AND SYSTEM FOR TIME SYNCHRONIZATION ON PASSIVE OPTICAL NETWORK - A method for time synchronization on a passive optical network is disclosed, including: an optical line terminal (OLT) receives clock information sent by a first optical network unit (ONU); the OLT adjusts local time of the OLT according to the clock information, to implement clock synchronization between the OLT and the first ONU; the OLT sends the clock information to a second ONU, to implement clock synchronization between the second ONU and the OLT. The OLT in an embodiment of the present invention does not need to obtain clock signals from an upper network and the clock information does not need to be transmitted in a multi-level mode over a packet network; therefore, the precision of ToD can be greatly increased.11-15-2012
20110158649INTEGRATING PLURALITY OF BUILDING MANAGEMENT SERVICES AND HOME AUTOMATION SERVICES WITH PLURALITY OF MULTI - PLAY SERVICES ON NEUTRAL ACCESS NETWORK OPERATIONS BASIS - A multi play single fiber system is described. The system comprises a single fibre for provisioning one or more of Global System of Mobile (GSM) Communication, Code Division Multiple Access (CDMA), Worldwide Interoperability for Microwave Access (Wimax), Global Positioning System (GPS) based services implemented on one or more of: Asynchronous Transfer Mode (ATM), Time-Division Multiplexing (TDM), Transmission Control Protocol-Internet Protocol (TCP-IP), Radio Frequency (RF), Wavelength Division Multiplexing (WDM) or Dense Wavelength Division Multiplexing (SWDM) and a hardware coupled computer programmable device coupled with the single fiber to create plurality of tunnels within the said single fiber and create plurality of circuits within the said tunnels.06-30-2011
20130022356Energy Efficiency and Cost Efficient Protection in Passive Optical Networks - A network element implementing an optical network unit (ONU) that is configured to improve efficiency in a passive optical network (PON), the ONU connected to an optical line terminal (OLT) over an optical line, the ONU connected with an aggregating ONU (AG-ONU) in the PON through an alternate connection separate from the PON, the ONU improving protection (maintenance) cost and energy efficiency for the PON by entering a sleep mode that disables communication with the OLT over the optical line to reduce energy consumption when the ONU is idle, the ONU to restart communication with the OLT over the optical line upon receipt of data traffic, the ONU including an alternate connection module configured to communicate with the AG-ONU; and a network processor configured to execute a quality of service module, an AG-ONU monitor module, a traffic forwarding module and a power management module.01-24-2013
20130142513Apparatus and Method for Reducing Traffic on a Unified Optical and Coaxial Network - A coaxial line terminal (CLT) comprising an optical port configured to couple to an optical line terminal (OLT) via an optical distribution network (ODN), an electrical port configured to couple to a coaxial network unit (CNU) via an electrical distribution network, and a processor coupled to the optical port and the electrical port, wherein the processor is configured to receive from the OLT a plurality of first frames addressed to the CNU, receive from the OLT a plurality of second frames not addressed to the CNU, forward the first frames to the CNU, and prohibit the second frames from being forwarded to the CNU.06-06-2013
20130177314RELAY DEVICE, STATION-SIDE OPTICAL COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND BANDWIDTH ALLOCATION METHOD - A relay device that relays communication between a low-speed communication device performing uplink 1 G transfer and a high-speed communication device performing uplink 10 G transfer and a station-side optical communication device, wherein the relay device includes a low-speed reception unit that converts an optical signal received from the low-speed communication device to an electric signal, a buffer that buffers the electric signal, and a high-speed transmission unit that transmits, to the station-side optical communication device, a bandwidth allocation request requesting bandwidth allocation for communication from its own unit to the station-side optical communication device, and within a transmission permitted time period allocated by the station-side optical communication device, reads an electric signal stored in the buffer, converts the electric signal to an optical signal having a communication speed of 10 G, and transmits the optical signal.07-11-2013
20120251113SEAMLESS CONFIGURATION UPDATE FOR OPTICAL NETWORK UNIT IN ETHERNET PASSIVE OPTICAL NETWORK - Techniques for updating configuration of an Optical Network Unit (ONU) in an Ethernet Passive Optical Network (EPON) include receiving a notification that an updated configuration file is available for the ONU, obtaining the updated configuration file, performing a first validation of the updated configuration file for structural errors, determining changes between a current configuration of the ONU and the updated configuration file to identify ONU resources to implement to the changes, performing a second validation about whether the ONU resources to implement the changes are available or not at the ONU and applying the changes to the ONU when it is determined that the ONU resources to implement the changes are available at the ONU.10-04-2012
20130094860DELIVERED-BANDWIDTH ADJUSTMENT METHOD AND MODULE, AND DYNAMIC BANDWIDTH ASSIGNMENT DEVICE - Embodiments of the present invention provide a delivered-bandwidth adjustment method and module, and a dynamic bandwidth assignment device. The method includes: obtaining a transmission container bandwidth; and adjusting a delivery cycle of a bandwidth delivery stage and a delivered bandwidth of each delivery cycle according to a preset set of bandwidth thresholds and the transmission container bandwidth, where the preset set of bandwidth thresholds include at least two bandwidth thresholds and a delivery cycle corresponding to each bandwidth threshold. Through the technical solutions in the embodiments of the present invention, the delivered bandwidth can be managed effectively, so as to improve the bandwidth utilization and the data transmission efficiency.04-18-2013
20130094859CABLE COMMUNICATION SYSTEMS AND METHODS EMPLOYING QAM UPSTREAM CHANNELS BELOW 16.4 MHZ FOR INCREASED AGGREGATE DEPLOYED UPSTREAM CAPACITY TO SUPPORT VOICE AND/OR DATA SERVICES - Cable communication systems and methods to provide voice and/or data services to subscriber premises via a cable plant that conveys upstream information over an upstream path bandwidth, and a cable modem system including one or more demodulation tuners to receive and demodulate one or more upstream radio frequency (RF) signals. One or more RF signals include an encoded carrier wave having a carrier frequency of between 5 MHz and 16.4 MHz that is modulated using a Time Division Multiple Access (TDMA) protocol or an Advanced Time Division Multiple Access (ATDMA) protocol and quadrature amplitude modulation (QAM) with voice and/or data information constituting at least some of the upstream information. An aggregate deployed upstream capacity of the one or more RF signals to convey the upstream information in a portion of the upstream path bandwidth between 5 MHz and 16.4 MHz is at least approximately 12 Megabits per second (Mbits/s).04-18-2013
20130114960Method and Apparatus for Transmitting Data on a Network - Systems and methods are provided for a network unit for transmitting packets on a network that includes a computer-readable medium encoded with an array data structure that is populated by plurality of entries, each entry corresponding to a packet in a queue of packets to be transmitted, a particular entry including a value that is based on a sum of packet sizes stored in a neighboring entry and a packet size of a packet corresponding to the particular entry. A search engine is configured to receive a gate size and to search the array to identify a particular entry in the data structure that has a value nearest to but not greater than the gate size as a transmission entry. A transmission engine is configured to transmit packets from the beginning of the queue up to a particular packet associated with the transmission entry.05-09-2013
20130101293World-wide, wide-band, low-latency, mobile internet and system therefor - A communication system for providing world-wide, mobile Internet communication to a plurality of users and a method therefore. The system includes ground-based, multi-channel, radio frequency transmitting and receiving broadcasting grids that are capable of providing content to multiple users via cell towers and low-altitude, optical transmitting and receiving satellites that are in optical communication with the ground-based, multi-channel, RF transmitting and receiving broadcasting grids. The method includes transmitting optical and/or RF signals between at least one of the ground-based, multi-channel, RF transmitting and receiving broadcasting grids and at least one of the low-altitude, optical transmitting and receiving satellites.04-25-2013
20130129354LOGICAL-LINK MANAGEMENT METHOD AND COMMUNICATION DEVICE - A logical-link management method to be executed in an optical communication system including a station side device (OLT) and a subscriber side device (ONU) that is capable of setting a plurality of logical links together with the OLT, in which the OLT transmits a signal for managing the ONU via a single logical link. The logical-link management method includes a status monitoring of the OLT monitoring whether there is a change in a connection status of the logical link between the OLT and the ONU and a link resetting of the OLT resetting, when a change of the connection status of the logical link is detected at the status monitoring, a device management logical link used for transmitting the signal for managing the ONU according to a predetermined procedure.05-23-2013
20130129352System and Method for Second Order Multi-Layer Traffic Grooming for Optical Network Optimization - A method includes forming a set of direct connections (including a high-speed connection and a low-speed connection) between an origination central office (OCO) and a destination central office (DCO). The method includes forming a spoke connection between the OCO and a hub node and forming a connection between the hub node and the DCO. The spoke connection is formed to carry first residual demand traffic from the OCO to the hub node. The connection is formed to carry the first residual demand traffic and second residual demand traffic (received at the hub node from other OCOs) from the hub node to the DCO. The method includes determining a first estimated cost (of forming the set of direct connections) and a second estimated cost (of forming the spoke connection and the connection). The method includes determining whether the first estimated cost exceeds the second estimated cost.05-23-2013
20130142514Apparatus and Method of Identifying a Transit Node in a Unified Optical-Coaxial Network - An optical line terminal (OLT) comprising a processor configured to assign a logical node identifier (LNID) to a coaxial line terminal (CLT), wherein the CLT intermediates between the OLT via an optical portion of a unified optical-coaxial network and a coaxial network unit (CNU) via an electrical network portion of the unified optical-coaxial network, and transmit a plurality of frames to the CLT via the optical portion of the unified optical-coaxial network, wherein the frames have a CNU address as a destination address, and wherein at least some of the frame comprise the LNID. Included is a method implemented at a CNU, the method comprising receiving a first frame comprising a LNID for a CLT, and transmitting a second frame comprising the LNID for the CLT, wherein the CNU is part of an Ethernet Passive Optical Network (EPON) over Coaxial (EPoC) network.06-06-2013
20130148968STATION-SIDE APPARATUS AND PON SYSTEM - An OLT, which is a station-side apparatus in a PON system, is connected to an ONU via an optical fiber. The OLT includes: an optical receiver which receives a burst signal from an ONU; a burst header detection unit which detects a certain delimiter pattern included in a received burst signal so as to establish synchronization of the burst signal; and a control unit which allows the burst header detection unit to perform detection of a delimiter pattern during a predicted reception period of a burst signal.06-13-2013
20120275792System and Method for Avoiding Upstream Interference in RF-Over-Glass Network - A headend communications device communicates via a network to downstream network elements, such as cable modems coupled behind optical network units, and allocates and grants timeslots for upstream transmissions from the network elements. The headend communications device has a scheduler for managing and controlling timeslot allocations in a manner avoiding interference such as optical beat interference or FM carrier collisions. The scheduler identifies two or more cable modems or like customer network elements served by the headend communications device that will cause at least a pre-determined intolerable level of interference when allocated overlapping timeslots for upstream transmissions and prevents these two or more cable modems or network elements from being allocated and granted overlapping timeslots.11-01-2012
20130177313Ethernet Passive Optical Network with Report Threshold Calculations - The present disclosure is directed to a method and apparatus for maintaining sub-queues at an ONU and for maintaining a count of an amount of data stored in each sub-queue or a count of an amount of data associated with elements stored in each sub-queue. The sub-queues represent partitions in a first in, first out (FIFO) queue used by the ONU to buffer packets, or elements that are associated with packets, to be sent upstream. The sub-queues are coupled in series such that the output of a first sub-queue feeds the input of a second sub-queue, the output of the second sub-queue feeds the input of a third sub-queue, etc. Each sub-queue has a defined threshold that sets a maximum amount of packet data it can buffer or the elements in which it buffers can be associated with.07-11-2013
20130101292RESIZING EXISTING TRAFFIC FLOW IN OPTICAL TRANSPORT NETWORK - In an optical transport network a traffic flow comprises data grouped into a number of resizable data units, encapsulated by optical transport frames, each having a frame overhead. A rate of the traffic flow is changed by changing the data unit overhead and changing at the source node the frame overhead to indicate a change in rate of an optical signal carrying the traffic flow. An optical transmission part is tuned to transmit at the new rate, and at any intermediate nodes along the route the indication of the change in rate is detected in the frame overhead so that the traffic flow on a next optical link is transmitted at the new rate. Thus optical bandwidth allowed for enlarging the data units, can be saved, and electrical processing of data units at the nodes can be simplified, reducing power consumption.04-25-2013
20130183037DOCSIS PON - In accordance with a first aspect of the disclosure, a system is provided. The system includes: an optical line terminal (OLT) shelf including a plurality of optical line cards, each optical line card supporting at least one passive optical network (PON) interface for communicating with a corresponding set of optical network units (ONUs), the OLT shelf thereby corresponding to a plurality of sets the ONUs; a system card controller for controlling the plurality of optical line cards; and a DOCSIS proxy for emulating a cable modem (CM) SNMP agent for each ONU, the DOCSIS proxy being responsive to an SNP manager in a DOCSIS NMS to configure the ONUs accordingly.07-18-2013
20130183038CUSTOMER PREMISES OPTICAL NETWORK UNIT AND OPTICAL TRANSMISSION SYSTEM - An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.07-18-2013
20130188953OPTICAL NETWORK SYSTEM AND METHOD FOR CONTROLLING OPTICAL NETWORK SYSTEM - An optical network system for controlling a passive optical network (PON) in which at least one symmetric optical subscriber terminal and at least one asymmetric optical subscriber terminal coexist is provided.07-25-2013
20120027411PASSIVE OPTICAL NETWORK USER TERMINAL AND METHOD OF POWER SUPPLY CONTROL AND POWER SUPPLY STATE REPORTING FOR THE SAME - The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.02-02-2012
20130195458Bandwidth Adjustment Method and System for Optical Channel Data Unit Flexible Based on Generic Framing Procedure - The disclosure claims a bandwidth adjustment method and system for Optical channel Data Unit flexible (ODUflex) based on a Generic Framing Procedure (GFP), wherein, the method includes that: (08-01-2013
20120039608Optical Signal Multiplexer Card Having Front Panel Access to Electrical and Optical Connectors for Use in Compact Enclosure for Optical Signal Multiplexer Cards - A reduced size multiplexer and, in particular, a reduced size optical signal multiplexer module is provided for use in a reduced size enclosure. The optical signal multiplexer module has electrical and optical connectors on its faceplate to provide ease in access without having to remove the optical signal multiplexer from the enclosure. The optical signal multiplexer circuit is configured in a standard Type 400 mechanics circuit board arrangement. The optical signal multiplexer module therefore can be inserted into an enclosure in a direction opposite to that in which the DS1 or DS3 connector projects from the face plate, so that the DS1 or DS3 connector remains freely accessible outside of the enclosure when the optical signal multiplexer module is fully loaded into the enclosure. DS1 and DS3 cables and optical fibers can thus be easily coupled to the DS1 and DS3 and optical connectors, respectively, when the SONET multiplexer circuit is fully loaded into the enclosure.02-16-2012
20130202302OPTICAL LINE TERMINAL AND OPTICAL NETWORK UNIT - An optical line terminal which includes an observing unit that observes information of any one or all of an arrival interval of frames, an instantaneous bandwidth under use of a flow, a queue length of a queue temporarily storing the frames, and a traffic type, and a stop determining unit that dynamically determines a sleep time to be a period in which a sleep state where partial functions of the ONU are stopped is maintained, on the basis of the information obtained by the observing unit. The ONU is entered into a sleep state, immediately after communication ends, after a predetermined waiting time passes from when the communication ends, or after a waiting time determined on the basis of the information passes from when the communication ends.08-08-2013
20120093513METHOD AND APPARATUS FOR SYNCHRONIZATION IN A PASSIVE OPTICAL NETWORK - A method, apparatus and system for aligning frames in which an Optical Network Unit (ONU) receives a frame comprising frame delimitation information and synchronization-related information; performs a first verification based on a comparison of the frame delimitation information and a fixed pattern; performs a second verification based on a comparison of the synchronization-related information and a value associated with synchronization-related information in a previously received frame; proceeds to a synchronization state if both the first verification and the second verification are successful; and returns to a hunt state if either the first verification or the second verification fails.04-19-2012
20120093512METHOD OF MANAGING ONTS IN PON AND OLT FOR MANAGING THE SAME - A method of managing optical network terminals (ONTs) and an optical line terminal (OLT) for managing the ONTs are provided. A method of managing ONTs in an OLT includes receiving ONT type information in management information base (MIB) information of ONTs connected to the OLT from the ONTs; not uploading MIBs of other ONTs having the same type as the ONT when MIB upload data for the other ONTs is present in the OLT, and uploading the MIBs of the other ONTs having the same type as the ONT when the MIB upload data for the other ONTs is not present in the OLT; and driving an interface of the ONT.04-19-2012
20120093511NODE SEGMENTATION - Methods and systems for providing flexible node segmentation are provided. For example, the system can be configured to delay node segmentation in the headend/hub even though the fiber node has been segmented. When a desire for node segmentation in the headend/hub arises, the receiver can be efficiently upgraded through the use of a control signal to provide a receiver output port to each sub-service area.04-19-2012

Patent applications in class Broadcast and distribution system

Patent applications in all subclasses Broadcast and distribution system