Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


OPTICAL TRANSMISSION CABLE

Subclass of:

385 - Optical waveguides

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
385109000 Loose tube type 129
385102000 Tightly confined (i.e., fiber tightly held inside the outer sheath) 116
385101000 With electrical conductor in the same cable 71
385114000 Ribbon cable 42
Entries
DocumentTitleDate
20090190887Fiber Optic Cable Having a Dry Insert - A fiber optic cable includes at least one optical waveguide, at least one dry insert and a cable jacket. The at least one optical waveguide and at least one dry insert are at least partially disposed within a cavity of the cable jacket. In one embodiment, the cable includes a first dry insert and a second dry insert disposed within the cavity so that the at least one optical waveguide is disposed between the first dry insert and the second dry insert, thereby providing a dry cable core.07-30-2009
20130077922Double jacket optical fiber cables - Described are track-resistant all dielectric self-supporting (TR-ADSS) cables with improved cable jackets. A typical TR-ADSS optical fiber cable comprises an optical fiber sub-assembly, and a cable jacket system. The cable jacket system comprises an inner jacket, an aramid strength layer and an outer jacket. The improvement in the cable jacket system results from the addition of a friction layer between the aramid strength layer and the outer jacket. The friction layer prevents unwanted slippage of the outer jacket with respect to the inner portions of the cable.03-28-2013
20100104247OPTICAL ACCESS NETWORK SYSTEM - An optical access network system for making a connection between a central-office optical cable and a subscriber optical cable is provided, the optical access network system being capable of facilitating the operation of laying optical cable. The optical access network system includes a connecting optical cable for forming a connection with one or a plurality of the subscriber optical cables, the connecting optical cable being obtained by assembling together a plurality of component cables having the same number of fibers as the one or plurality of subscriber optical cables. This optical access network system preferably further includes a subscriber enclosure for connecting one of the subscriber cables from among the one or plurality of subscriber optical cables and one of the component cables from among the plurality of component cables of the connecting cable.04-29-2010
20130071073CRUSH-RESISTANT FIBER OPTIC CABLE - A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter D03-21-2013
20130121654Miniaturized Optical Fiber Drop Cable - A fiber optic cable includes first and second optical fibers. A fiber section surrounds the fibers and is formed of a first material. First and second strength members are adjacent to the fiber section on opposite sides thereof. A jacket surrounds the first and second strength members and fiber section. The jacket is formed of a second material, stronger than the first material and which does not adhere to the first material. The jacket may be manually torn open to access the fiber section. The fiber section may be manually pinched and stripped cleanly from the fibers. The fiber section acts as a cocoon to protect the fibers when the jacket is opened and cleanly pulls off of the fibers by manual force.05-16-2013
20120224819Devices With Internal Flexibility Sipes, Including Siped Chambers For Footwear - Devices with internal flexibility sipes, such as slits, provide improved flexibility, improved cushioning to absorb shock and/or shear forces, and improved stability of support. Siped devices can be used in any existing product that provides or utilizes cushioning and stability. These products include human and other footwear, both soles and uppers, as well as orthotics; athletic, occupational and medical equipment and apparel; padding or cushioning, such as for equipment or tool handles, as well as furniture; balls; tires; and any other structural or support elements in a mechanical, architectural, or any other product.09-06-2012
20120224818LOW SMOKE HALOGEN FREE FLAME RETARDANT THERMOPLASTIC ELASTOMER COMPOSITIONS CONTAINING ZEOLITES - Halogen-free flame retardant compositions comprising thermoplastic elastomers, which exhibit flame retardance and low-smoke emission. The flame retardant compositions comprise a) one or more thermoplastic elastomers, and b) from at or about 18 to at or about 50 weight percent, the weight percentage being based on the total weight of the flame retardant composition, of a flame retardant mixture comprising: b1) at least one flame retardant comprising a phosphinate, diphosphinate and/or polymers thereof, b2) a phosphorous-containing amino composition; and b3) a zeolite.09-06-2012
20090232459Optical Transmission Hinge Apparatus - An optical transmission hinge apparatus includes a first hinge portion for pivotally interconnecting a first casing and a second casing about a first axis, a first optical device provided in the first casing, a second optical device provided in the second casing and an optical guide path member for interconnecting the first optical device and the second optical device to enable optical transmission therebetween. The optical guide path member includes a bent portion, a first portion formed on one side of the bent portion and a second portion formed on the other side of the bent portion. The first portion is provided in the first casing to be coaxial with the first hinge portion, with a terminal end of the first portion being in opposition to the first optical device. The second portion is provided in the second casing, with a terminal end of the second portion being in opposition to the second optical device.09-17-2009
20120237174OPTICAL CABLE AND OPTICAL TRANSMISSION SYSTEM - An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations. The optical fiber includes a core, a first cladding, a second cladding, and a third cladding. The relative refractive index difference Δ09-20-2012
20100266247FLEXIBLE CONTINUOUS TAPE FROM MULTIFILAMENT YARN AND METHOD FOR MAKING THESE - A method for making a flexible fibrous continuous tape containing 60 to 98 wt % fiber based on the weight of the tape, from multifilament yarn selected from aramid, glass, aromatic polyester, and rigid rod polymer, comprising the steps: a1) spreading the filaments of the yarn to obtain a filament layer having a cross sectional aspect ratio (w/h) of 2 to 2000; and b1) treating the spread filaments with a curable resin, or a liquid thermoplastic resin or wax; or a2) treating the yarn with the curable resin, or the liquid thermoplastic resin or wax; and b2) spreading the filaments of the yarn to obtain a filament layer having a cross sectional aspect ratio (w/h) of 2 to 2000; followed by c) fixating the filaments by curing or solidifying the resin to obtain the tape, wherein steps a1-b1, respectively a2-b2, and c are performed in-line.10-21-2010
20110299819OCEAN DEPLOYABLE BIODEGRADABLE OPTICAL FIBER CABLE - An optical fiber cable has a transparent core for transmitting optical data and a biodegradable protective covering. When placed in water, the protective covering dissolves in water after a few days. The raw remaining optical fiber cover is very thin, approximately 0.003 inches in diameter and very fragile. The optical core is easily broken into fine particles which becomes sand on the sea floor.12-08-2011
20110268398Bundled Fiber Optic Cables - The present invention relates to a bundled cable suitable for installation in multiple dwelling unit (MDU) applications. The bundled cable includes two or more binders stranded around multiple stranded cable units. The bundled cable not only maintains its integrity on a reel and during installation, but also reduces installation time.11-03-2011
20100086268Fire Resistant Thermoplastic or Thermoset Compositions Containing an Intumescent Specialty Chemical - Flame retardant plastic resin blends comprise an intumescent flame retardant and at least one plastic resin. Engineering resin blends comprise an intumescent flame retardant and at least one engineering resin. Thermoset resin blends comprise an intumescent flame retardant and at least one thermoset resin. The plastic resin blends and the engineering resin blends are non-halogen. The thermoset resin blends are substantially non-halogen.04-08-2010
20090142024RIGID ATTACHMENT OF OPTICAL FIBER CABLE TO ANOTHER STRUCTURE USING LASER WELDING - A conductor mounting configuration includes a conductor having a signal carrying portion, and insulative portion radially outwardly disposed of the signal carrying portion and a jacket radially outwardly disposed of the insulative portion; an intermediary material having a thickness selected to accommodate a heat based fusion to the jacket while requiring a heat load of less than that associated with damage to the conductor; and a heat fusion affixing the conductor to the intermediate material and method.06-04-2009
20100098386DEVICES AND ASSOCIATED METHODS FOR FURCATING FIBER OPTIC CABLES - A fiber optic cable assembly is provided. The cable assembly includes a housing, a plurality of furcation tubes, and a bundled cable. The housing has an opening at a first end and a plurality of channels at a second end. The furcation tubes are aligned with corresponding channels. One end of the bundled cable extends into an interior space of the housing through the opening. The bundled cable has a cable jacket and cable filaments. A first portion of the cable filaments extends beyond the end of the cable jacket into the interior space. A plurality of optic fibers is disposed in the bundled cable and the housing, and a molding compound is disposed around the furcation unit. Individual optic fibers are located in individual furcation tubes and capable of sliding longitudinally relative to the housing.04-22-2010
20090202208AIR BLOWN OPTICAL FIBER UNIT HAVING BEAD ATTACHED ON THE SURFACE - Disclosed is an air blown optical fiber unit having low friction with an installation tube during air blown installation. The air blown optical fiber unit includes at least one optical fiber, a buffer layer surrounding the optical fiber and made of polymer resin, an outer layer surrounding the buffer layer and made of polymer resin, and beads attached on a surface of the outer layer, and the beads have an average diameter of 80 μm to 140 μm and an average roughness of 10 μm or less and a radio (R/r) of a long radius (R) to a short radius (r) is in the range of 1 to 1.5. The optical fiber unit gives less friction with the inner surface of an installation tube during the installation work, so it may be easily installed not only in a linear region but also in a curved region.08-13-2009
20090202209AIR BLOWN OPTICAL FIBER UNIT HAVING BEAD ATTACHED ON THE SURFACE - Disclosed is an air blown optical fiber unit having beads attached on its surface. The air blown optical fiber unit includes at least one optical fiber, a buffer layer surrounding the optical fiber and made of polymer resin, an outer layer surrounding the buffer layer and made of polymer resin, and beads attached on a surface of the outer layer to have height of 40 μm to 120 μm on the average. This air blown optical fiber unit gives improved installation characteristics.08-13-2009
20110170834Cable for Concentrating Photovoltaic Module - Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.07-14-2011
20090103871Fiber optic furcation device including expansion chamber - An optical fiber device with an optical fiber extending from a first outer jacket through a fiber receiving device from a first outer jacket to a second outer jacket. The first outer jacket is anchored to a side of a housing of the fiber receiving device and the second outer jacket is anchored to a side of the fiber receiving device. The housing defines an interior which received the optical fiber and provides space for accumulating excess length of optical fiber generated by differential thermal contraction of the jackets and the optical fiber.04-23-2009
20100278491SELF HEALING OPTICAL FIBER CABLE ASSEMBLY AND METHOD OF MAKING THE SAME - In one of the embodiments there is disclosed a self healing optical fiber cable assembly comprising an elongated optical fiber core having a cladding layer, a buffer layer, a sealing layer that seals any microcracks or defects in the buffer layer, the cladding layer, and the optical fiber core, and, an outer protection layer, wherein an end of the outer layer is connected to a strain relief device to provide expansion protection to the cable assembly and to minimize strain on the cable assembly, and further wherein an end of the strain relief device is connected to an optical fiber module. The cable assembly may further comprise a constraining layer and/or a strengthening layer. There is also disclosed a method of making a self healing optical fiber cable assembly.11-04-2010
20100061687CONSOLE FOR A DISTRIBUTING DEVICE FOR OPTICAL WAVEGUIDE CABLES - The invention relates to a console for a distribution device for optical waveguide cables the console (03-11-2010
20100061686SLEEVE FOR OPTICAL WAVEGUIDE CABLES - The invention relates to a sleeve (03-11-2010
20100220964Fiber Optic Drop Cable Furcation Assemblies and Methods - Furcation assemblies (09-02-2010
20080279512Fiber optic cable with detectable ferrimagnetic components - A fiber optic cable with detectable ferromagnetic components may include a plurality of detectable ferromagnetic components distributed longitudinally along the cable and insulated from each other. The fiber optic cable may contain the typical layers of fiber core, cladding, coating, strengthening fibers, and cable jacket. Each of the detectable ferromagnetic components may be a ferromagnetic metal strip forming a band around the cable. The metal bands may be distributed at different locations of the cable. Other ferromagnetic materials than metal may be used, as long as they are detectable by a metal detector. The detectable ferromagnetic components may form patterns that may be identified by the metal detector.11-13-2008
20080304797Cable with a Coating Layer Made from a Waste Material - A cable including at least one core having at least one transmissive element and at least one coating layer made from a coating material, wherein the coating material has at least a first polyethylene having a density not higher than 0.940 g/cm12-11-2008
20100142901WAVEGUIDE FILM CABLE - A disclosed waveguide film cable includes a waveguide formed on a film. The waveguide film cable includes a coating film made of a material having a Young's modulus smaller than or equal to the Young's modulus of a material that forms the film and/or the waveguide and coats partially or entirely the film and/or the waveguide.06-10-2010
20090129732Apparatus and Method For Preventing Unwanted Exposure of a Device to an Undesirable Substance - Apparatus for preventing unwanted exposure of one or more devices to one or more undesirable substances includes at least one barrier disposed between the device and the undesirable substance. At least one shield substance is provided between the barrier and the device. The shield substance is capable of permeating the barrier sufficient to preclude at least substantial permeation of the undesirable substance through the barrier from the exterior of the barrier, preventing unwanted exposure of the device to the undesirable substance.05-21-2009
20110222824OPTICAL FIBER AND OPTICAL CABLE - Provided is an optical fiber that has a small bending loss, can be securely prevented from being fractured due to accidental bending during installation or other operations, and is compliant with the G. 652 standard. An optical fiber 09-15-2011
20090214167Optical Cable Buffer Tube with Integrated Hollow Channels - Disclosed is a buffer tube that incorporates hollow channels into its wall. This reduction in material moderates the buffer tube's thermal expansion and contraction.08-27-2009
20100014818METHOD AND APPARATUS FOR MANUFACTURING AN OPTICAL CABLE AND CABLE SO MANUFACTURED - A method and apparatus for manufacturing an optical cable comprising at least one metal tube housing at least one optical fiber and having a predetermined excess fiber length (EFL) is described. In this method the metal tube is plastically deformed and shortened by a predetermined amount (S01-21-2010
20090252464FIBER DEPLOYMENT ASSEMBLY AND METHOD - A method for making a Fiber deployment assembly includes creating a curvature in a conduit; pumping one or more fibers into the conduit; and securing at least one of the one or more fibers to a shortest pathway within the conduit and Fiber deployment assembly.10-08-2009
20090252463RTCI CABLE AND METHOD - A method for making a Fiber deployment assembly includes creating a curvature in a conduit; pumping one or more fibers into the conduit; and securing at least one of the one or more fibers to a shortest pathway within the conduit and Fiber deployment assembly.10-08-2009
20090116796Optical cable and method for the production of an optical cable - An optical cable comprises a cable core (05-07-2009
20100183270Clip for Securing a Fiber Optic Cable Assembly and Associated Assemblies - A clip for securing one or more fiber optic cable assemblies having respective furcation bodies is disclosed along with related assemblies. The clip includes one or more attachment features disposed on a bottom surface for mounting the clip. The bottom surface of the clip provides an anti-rotation feature for the clip and the fiber optic cable assembly by abutting with the complementary mounting surface. In one embodiment, the clip has a cover that attaches to a portion of the clip for securing a portion of the furcation plug within a cavity of the clip.07-22-2010
20130216192FIBER OPTIC CABLES WITH ACCESS FEATURES - Cables are constructed with discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of material in the cable jacket. The discontinuities allow a section of the cable jacket to be pulled away from a remainder of the jacket using a relatively low peel force.08-22-2013
20100239215Methods for Terminating Optical Fiber Cables - A fiber optic cable system includes a fiber optic main cable having a strength member and a plurality of optical fibers extending therein within an outer cable sheath. A flexible longitudinally extending inner housing is positioned proximate the plurality of optical fibers on a section of the main cable having the outer cable sheath removed. At least one fiber optic drop cable has at least one optical fiber having an end portion extending outwardly from an end of the drop cable. The end portion is spliced together with an end portion of a corresponding at least one severed end portion of one of the plurality of optical fibers of the main cable to define at least one spliced together fiber portion coupling at least one of the plurality of optical fibers of the main cable to a corresponding one of the at least one fiber of the drop cable. A longitudinally extending outer protective housing extends over the section of the main cable having the outer cable sheath removed and the inner housing and the strength member. The outer protective housing has a first opening receiving the main cable and a second opening, longitudinally displaced from the first opening, receiving the main cable and at least one of the openings receiving the drop cable or cables.09-23-2010
20100209056Styrenic Polymers as Blend Components to Control Adhesion Between Olefinic Substrates - The insulation shield layer of a power cable comprises a blend of ethylene copolymer, e.g., vinyl acetate, and a styrenic polymer, e.g., polystyrene. The insulation shield layer is adjacent to a polyolefin insulation layer of the power cable. The insulation shield layer exhibits cross-linkability, strippability from the insulation layer, and good thermal stability.08-19-2010
20120141077OPTICAL FIBER AND OPTICAL CABLE - An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations, and is compliant with the G. 652 standard. The optical fiber includes a core, a first cladding, a second cladding and a third cladding. The relative refractive index difference Δ06-07-2012
20110235983OPTICAL FIBER CABLE - The present invention relates to an optical fiber cable incorporating a multi-core fiber provided with a plurality of cores and a cladding region. The optical fiber cable has a jacket covering the multi-core fiber. The multi-core fiber is arranged so that a hold wrap holds the cores in a state in which they are provided with a bend of not more than a fixed radius of curvature, in order to reduce crosstalk between the cores.09-29-2011
20100310217FIBER OPTIC DROP CABLE ASSEMBLY FOR DEPLOYMENT ON BUILDING WALLS - A fiber optic drop cable assemblies and methods for deploying the same on a wall of a building are disclosed. The assembly includes a messenger member and a plurality of fiber optic cables each having a length, a connectorized end, and containing at least one optical fiber, the fiber optic cables being removably secured to the messenger member at a plurality of locations. The fiber optic cables are secured to the messenger member at a plurality of locations that correspond to select building locations, such as windows, through which the cable can be fed into the building.12-09-2010
20100322572OPTICAL CABLE - The present invention relates to an optical cable with a structure for improving a durability performance. The optical cable comprises, as a basic structure: a coated optical fiber, and a cable jacket covering an outer periphery of the coated optical fiber. The coated optical fiber is constituted by a glass fiber and a coating layer of an ultraviolet curing resin. To realize excellent impact resistance as durability performance, the coating layer of the coated optical fiber includes a first coating with a Young's modulus of 200 MPa or more. Meanwhile, the cable jacket is comprised of a thermoplastic resin that does not contain any halogens. The cable jacket has a thickness of 0.7 mm or more, a flame retardancy of V2 or more according to UL Standards, and a Young's modulus equal to or greater than that of the first coating.12-23-2010
20110110632FLAME RETARDANT CABLE - The present invention relates to a flame-retardant cable comprising a transmission element, a flammable element, and a flame-retardant coating layer surrounding said flammable element, and made of a material based on a polymer obtained from a polymerizable liquid composition containing at least a precursor for said polymer including functional groups selected from acrylates, methacrylates, epoxies, vinyl ethers, allyl ethers, and oxetanes,05-12-2011
20100014819TAPERED CABLE FOR USE IN FIBER TO THE PREMISES APPLICATIONS - A tapered fiber optic distribution cable that includes a plurality of drop cables having at least one predetermined breakout location where a drop cable is withdrawn from the tapered distribution cable. The drop cables are bound together to form the tapered fiber optic distribution cable by binding members or helical winding. Each drop cable contains a plurality of optical fibers which may be preconnectorized according to a user's preferences.01-21-2010
20100054676Fiber Optic Furcation Assembly Having Feature(s) for Cable Management - Fiber optic cable assemblies having a fiber optic cable, a furcation body, and one or more furcated legs are disclosed herein. In embodiments disclosed herein, the furcation body comprises a first end and a second end opposite the first end, the first end having the fiber optic cable extending therefrom, and the second end having one or more furcated legs extending therefrom. The furcation body can include one or more features that facilitate cable management by supporting cabling components used in making fiber optic interconnections. The cable management features of the fiber optic cable assemblies advantageously inhibit sagging, facilitate access to fiber optic interconnections, and/or improve air flow paths between fiber optic interconnections.03-04-2010
20110075977Crush-Resistant Fiber Optic Cables Employing Bend-Resistant Multimode Fibers - A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of bend-resistant multimode optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of bend-resistant optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter D03-31-2011
20110069932High-Fiber-Density Optical-Fiber Cable - Disclosed is an improved optical fiber possessing a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses.03-24-2011
20110058778CABLE INCLUDING STRAIN-FREE FIBER AND STRAIN-COUPLED FIBER - A cable including a strain free and strain coupled optical fiber is provided. The disclosed cable provides a single device that can perform both strain and temperature measurements in a distributed manner and provide accurate results for the actual strain on the cable.03-10-2011
20100086267Fiber Optic Cable Assemblies Employing a Furcation Body Having Anti-Rotation Feature - A fiber optic cable assembly including a fiber optic cable and a furcation body is disclosed. An attachment feature can be provided to mount the furcation body to a mounting surface of fiber optic equipment for securing a portion of the fiber optic cable assembly to the fiber optic equipment. The attachment feature may include an integrated anti-rotation feature to inhibit rotation of the furcation body with respect to a mounting surface. The anti-rotation feature is provided by one or more generally planar surfaces of the furcation body for abutting with at least one complementary planar mounting surface.04-08-2010
20090317038MULTI-FIBER FIBER OPTIC CABLE - A multi-fiber cable assembly includes a plurality of optical fibers and at least two fiber grouping members disposed in a reverse double helical configuration about the plurality of optical fibers. An outer jacket surrounds the fiber grouping members and the plurality of optical fibers.12-24-2009
20080205828Method and apparatus for disposing water absorbent material in a fiber optic cable - A fiber optic cable can comprise spheres or balls that are coated with a water absorbent material, such as a super absorbent polymer (“SAP”). The spheres can provide clean and efficient carriers for introducing SAP into the cable during manufacturing. The spheres can have a diameter in a range of 20 microns to 2.5 millimeters and can be disposed in the cable's interstitial spaces, for example between the cable's optical fibers and a surrounding buffer tube. The SAP material can adhere to the spheres as a cross-linked coating or via electrostatic charge, for example. Beyond absorbing any water that may enter the cable, the spheres can provide cushioning or mechanical protection for the optical fibers. When the cable receives stress, motion among the spheres can absorb the stress to shield the fibers from damage.08-28-2008
20110069931Strain Relief Device and Method for Fiber Optic Cables - A fiber optic strain relief device is provided. The device has a base that attaches to a piece of equipment and/or hardware. A length of strap positions in the base and forms a loop. The loop is adapted to at least partially encircle a portion of a cable positioned at the base. A strap tightener incrementally shortens the length of the strap, reducing the loop and tightening the strap around the cable. The strap tightener may be a ratchet assembly comprising an actuator, a ratchet cap, a pin, a ratchet lock and a release. The length of strap inserts into a slot in the pin. The ratchet assembly operates to tighten the length of strap encircling the portion of the cable by incrementally rotating the pin. The release allows the strap to be loosened around the fiber optic cable.03-24-2011
20110262085OPTICAL FIBER CABLE AND RESIN COMPOSITION USED THEREFOR - This optical fiber cable is provided with a covering resin including an outermost layer. The outermost layer is formed by a resin composition including: (a) a base resin prepared by adding at least one copolymer selected from an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer to a high density polyethylene; (b) 25 to 90 parts by weight of a phosphate salt with respect to 100 parts by weight of the base resin; and (c) 0.75 to 15 parts by weight of either a silicone dispersed polyethylene or a silicone grafted polyethylene with respect to 100 parts by weight of the base resin.10-27-2011
20100178015CABLE DUCT AND BRANCH - A cable duct for guiding a plurality of cables is produced from an elastic material. The cable duct has an upper profiled part and a lower profiled part. The lateral end sections of the opposite profiled parts, in the position of use of the cable duct, terminate the cable duct as closing parts. The lateral end sections rest one on the other or are forced one against the other. The profiled parts are held together by retaining elements that can be immobilized by joining. Retaining elements are at the same distance to a center of a cross-section of the cable duct and at the same distance to the lateral end sections. Chambers for guiding lines or cables are delimited at both sides of the center and/or in the sections of the profiled parts that are laterally contiguous to the closing parts by the retaining elements.07-15-2010
20110097047Cable having fire-protection characteristics, and method for manufacturing the same - A cable is provided which is longitudinally waterproof and has improved fire protection characteristics. The cable contains a composite material with a first substance which can be expanded by water being supplied to it, and a second substance which can be foamed by heat being supplied to it and is suitable for production of a glass layer. The composite material also has a substrate to which the first substance and the second substance are bonded. The composite material can be produced by dissolving the first substance and the second substance in a solvent, and by introducing the solvent into the support material, or by applying it to the support material.04-28-2011
20100166373OPTICAL FIBER AND OPTICAL CABLE - Provided is an optical fiber that has a small bending loss, can be securely prevented from being fractured due to accidental bending during installation or other operations, and is compliant with the G. 652 standard. An optical fiber 07-01-2010
20100158453Distribution Cable Assembly Having Mid-Span Access Location - The present disclosure is generally directed to a fiber optic distribution cable assembly having an interior portion and an exterior portion. A distribution cable includes a plurality of optical fibers disposed within the interior portion and at least one predetermined mid-span access location positioned along a length of the distribution cable to provide access from the exterior portion to the interior portion. At least one optical fiber of the distribution cable is accessed and terminated from the distribution cable within the interior portion of the distribution cable. A tether having a first end is attached to the distribution cable through the mid-span access location. The tether has at least one optical fiber optically connected to the at least one terminated optical fiber of the distribution cable at a location within the interior portion of the distribution cable.06-24-2010
20100195963CONCENTRIC INSULATION SLEEVE HAVING INNER AND OUTER SURFACES WITH DIFFERENT PROPERTIES - A concentric insulation sleeve is disclosed having multi-layered structure. The outer layer exhibits low smoke and fume and non-halogen properties important for use of fiber optic cable assemblies in confined space susceptible to combustion conditions. The inner layer exhibits anti-static properties, and optionally slippery properties, to make the assembly of fiber strands in the insulation less charged with static electricity. The cable can become associated with other cables and serve as mini-ducts and then be surrounded by another insulation sleeve of the same construction to form a cable duct.08-05-2010
20090175583Microbend-Resistant Optical Fiber - Disclosed is an improved, single-mode optical fiber possessing a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses.07-09-2009
20110044594Modified Refractive Index Profile For Low-Dispersion Multi-Mode Fiber - An improved multimode fiber optic cable is provided. The improved multimode fiber optic cable includes, but is not limited to, a refractive index profile which is designed to compensate for a radially dependent wavelength distribution of laser launch modes coupled into the multimode fiber optic cable in order to minimize modal dispersion within the multimode fiber optic cable.02-24-2011
20120039575CABLE EXPANSION JOINT - A cable is provided having an expansion joint. The cable includes a cable jacket which makes up an outer layer of the cable, a non-end section where the cable jacket is removed from the cable which forms an opening, and an expansion joint which covers the opening and is bonded to the cable jacket at opposite sides of the opening. The expansion joint is made up of a flexible or compressible material.02-16-2012
20110064367Multimode Optical Fiber - The present invention embraces a multimode optical fiber that includes a glass-based central core having an alpha-index profile and a glass-based cladding immediately surrounding the optical fiber's central core. Typically, the refractive index difference between the central core's minimum refractive index and the cladding's maximum refractive index is greater than 2×1003-17-2011
20100061685GROUNDING DEVICE FOR ARMORED CABLE - An external grounding arrangement for a fiber access terminal includes a lug extending through a housing of the terminal. The lug is connected to strength members of a fiber optic cable extending to the terminal by a clamp about the cable within the terminal and a rod extending from the clamp to the lug.03-11-2010
20090285537Antitracking Aramid Yarn - The invention pertains to an aramid filament yarn provided with a finish composition comprising an organic substance, the amount of organic substance in the finish being selected so that the finish has a conductivity from 0.2 mS/cm to 200 mS/cm, measured as a 50 wt % finish composition in water at 20° C., and the amount of the finish on the yarn being selected so that the yarn has a specific electric resistance from 4×104 to 1.2×107 Ohm.cm. The invention further pertains to an ADSS cable reinforced with bundles of said aramid filament yarn, and to a method for making the ADSS cable.11-19-2009
20120063730Flame Retardant Cable Fillers and Cables - Flame retardant cable fillers and cables made with the same using halogen-free flame retardant actives.03-15-2012
20120301089SEPARATOR FOR COMMUNICATION CABLE WITH SHAPED ENDS - A communication cable that comprises a jacket, a twisted wire group, and a single separator received in a core of the jacket. The separator includes a body that has first and second segments adapted to define quadrants in the communication cable. The first and second segments are substantially perpendicular to each other and define a junction point of the first and second segments. Each segment includes a main portion and a terminal end remote from the junction point of the segments. Each of the terminal ends has a shape such that each of the terminal ends is wider than the main portions of the segments. An air pocket is defined between the terminal ends of the first and second segments. The air pocket includes a gap sized such that the air pocket is substantially enclosed, wherein the twisted wire group is prevented from entering the air pocket.11-29-2012
20090324180FOAMED FIBER OPTIC CABLE - A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and a jacket assembly surrounding the strength layer. The jacket assembly includes a foam. A method for manufacturing a fiber optic cable includes mixing a base material, a chemical foaming agent and a shrinkage reduction material into a mixture in an extruder. The mixture is heated so that the base material and the chemical foaming agent form a foam with shrinkage reduction material embedded into the foam. An optical fiber and strength layer are fed into a crosshead. The mixture is extruded around the optical fiber and the strength layer to form a jacket assembly.12-31-2009
20110091170FIBER DISTRIBUTION HUB AND CABLE FOR USE THEREWITH - A fiber distribution hub includes a swing frame pivotally mounted to an enclosure. The enclosure defines a cable port and at least a first interface region. The swing frame defines a splitter region, a termination region, and a storage region. Splitter modules can be oriented and positioned so that splitter pigtails extending from each of the splitter modules extend directly downwardly through a vertically extending channel. A cable clamp can be mounted to the enclosure at the cable port to secure one or more cables to the enclosure.04-21-2011
20110091169FIBER OPTIC FURCATION ASSEMBLY - The invention relates to a fiber optic furcation assembly (04-21-2011
20110103754BUFFERED OPTICAL FIBER AND TELECOMMUNICATIONS CABLE - A buffered optical fiber (05-05-2011
20100290746DROP CABLE PASS-THRU FITTING - A cable pass-thru assembly includes a fiber optic cable and a pass-thru fitting. The fiber optic cable includes an optical fiber and a strength member. The pass-thru fitting is adapted to receive the fiber optic cable. The pass-thru fitting includes an outer sleeve and an inner sleeve. The outer sleeve includes a thru-bore. The inner sleeve is disposed in the thru-bore of the outer sleeve. The strength member is compressed between the inner sleeve and the outer sleeve. A method for inserting a fiber optic cable in a pass-thru fitting includes inserting a fiber optic cable through a thru-bore of an outer sleeve and a bore of an inner sleeve. A strength member of the fiber optic cable is wrapped about the inner sleeve. The outer sleeve is advanced over the inner sleeve so that the strength member is compressed between the outer sleeve and the inner sleeve.11-18-2010
20100209057TELECOMMUNICATIONS CABLE INLET DEVICE - An inlet device is described for inserting a telecommunication cable into a telecommunications enclosure. The inlet device includes a housing compressible portion and a strength member securing section configured to fasten at least one strength member of the cable to the housing. The cable is centered in the housing when a protective sleeve is applied over a compressible portion of the housing. A method for preparing a cable assembly is also described. A telecommunications enclosure including an inlet device is also described.08-19-2010
20110182553METHOD OF MAKING A FIBER OPTICAL CABLE ASSEMBLY - A process for forming a fiber optical cable assembly comprises the steps of (a) subjecting a first high yenacity reinforcement yarn such as para-aramid that is coated with a water-impermeable thermally reversible cross-linked polymeric coating to a temperature of from 45 to 200° C. for sufficient time to convert the protective coating via bond cleavage into a water-swellable super absorbent polymer, (b) combining one or more of the first reinforcement yarns from step (a) with one or more optical glass fiber transmission media and (c) applying a protective sleeve over at least one assembly of step (b).07-28-2011
20120177329COATED PLASTIC CLADDING OPTICAL FIBER AND OPTICAL FIBER CABLE - A coated plastic cladding optical fiber and an optical fiber cable, in which a transmission loss caused when this coated fiber or this fiber cable is bent in a small radius is small, and which can be used sufficiently as a USB cable or a HDMI cable in a high speed transmission, are provided.07-12-2012
20120315003OPTICAL FIBRE GUIDING - An assembly for guiding and protecting optical fibre cables or wave guides, which comprises a first number of first guide tubes and a second number of second guide tubes where each of the first and second guide tubes are adapted to receive an optical fibre cable along its complete length. The assembly further comprises an elongated first tubular shell, and an elongated second tubular shell where the first number of first guide tubes is supported within and in parallel relationship with the first tubular shell, and the second number of second guide tubes is supported within and in parallel relationship with the second tubular shell. The assembly further comprises a first connecting strip which interconnects the first and second tubular shells, which defines a separation between the first and second tubular shells, and which positions the first number of first guide tubes and the second number of second guide tubes in parallel. The first and second tubular shells and the first connecting strip originate from a single extrusion process which establishes an interference fitting between the first and second guide tubes and the first and second tubular shells, respectively.12-13-2012
20120189255Method and Apparatus for Manufacturing an Optical Cable and Cable so Manufactured - A method and apparatus for manufacturing an optical cable comprising at least one metal tube housing at least one optical fiber and having a predetermined excess fiber length (EFL) is described. In this method the metal tube is plastically deformed and shortened by a predetermined amount (S07-26-2012
20100215326Optical Fiber Cable for Transmission of High Power Laser Energy Over Great Distances - There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.08-26-2010
20100202740FIBER OPTIC CABLE ASSEMBLIES WITH FURCATION BODIES HAVING FEATURES FOR MANUFACTURING AND METHODS OF MAKING THE SAME - Fiber optic cable assemblies having furcation bodies with features that are advantageous for manufacturing are disclosed along with methods of making the same. The furcation body include at least one anti-rotation feature for mounting the furcation body and a viewing portion and/or weep hole. The viewing portion is advantageous since it allows the observation during filling of the cavity with an epoxy, adhesive, or the like to strain relieve components of the fiber optic cable assembly within the furcation body. Simply stated, the viewing portion is translucent or clear for observing the filling of the furcation body and detecting if an air bubbles/air pockets are formed so that they can be reduced and/or eliminated. The furcation body may also have a weep hole for allowing air bubbles/air pockets to escape. Additionally, the furcation body of the fiber optic cable assembly may be secured within a clip or other suitable structure for mounting the same.08-12-2010
20130011105CLIP FOR A FIBER OPTIC ASSEMBLY - A clip, configured to support a furcation body, includes a keyhole member, a catch, a cover, and an arm. The keyhole member may be received in a keyhole of a mounting surface, and is offset from a bottom of the clip via a slot guide such that when the bottom of the clip slides along the mounting surface, a top of the keyhole member engages an underside of the mounting surface to lock the clip to the mounting surface. The catch extends from the bottom of the clip in a direction that the keyhole member is offset from the bottom of the clip. The cover is coupled to a wall of the clip extending from the bottom of the clip in a direction away from the catch. The arm extends from the clip in a direction away from the catch and provides a handling point above the clip.01-10-2013
20130016948METHODS OF PREPARING STRENGTH MEMBER PULLING MEMBERS IN FIBER OPTIC CABLE FURCATIONS AND RELATED COMPONENTS, ASSEMBLIES, AND FIBER OPTIC CABLESAANM Smith; Matthew WadeAACI ConoverAAST NCAACO USAAGP Smith; Matthew Wade Conover NC USAANM Yates; Wesley AllanAACI LenoirAAST NCAACO USAAGP Yates; Wesley Allan Lenoir NC US - Methods of preparing strength member pulling members in fiber optic cable furcations and related components, assemblies, and fiber optic cables are disclosed. To allow fiber optic cables to be pulled without damaging optical fiber(s) disposed therein, a strength member pulling loop is formed from a strength member disposed inside the fiber optic cable. A pulling cord can be disposed in the strength member pulling loop to pull the fiber optic cable. The pulling load applied to the pulling cord is translated to the strength member pulling loop, which is translated to the strength member disposed inside the fiber optic cable. In this manner, when the fiber optic cable is pulled, the pulling load is translated to the strength member disposed inside the fiber optic cable to prevent or avoid damaging the optical fiber(s) disposed inside the fiber optic cable.01-17-2013
20130170800FIRE RESISTANT OPTICAL CABLE - A fire resistant optical cable includes: a plurality of optical fibers; at least one tubular layer of a ceramifiable material surrounding the plurality of optical fibers; and at least one flame shielding layer surrounding the tubular layer. The tubular layer of the ceramifiable material is able to mechanically protect the optical fibers not only during heating but also when the fire is extinguished, since it forms a sufficiently robust layer to withstand the mechanical stresses caused by the collapsing of the materials still surrounding the cable, especially in the transition portions between hot and cold zones. The tubular layer of the ceramifiable material is protected by means of at least one flame shielding layer which prevents the flames from directly acting on the ceramifiable material.07-04-2013
20130094821ACCESS FEATURES OF ARMORED FLAT FIBER OPTIC CABLE - A fiber optic cable includes a jacket, strength members, armor, and a tear feature. The jacket is formed from a first polymeric material and defines an exterior of the cable. The jacket further forms an interior cavity configured to support an optical fiber. The strength members are each surrounded by the jacket, with the cavity separating the strength members from one another. The armor extends above the cavity and at least partially above the strength members, and has greater tensile strength than the first polymeric material. The tear feature is located beneath the armor and is formed from a second polymeric material co-extrudable with the first polymeric material. The tear feature forms a discontinuity of material within the jacket. At least one of the second polymeric material and the interface between the first and second polymeric materials yields at a lesser tearing force than the first polymeric material.04-18-2013
20130101260CABLE ASSEMBLY HAVING QUICK-LOCKING CONNECTOR AND PREMISE WIRING SYSTEMS UTILIZING SAME - Embodiments of the present invention generally relate to a cable assembly for adapting to a premise wiring system, whereby the cables utilized therewith comprise quick-locking connectors thereon. In one embodiment of the present invention, a cable assembly comprises a first cable having a cable portion and a connector on a first end of the first cable, the connector comprising an interface and a locking means for securely engaging a second cable; a housing comprising a body having an aperture therethrough for receiving the first cable, the housing having a panel locking means for engaging a panel from a rear surface thereof, and the panel for securing to a substantially rigid structure, having at least one port therethrough; wherein when the housing engages the panel, the interface of the connector of the first cable is accessible from the front surface side of the panel.04-25-2013
20130142491METHOD FOR CHECKING THE CORRECT INSTALLATION OF A BEND-INSENSITIVE OPTICAL CABLE AND OPTICAL CABLE SUITABLE FOR THE METHOD THEREOF - A method for detecting faulty laying down of an optical cable exhibiting a measured cut-off wavelength includes providing an optical cable for transmitting optical signals including at least one single-mode optical fibre having an attenuation equal to or larger than a first threshold value as measured when wound for one turn around a bending radius equal to or smaller than 5 mm at at least one predetermined test wavelength, the test wavelength being smaller than the measured cut-off wavelength, and an attenuation smaller than a second threshold value as measured when wound for one turn around a bending radius equal to at least a minimum bending radius at an operative wavelength equal to or larger than the measured cut-off wavelength; laying the optical cable; and measuring the attenuation in the at least one optical fibre at the predetermined test wavelength. An optical cable includes at least one optical fibre that is bend sensitive at a predetermined test wavelength not larger than the measured cut-off wavelength and is bend insensitive at an operative wavelength larger than the measured cut-off wavelength, where the cable operates in single-mode regime.06-06-2013
20130148932COLD TEMPERATURE-RESISTANT CHLOROPRENE CASING MIXTURE - A casing mixture for a cable is provided having chloroprene with fillers and additives, particularly processing aids and softeners, as well as a cross-linking system, adhesion promoters, stabilizers, anti-aging agents, optionally coloring agents, which results after cross-linking in cold resistant and cold elastic vulcanizates which are suitable for extra heavy duty applications, for example, according to CSA Standard C22.2 No. 96-09 for moving lines for energy supply.06-13-2013
20130183012FAN-OUT KIT FOR A FURCATION SYSTEM - A furcation system of an optical fiber assembly includes a fan-out and a transition tube. The fan-out includes a surface and stations. The surface is flexible such that the surface is configured to be changed from flat to curved. The stations are coupled to one side of the surface and are configured to receive and hold sub-units of an optical fiber cable, while allowing the sub-units to project from the stations. The stations are spaced apart from one another such that the stations provide separation between the sub-units received by the stations. Bending of the surface moves the stations from a planar arrangement to a three-dimensional arrangement such that the sub-units may project from the stations of the fan-out in planar and three-dimensional arrays.07-18-2013
20110311190INSERT FOR AN OPTICAL FIBER ASSEMBLY AND OPTICAL FIBER ASSEMBLY USING AN INSERT - The present invention relates to an insert for an optical fiber assembly through which an optical fiber element can be pulled out without damage. The insert is provided for guiding a part of the optical cable (12-22-2011
20110311189INSERT FOR AN OPTICAL FIBER ASSEMBLY AND OPTICAL FIBER ASSEMBLY USING SUCH AN INSERT - The present invention relates to an insert for an optical fiber assembly reliably retaining an optical cable by preventing an axial and rotational movement thereof and further to an optical fiber assembly using such an insert. The insert is provided for guiding a part of the optical cable (12-22-2011
20130202258OPTICAL FIBER WITH RESILIENT JACKET - An optical fiber with a resilient jacket is disclosed. The optical fiber includes a cushion layer overlying the optical fiber in which the cushion layer is formed from a plurality of cushion members. The cushion members can be tubes that are hollow or that are partially or completely filled with a soft thermoplastic material. A polymeric sleeve overlies the cushion layer.08-08-2013

Patent applications in class OPTICAL TRANSMISSION CABLE

Patent applications in all subclasses OPTICAL TRANSMISSION CABLE