Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Grating

Subclass of:

385 - Optical waveguides

385015000 - WITH OPTICAL COUPLER

385031000 - Input/output coupler

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20120163755Method and System For Coupling Optical Signals Into Silicon Optoelectronic Chips - A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chip and one or more grating couplers may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chip via one or more optical fibers and/or optical source assemblies. The optical signals may be coupled to the grating couplers via a light path etched in the chip, which may be refilled with silicon dioxide. The chip may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the grating couplers via metal reflectors, which may be integrated in dielectric layers on the chip.06-28-2012
20090196551MULTIMODE PLANAR WAVEGUIDE SPECTRAL FILTER - A spectral filter comprises a planar optical waveguide having at least one set of diffractive elements. The waveguide confines in one transverse dimension an optical signal propagating in two other dimensions therein. The waveguide supports multiple transverse modes. Each diffractive element set routes, between input and output ports, a diffracted portion of the optical signal propagating in the planar waveguide and diffracted by the diffractive elements. The diffracted portion of the optical signal reaches the output port as a superposition of multiple transverse modes. A multimode optical source may launch the optical signal into the planar waveguide, through the corresponding input optical port, as a superposition of multiple transverse modes. A multimode output waveguide may receive, through the output port, the diffracted portion of the optical signal. Multiple diffractive element sets may route corresponding diffracted portions of optical signal between one or more corresponding input and output ports.08-06-2009
20100150500OPTICAL DEVICE - Provided is an optical device, which includes a substrate, a first cladding disposed on the substrate, a first optical waveguide extended in a first direction on the first cladding, and having a first refractive index, a side grating formed in at least one side of the first optical waveguide, a second optical waveguide filling a space of the side grating, extended in a second direction across the first direction on the first cladding, and having a second refractive index, and a second cladding disposed on the second optical waveguide, and having a third refractive index, wherein the first refractive index is greater than the second refractive index, and the second refractive index is greater than the third refractive index.06-17-2010
20100008626OPTICAL CHIP FOR ARRAYED WAVEGUIDE GRATING TYPE OPTICAL MULTIPLEXER/DEMULTIPLEXER CIRCUIT, WAVEGUIDE SUBSTRATE, AND METHOD FOR FABRICATING OPTICAL CHIP FOR ARRAYED WAVEGUIDE GRATING TYPE OPTICAL MULTIPLEXER/DEMULTIPLEXER CIRCUIT - An optical chip according to the present invention is formed into a projecting shape expanded toward either side at the center. A waveguide substrate has a layout in which arrayed waveguide grating type optical multiplexer/demultiplexer circuits, each having a curve direction of an array waveguide reverse to each other, are arranged in combination, and the optical chips are cut out of the waveguide substrate. A method for fabricating the optical chip according to the present invention can enhance an optical chip yield rate, and further, can fabricate an optical chip having the shape for stabilizing optical characteristics of the arrayed waveguide grating type optical multiplexer/demultiplexer circuit.01-14-2010
20100158441System And Method For High Speed Dye Doped Polymer Devices - A slow light optical dye doped polymer device for slowing the group velocity of an optical signal. In an embodiment, the slow light dye doped polymer device is a slow group velocity optical/near infrared (NIR) device formed of a substrate supporting a dye doped polymer waveguide layer sandwiched between two optically constraining polymer cladding layers. The waveguide layer includes at least one waveguide which supports Moiré grating slow light structures for slowing the group velocity of an optical signal traveling therein. In another embodiment, the slow light optical polymer device includes the slow group velocity optical portion and a slow phase velocity electrical portion. The slow phase velocity electrical portion is formed of a series cascade of combined inductive and capacitive elements generating an electrical field in a field region for transmitting encoded information between the optical portion and the electrical portion.06-24-2010
20130077917Shaping laser beam launches into optical fibers to yield specific output effects - Certain embodiments may include a laser system configured to emit collimated laser light, a beam diverging element configured to diverge the laser light to yield a range of propagation angles with a maximum angle greater than zero, and fiber coupling optics configured to direct the diverged laser light towards a spot of a cross-section of a fiber core of an optical fiber. As another example, certain embodiments may include a laser system configured to emit collimated laser light, a beam shaping element configured to shape the laser light into a beam with an elliptical cross-section, and fiber coupling optics configured to direct the diverged laser light towards a spot of a cross-section of a fiber core of an optical fiber, where the spot's center point is located at a distance from the cross-section's center point.03-28-2013
20120189249Single-Stage 1x5 Grating-Assisted Wavelength Division Multiplexer - A single-stage 1×5 grating-assisted wavelength division multiplexer is provided. A grating-assisted asymmetric Mach-Zehnder interferometer, a plurality of grating-assisted cross-state directional couplers and a plurality of novel side-band eliminators are combined to form the multiplexer. Only general gratings are required, not Bragg grating, for 5-channel wavelength division multiplexing in a single stage. A nearly ideal square-like band-pass filtering passband is obtained. The present disclosure can be used as a core device in IC-to-IC optical interconnects for multiplexing and demultiplexing of an optical transceiver. The present disclosure has a small size and good performance.07-26-2012
20080240655Method and apparatus for controlling waveguide birefringence by selection of a waveguide core width for a top cladding - A method and apparatus for controlling waveguide birefringence by selection of a waveguide core width for a tuned top clad is described herein. In one example, a dopant concentration within a top cladding material is between 3-6% (wt.). Given a tuned top cladding composition, a width of the waveguide core is pre-selected such that birefringence is minimized, i.e., a zero, or near zero. The desirable width of the waveguide core is determined by calculating the distribution of stress in the top cladding over a change in temperature. From this distribution of stress, a relationship between the polarization dependent wavelength and variable widths of the waveguide in the arrayed waveguide grating are determined. This relationship determines a zero value, or near zero value, of polarization dependent wavelength for a given range of waveguide widths. Accordingly, the width of the waveguide may be selected such that the polarization dependent wavelength is minimized.10-02-2008
20100111473Method and System For Coupling Optical Signals Into Silicon Optoelectronic Chips - A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chip and one or more grating couplers may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chip via one or more optical fibers and/or optical source assemblies. The optical signals may be coupled to the grating couplers via a light path etched in the chip, which may be refilled with silicon dioxide. The chip may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the grating couplers via metal reflectors, which may be integrated in dielectric layers on the chip.05-06-2010
20090317034Optical pulse time spreading device for spreading light pulse over time axis - An optical pulse time spreading device includes an optical fiber and a superstructured fiber Bragg grating (SSFBG) formed in the optical fiber. The SSFBG includes unit fiber Bragg gratings (FBGs) having the effective refractive index of the optical fiber periodically varying in the longitudinal direction of the fiber, and phase shifters having a constant effective refractive index. Each unit FBG is arranged between the adjacent phase shifters in the longitudinal direction. The unit FBG having its unit grating length in the longitudinal direction shorter than the unit segment length which is the distance between the unit FBGs next to each other. The optical pulse time spreading device provides the peak intensity of the autocorrelation wave less dependent on a code used for encoding and decoding.12-24-2009
20100329608PLANAR OPTICAL WAVEGUIDE ELEMENT, CHROMATIC DISPERSION COMPENSATOR, METHODS FOR DESIGNING CHROMATIC DISPERSION COMPENSATOR, OPTICAL FILTER, METHODS FOR DESIGNING OPTICAL FILTER, OPTICAL RESONATOR AND METHODS FOR DESIGNING OPTICAL RESONATOR - There is provided a planar optical waveguide element comprises a core of an optical waveguide; and first Bragg grating pattern and second Bragg grating pattern that are provided on the core, wherein the first Bragg grating pattern and the second Bragg grating pattern are mutually parallel along a propagation direction of guided light.12-30-2010
20130051730DYNAMIC APERTURED WAVEGUIDE FOR NEAR-EYE DISPLAY - A near-eye display of a type having an image generator for generating a succession of angularly related beams and waveguide for propagating the angularly related beams to an eyebox within which a virtual image is visible includes a controllable output aperture for such purposes as reconstructing a better defined pupil within the eyebox while also preserving the possibility for viewing the ambient environment from the eyebox through the controllable output aperture.02-28-2013
20090304331OPTICAL DEVICES AND DIGITAL LASER METHOD FOR WRITING WAVEGUIDES, GRATINGS, AND INTEGRATED OPTICAL CIRCUITS - The invention relates to devices having periodic refractive index modulation structures and fabrication methods for the devices using a laser means. By focusing a pulsed laser beam into a transparent material substrate, a path of laser modified volumes can be formed with modified refractive index compared with the unprocessed material. By selecting appropriate laser parameters and relative scan speed, the laser modified path defines an optical waveguide. Separation distance of the individual modified volumes define a periodic modification pattern along the waveguide path, so that the waveguide structures also exhibit grating responses, for example, as spectral filters, Bragg reflectors, grating couplers, grating sensors, or other devices. This method of direct laser fabrication enables one-step fabrication and integration of periodic or aperiodic refractive-index modulation devices together with optical waveguiding properties to enable low-cost, multifunctional I D, 2D or 3D optical circuit fabrication for simple and complex applications.12-10-2009
20130058608OPTICAL WAVEGUIDE AND ARRAYED WAVEGUIDE GRATING - A technique that does not increase the circuit size, does not make the circuit design and manufacturing difficult, and can reduce insertion loss when light enters from a slab waveguide toward an arrayed waveguide or when the light enters from the arrayed waveguide toward the slab waveguide. An optical waveguide provided with a slab waveguide in which a grating is formed therein at a distance from an end, and an arrayed waveguide whose end is connected to an end of the slab waveguide at a position where a constructive interference portion of a self-image of the grating is formed. An arrayed waveguide grating provided with a first input/output waveguide, the above-mentioned optical waveguide where an end of the slab waveguide on the opposite side of the arrayed waveguide is connected to an end of the first input/output waveguide, a second slab waveguide connected to an end of the arrayed waveguide on the opposite side of the slab waveguide, and a second input/output waveguide connected to an end of the second slab waveguide on the opposite side of the arrayed waveguide.03-07-2013
20120224811BIREFRINGENT MICRO-STRUCTURED OPTICAL FIBER FOR SENSOR APPLICATION - Fiber structure including a core and a cladding, a central microstructure having a first plurality of longitudinal holes and which is adapted for guiding optical radiation and for birefringence in the core. Also included is a side microstructure having a second plurality of longitudinal holes is provided, wherein the side microstructure partly surrounds the central microstructure and provides a predetermined mechanical anisotropy, a pressure responsive unit for converting an isotropic pressure force to birefringence changes on the core, a lateral force responsive unit for converting a directional pressure force to birefringence changes on the core, a temperature responsive unit for converting temperature to birefringence changes on the core, and a birefringence responsive unit for converting birefringence in the core to wavelength information.09-06-2012
20120224810POLARIZATION-INDEPENDENT GRATING OPTICAL COUPLER - An optical device comprising a planar waveguide located on a planar substrate, the planar waveguide including a light-transmissive layer and an optical grating coupler being located along the planar substrate and being adjacent to and optically coupled to the planar waveguide. The optical coupler includes an optical grating of the light-transmissive layer. The optical grating includes a periodic arrangement of light-refractive structures and one or more slotted openings separating the optical grating into two or more grating segments that have long axes that are substantially parallel to a propagation direction of a light beam configured to pass between the planar waveguide and the optical coupler. Pitch distances between adjacent ones of the grating segments are less than a wavelength of the light beam divided by the effective refractive index of the light-refractive layer.09-06-2012
20120195553ARRAYED WAVEGUIDE GRATING TYPE OPTICAL MULTIPLEXER AND DEMULTIPLEXER - An arrayed waveguide grating type optical multiplexer and demultiplexer which reduces a package size although plural arrayed waveguide gratings are included, is provided, comprising plural arrayed waveguide gratings which are provided in parallel to one another on a substrate and each of which has a first waveguide, a first slab waveguide, an arrayed waveguide, a second slab waveguide, and a second waveguide, and also includes a waveguide chip divided into a first and second separated waveguide chip in the first or second slab waveguide in each of the arrayed waveguide gratings and a compensation member compensating a temperature dependent shift of a light transmission center wavelength in the arrayed waveguide grating by relatively moving the first and second waveguide chip when expanded or contracted according to a temperature change. The waveguide chip has a shape bending along a bending direction of the arrayed waveguide.08-02-2012
20090238517Monolithically integrated optical devices with amorphous silicon arrayed waveguidi gratings and INGaAsP gain - An optical waveguide assembly and method of forming the same is described. The optical waveguide assembly includes a waveguide, an amorphous silicon arrayed waveguide grating communicative with the waveguide, and an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating. The method includes providing a waveguide, providing an amorphous silicon arrayed waveguide grating communicative with the waveguide, and providing an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating.09-24-2009
20130163928Polymer Waveguide for Coupling with Light Transmissible Devices and Method of Fabricating the Same - A polymer waveguide for coupling with one or more light transmissible devices, a method of fabricating a polymer waveguide for coupling with one or more light transmissible devices, and a method of coupling a polymer waveguide with one or more light transmissible devices. The polymeric waveguide comprises a grating structure.06-27-2013
20130163927BIREFRINGENT MICRO-STRUCTURED OPTICAL FIBER FOR SENSOR APPLICATION - Fiber structure including a core and a cladding, a central microstructure having a first plurality of longitudinal holes and which is adapted for guiding optical radiation and for birefringence in the core. Also included is a side microstructure having a second plurality of longitudinal holes is provided, wherein the side microstructure partly surrounds the central microstructure and provides a predetermined mechanical anisotropy, a pressure responsive unit for converting an isotropic pressure force to birefringence changes on the core, a lateral force responsive unit for converting a directional pressure force to birefringence changes on the core, a temperature responsive unit for converting temperature to birefringence changes on the core, and a birefringence responsive unit for converting birefringence in the core to wavelength information.06-27-2013
20100266240MULTI-CHIP SYSTEM INCLUDING CAPACITIVELY COUPLED AND OPTICAL COMMUNICATION - Embodiments of a system are described. This system includes an array of chip modules (CMs) and a baseplate, where the baseplate is configured to communicate data signals via optical communication. Moreover, the array includes first CMs mechanically coupled to first alignment features on the baseplate, and adjacent second CMs mechanically coupled to second alignment features on the baseplate. In this array, a given first CM is electrically coupled to a given set of electrical proximity connectors. Additionally, the array includes bridge components, wherein a given bridge component is electrically coupled to the second SCM and another set of electrical proximity connectors, which is electrically coupled to the set of electrical proximity connectors, thereby facilitating communication of other data signals between adjacent first CMs and second CMs via electrical proximity communication. Moreover, the given bridge component is optically coupled to the baseplate, thereby facilitating optical communication of the data signals between CMs via the baseplate.10-21-2010
20110142395Planar Waveguide And Optical Fiber Coupling - An apparatus for optically coupling light between optical transmission components is provided. The apparatus includes first and second optical transmission components wherein the first optical transmission component includes a planar optical waveguide, a grating coupler, and a transparent substrate and the second optical transmission component includes an optical fiber. Preferably, the planar optical waveguide includes silicon and the transparent substrate includes glass. Methods for coupling light between optical transmission components are also provided.06-16-2011
20110299812OPTICAL STRUCTURE WRITING SYSTEM - The present invention relates to a system for writing an optical structure in a waveguide. The system including, means for splitting a light beam into two coherent writing beams, an optical circuit for directing the writing beams along substantially the same optical path in opposite directions such that they produce an interference pattern in an interference region substantially within the waveguide to write the optical structure, said optical circuit including at least two acousto-optic modulators (AOMs) configured to enable a controllable phase shift to be applied to a light beam propagating therethrough, the two AOMs being arranged such that, in use, each AOM shifts the phase of only one of the writing beams, to thereby provide a controllable phase difference between the writing beams.12-08-2011
20100014809OPTICAL STRUCTURE WRITING SYSTEM - The present invention relates to a system for writing an optical structure in a waveguide. The system including, means for splitting a light beam into two coherent writing beams, an optical circuit for directing the writing beams along substantially the same optical path in opposite directions such that they produce an interference pattern in an interference region substantially within the waveguide to write the optical structure, said optical circuit including at least two acousto-optic modulators (AOMs) configured to enable a controllable phase shift to be applied to a light beam propagating therethrough, the two AOMs being arranged such that, in use, each AOM shifts the phase of only one of the writing beams, to thereby provide a controllable phase difference between the writing beams.01-21-2010
20110262073THERMALLY TUNABLE FIBER OPTIC DEVICE - Improvements relating to thermally tunable fiber optical devices have been disclosed. In one aspect, a thermally tunable fiber Bragg grating device is provided with one or more heaters to (10-27-2011
20100142892ARRANGEMENT AND A METHOD FOR COUPLING LIGHT INTO A PLATE-LIKE LIGHT GUIDE - An arrangement (06-10-2010
20090087143METHOD OF MANUFACTURING LATERALLY GRADED POROUS SILICON OPTICAL FILTER THROUGH DIFFUSION-LIMITED ETCHING AND FILTER STRUCTURE MANUFACTURED THEREBY - Disclosed herein is a method of manufacturing a laterally graded porous silicon optical filter through diffusion-limited etching. The change in resonance frequency of the porous silicon layer in a taper axis direction is adjusted using the diffusion of reactive ions in an etchant under conditions of use of a related etch mask pattern. It is possible to manufacture an optical band-pass filter having a resonance frequency that linearly changes using a tapered etch window opening.04-02-2009
20100098379STRUCTURE AND METHOD FOR ALIGNING AN OPTICAL FIBER ON AN OPTICAL WAVEGUIDE - An optical device including at least one first optical waveguide coupled to a second optical waveguide of smaller cross-section which penetrates into it on the side of a first end. The first optical waveguide is capable of being coupled with an optical fiber on the side of a second end. A surface of the first optical waveguide includes a diffraction grating capable of introducing-extracting-sending back light into and from the first optical waveguide.04-22-2010
20090257715DYNAMIC WAVEFORM SHAPING IN A CONTINUOUS FIBER - A system for dynamic waveform shaping in an optical fiber comprising: the optical fiber receiving an optical waveform, the optical waveform having individual spectral lines; a plurality of fiber bragg gratings in-line on the optical fiber, each having a reflectivity wavelength corresponding to one of the spectral lines; a plurality of polarization controllers in-line on the optical fiber, each polarization controller receiving the optical waveform from a respective fiber bragg grating; a circulator for directing the optical waveform as input to the plurality of fiber bragg gratings and receiving the optical waveform as output from the plurality of fiber bragg gratings; and a polarizer in-line on the optical fiber receiving the optical waveform from the fiber bragg gratings and the polarization controllers.10-15-2009
20090263084ARRAYED WAVEGUIDE GRATING CIRCUIT - Two AWG circuits are integrated while preventing degradation in quality of a multiplexing/demultiplexing function. An arrayed waveguide grating circuit includes: a first slab waveguide (10-22-2009
20090263083APPARATUS FOR SIDE FIRE FIBER LASERS - A fiber laser having at least one pair of reflectors coupled to an optical fiber, the at least one pair of reflectors defining an optical cavity between the at least one pair of reflectors and being configured to reflect light within the optical cavity. At least one light pump is coupled to the optical fiber and configured to provide pump light into the optical cavity, and at least one medium is positioned within the optical cavity and configured to generate signal light from the pump light in the optical cavity. Further, at least one grating positioned within the optical cavity and configured to couple the signal light out of the optical cavity.10-22-2009
20090274420System and Method for Permanently Writing a Diffraction Grating in a Low Phonon Energy Glass Medium - A system and method for permanently writing diffraction gratings in low phonon energy glass waveguides are shown. Ultrashort light pulses are generated and made to form two beams synchronously superimposed in the waveguide, therefore forming an interference pattern corresponding to the desired grating. The light pulses are focussed so that the light intensity in the waveguide exceeds a filamentation threshold. The exposure of the waveguide to these light pulses is controlled temporally and spatially in order to limit detrimental thermal effects induced by the high-intensity pulses in the glass medium of the waveguide.11-05-2009
20090285529TRANSMISSION GRATINGS DESIGNED BY COMPUTED INTERFERENCE BETWEEN SIMULATED OPTICAL SIGNALS AND FABRICATED BY REDUCTION LITHOGRAPHY - A method comprises computing an interference pattern between a simulated design input optical signal and a simulated design output optical signal, and computationally deriving an arrangement of at least one diffractive element set from the computed interference pattern. The interference pattern is computed in a transmission grating region, with the input and output optical signals each propagating through the transmission grating region as substantially unconfined optical beams. The arrangement of diffractive element set is computationally derived so that when the diffractive element set thus arranged is formed in or on a transmission grating, each diffractive element set would route, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal incident on and transmitted by the transmission grating. The method can further comprise forming the set of diffractive elements in or on the transmission grating according to the derived arrangement.11-19-2009
20090285528CLADDING GRATING AND FIBER SIDE-COUPLING APPARATUS USING THE SAME - A fiber side-coupling apparatus can be spliced with active fiber as a fiber-based side-coupler in series at both sides for distributively-pumped monolithic fiber lasers. This side-coupling apparatus includes a large-mode-area double-clad passive optical fiber. A cladding grating, formed on the cladding surface of the passive fiber, comprises a plurality of grating members and a reflection layer formed thereon. A laser diode bar array is disposed on one side of the optical fiber opposite the cladding grating. A collimation device, placed between the optical fiber and the laser diode bar array, is used to collect the pump beam to the cladding grating as much as possible in fast axis and collimate the pump beam to be incident to the cladding grating in slow axis as normally as possible. The collimated pump beams emitted from a laser diode bar array are normally incident to the cladding grating within the alignment tolerance of ±2 to ±4 degrees. Without the reentrance loss effect, the pump beams diffracted and reflected by the cladding grating propagates in the inner cladding of the passive fiber due to total internal reflection. In one embodiment, the grating member can be a binary or blazed cross section.11-19-2009
20090290837OPTICAL DEVICES FOR COUPLING OF LIGHT - An optical device and an optical system are provided for coupling of light. The optical device comprises a planar substrate; and an optical waveguiding layer disposed on the planar substrate. The optical waveguiding layer comprises a grating portion for coupling light between a planar waveguide and an optical fiber; and a tapered guiding portion for converting the mode size between the fiber and the planar waveguide. The grating portion comprises a first grating section having non-uniform periods.11-26-2009
20110200285COATED WAVEGUIDE FOR OPTICAL DETECTION - The invention relates to a waveguide, comprising a grating in at least a part of the waveguide, which waveguide comprises a coating, the coating comprising a polymer, which polymer comprises an aliphatic chain, which aliphatic chain is provided with hydrophilic side-chains. The invention further relates to a sensor system comprising a waveguide according to any one of the preceding claims, a light source, and a photo-detector.08-18-2011
20090297100Illumination device, image display device, and projector - An image display device includes: a first face; a laser light source device emitting laser light; and a diffractive optical element on which the laser light emitted from the laser light source device is incident, generating diffracted light from the incident laser light, and illuminating the first face with the diffracted light, the first face is provided at a position on which zero-order light emitted from the diffractive optical element is not incident, and an image is displayed by light via the first face.12-03-2009
20080212925FIBER BRAGG GRATING AND MANUFACTURING METHOD THEREFOR - The present invention provides an optical fiber for a fiber Bragg grating having a high reliability and superior performance. An optical fiber according to the present invention has a glass film containing micro porous bodies formed on the circumference of the optical fiber having a photosensitive core or both of the photosensitive core and a cladding.09-04-2008
20100220956Method For Coupling Light Into A Thin Planar Waveguide - A light distributing device (09-02-2010
20110268389TILED BRAGG GRATING AND LASER SYSTEMS THEREFROM - A tiled Bragg grating (BG) includes a plurality of BGs that are paralleled and optically contacted to one another. Each BG includes an optically transparent substrate within a predetermined wavelength or wavelength range having a length dimension and a transverse dimension. The BGs have a grating period along their length dimension. The BGs have optical contact regions along edges in their transverse dimension where the BGs are optically contacted to one another.11-03-2011
20080240654HYBRID PLANAR LIGHTWAVE CIRCUIT WITH REFLECTIVE GRATINGS - The present invention relates to a hybrid planar lightwave circuit in which a silicon reflective diffraction grating etched with a highly accurate deep reactive ion etching process is mounted in a trench formed in a high optical performance silica on silicon waveguide device.10-02-2008
20080273836ULTRAFAST LASER MACHINING SYSTEM AND METHOD FOR FORMING DIFFRACTIVE STRUCTURES IN OPTICAL FIBERS - An ultrafast laser machining system and method to form diffractive structures in optical fibers. The fiber is mounted with its longitudinal axis perpendicular to the beam path of the laser pulses. A region of the fiber is illuminated and then imaged with two cameras. These cameras are aligned substantially orthogonally. A position of the beam spot is determined. The beam spot is aligned to a starting position within the region. This position is within a portion of the fiber to be machined for which the beam path passes through the greatest length of material. The beam spot is scanned along a path designed to pass the beam spot through all of the portion to be machined such that the beam path does not pass through previously machined material. The laser pulses, which have a duration of less than about 1 ns, are generated as the beam spot is scanned.11-06-2008
20110008001OPTICAL COUPLER - An optical device comprising a substrate having a planar surface and having an optical core thereon. The device also comprises a two-dimensional grating located in the optical core, said two-dimensional grating being formed by a regular two-dimensional pattern of light-refractive structures, one of said light-refractive structures being located at each node of a regular 2D lattice located in a laterally bounded region. The device also comprises first and second optical waveguides being on the planar substrate and having ends end-coupled to the two-dimensional grating, the first optical waveguide being such that a direction of propagation near the end thereof is substantially along a primitive lattice vector of said 2D lattice, the second optical waveguide being such that a direction of propagation near the end thereof is not-parallel to a primitive lattice vector of said regular 2D lattice.01-13-2011
20110008002ARRAYED-WAVEGUIDE-GRATING-TYPE OPTICAL MULTIPLEXER/DEMULTIPLEXER - A multiplexer/demultiplexer includes: a waveguide chip including a first chip and a second chip that are divided by a plane and obtained by cutting, together with a substrate, in a direction crossing an optical axis, a first slab waveguide of an AWG including the first slab waveguide and a second slab waveguide that are formed on the substrate; a first base to which the first chip is fixed; a second base separated from the first base and to which the second chip is fixed; and a member that has one end fixed to the first base or chip and another end fixed to the second base or chip, in a state in which cut surfaces of the first and second chips face each other, and that is configured to move the first base and the second base relatively to each other along the plane by expanding/contracting when temperature changes.01-13-2011
20130216183COMPACT WAVELENGTH-SELECTIVE CROSS-CONNECT DEVICE HAVING MULTIPLE INPUT PORTS AND MULTIPLE OUTPUT PORTS - A wavelength-selective cross-connect (WSXC) device having N input ports and M output ports and configured to route any set of one or more carrier wavelengths from a corresponding input port to any selected output port. In one embodiment, the WSXC device includes a diffraction grating and a beam-steering device optically coupled to each other and to the input/output ports so that each of the carrier wavelengths traverses the diffraction grating and the beam-steering device two or more times en route from the respective input port to a designated output port. Various unfolded configurations of the WSXC device are also disclosed.08-22-2013
20090097798Plasmonic high-speed devices for enhancing the performance of microelectronic devices - Various embodiments of the present invention are directed to photonic devices that can be used to collect and convert incident ER into surface plasmons that can be used to enhance the operation of microelectronic devices. In one embodiment of the present invention, a photonic device comprises a dielectric layer having a top surface and a bottom surface, and a planar nanowire network covering at least a portion of the top surface of the dielectric layer. The bottom surface of the dielectric layer is positioned on the top surface of a substrate, and the planar nanowire network is configured to convert incident electromagnetic radiation into surface plasmons that penetrate through the dielectric layer and into at least a portion of the substrate.04-16-2009
20090080834Bragg Grating Elements For Optical Devices - Disclosed herein is a method for manufacturing three-dimensional Bragg grating elements. The method for manufacturing three-dimensional Bragg gratings may include forming a first Bragg grating element using a pair of recording beams. The method may also include using a single recording beam to replicate the first Bragg grating element to form a second Bragg grating element.03-26-2009
20110229080OPTICAL DEVICE WITH ATHERMAL SLOTS FOR TEMPERATURE DEPENDENCE CURVATURE REDUCTION - In one aspect of the invention, roughly stated, Applicants have discovered that a compensation material within slot elongated in a direction parallel to a segment of waveguide in an arrayed waveguide grating apparatus can compensate for both first and second order change in refractive index of the base waveguide material over temperature. Unlike the transverse slots of conventional linear athermalization techniques, the elongated slot generally parallel to the base material defines a composite waveguide section having a second order effective index of refraction temperature dependency which can be utilized to accurately minimize the temperature dependence of the overall optical path length to both the first and second order. The techniques described herein are also generalizeable to neutralization of the optical path length temperature dependence to any order.09-22-2011
20110229079OPTICAL SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE OPTICAL SEMICONDUCTOR DEVICE - An optical semiconductor device, includes: a plurality of first diffraction grating layers disposed at a spacing from each other along first direction above first semiconductor layer, length of a lower surface of each of a plurality of first diffraction gratings along first direction being longer than a length of an upper surface of first diffraction grating; second diffraction grating layer disposed along first direction above first semiconductor layer, first and second diffraction grating layers being alternately disposed at a spacing from each other, a length of an upper surface of second diffraction grating layer along first direction being longer than the length of a lower surface of second diffraction layer; a diffraction grating including first and second diffraction grating layers; a second semiconductor layer disposed between first and second diffraction grating layers and under second diffraction grating layer; and third semiconductor layer disposed on first and second diffraction grating layers.09-22-2011
20130121639OPTICAL INTERCONNECT STRUCTURE - The present invention is an optical interconnect structure characterized by that it comprises an optical waveguide comprising a first core and a connective optical waveguide which is formed on the optical waveguide and comprises a second core, and that a first diffraction grating formed in the first core and a second diffraction grating formed into the second core are arranged such that at least a part of the former faces a part of the latter.05-16-2013
20110142396ATHERMAL SILICON PHOTONICS ARRAY WAVEGUIDE GRATING (AWG) EMPLOYING DIFFERENT CORE GEOMETRIES IN THE ARRAY WAVEGUIDES - A silicon photonics array waveguide grating (AWG), and methods of their manufacture, including a plurality of silicon photonics array waveguides running from at least one of an input and output slab waveguide region, wherein first sections of each of the plurality of array waveguides have a first core geometry; and second sections of each of the plurality of array waveguides have a second core geometry. The first and second core geometries may comprise different waveguide core widths, and/or different core structures. AWG temperature stability is provided by the techniques of the present invention.06-16-2011
20090208171Waveguide For Heat Assisted Magnetic Recording - An apparatus includes a slider mounted on an arm, a first waveguide including a first core guiding layer, a second waveguide mounted on the slider and including a second core guiding layer having a thickness smaller than the thickness of the first core guiding layer, and a coupler for coupling light from the first core guiding layer to the second core guiding layer.08-20-2009
20090245730Optical Display Device - An optical display device, in particular for use in a head-up display or a head-mounted display, comprises an essentially planar light guide, an image-generating system, a first diffraction grating by which light that comes from the image-generating system can be coupled into the light guide, and a second diffraction grating, by which the light can be coupled out again from the light guide. At least one of the two diffraction gratings is a binary-blazed grating having a multiplicity of diffraction structures, which are composed of a multiplicity of individual substructures that ensure a blaze effect and in plan view have the shape of a closed geometrical surface.10-01-2009
20090136180POLYMER WAVELENGTH FILTERS WITH HIGH-RESOLUTION PERIODICAL STRUCTURES AND ITS FABRICATION USING REPLICATION PROCESS - The present invention discloses a method for fabricating polymer wavelength filter with high-resolution periodical structure, which comprises following steps: (a) a positive photo-resister film is coated on a substrate; (b) a grating pattern is holographically exposed on the positive photo-resister film; (c) the photo-resister film is coated with a negative photo-resister film; (d) the sample is exposed by UV light; (e) develops the sample to obtain a negative waveguide on the photo-resister film having gratings pattern on its bottom to be a waveguide mold; (f) coats a diluted PDMS film on the patterned waveguide mold; (g) bakes the PDMS film to be cured, and peels off from the waveguide mold to be a PDMS mold; (h) places a spacer between the PDMS mold and a thin glass slide to form a first tunnel; (i) injects a precure first UV polymer into the first tunnel; (j) cures the first UV polymer under a broadband UV light; (k) separates the first UV polymer when fully cured, a hardened first UV polymer is formed having a groove with gratings pattern at its bottom for forming a cladding layer of the polymer wavelength filter; (l) a thin layer of a polydimethylsiloxane is spun onto a glass slide, and the glass slide is placed over the groove of the first UV polymer; (m) a second UV polymer is injected into the groove of the first UV polymer; and (n) the second UV polymer is cured by exposing the UV light, and to form the core of the waveguide in the groove of the first UV polymer to finally be the polymer wavelength filter.05-28-2009
20100150499PHOTONICS DEVICE HAVING ARRAYED WAVEGUIDE GRATING STRUCTURES - Provided is a photonics device including at least two arrayed waveguide grating structures. Each of the arrayed waveguide grating structures of the photonics device includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler to the output star coupler. Each of the arrayed waveguides includes at least one first section having a high confinement factor and at least two second sections having a low confinement factor. The first sections of the arrayed waveguides have the same structure.06-17-2010
20120195552ARRAYED WAVEGUIDE GRATING TYPE OPTICAL MULTIPLEXER AND DEMULTIPLEXER - An arrayed waveguide grating type optical multiplexer and demultiplexer which achieves a low crosstalk even when temperature changes is provided, comprising, on a substrate, a waveguide chip in which an arrayed waveguide grating is formed that has a first waveguide, a first slab waveguide, an arrayed waveguide, a second slab waveguide, and a second waveguide, the waveguide chip being divided into two by any of the first and second slab waveguide, and includes a first glass plate to which one side of the arrayed waveguide grating divided into two in the waveguide chip is fixed, a second glass plate to which the other side thereof is fixed, and a compensation member compensating a temperature dependent shift of a light transmission center wavelength of the arrayed waveguide grating, wherein a part for the arrayed waveguide is not fixed to any of the first and second glass plates.08-02-2012
20090116789TUNABLE OPTICAL DISPERSION COMPENSATING APPARATUS - A tunable optical dispersion compensator (TODC) having a silica arrayed-waveguide grating (AWG) directly coupled at its input to a Mach-Zehnder interferometer device and at its output to a polymer thermo-optic lens.05-07-2009
20090116790Highly efficient optical gratings with reduced thickness requirements and impedance- matching layers - An optical grating comprising a grating layer and two surface layers, the layers being arranged with the grating layer between the surface layers. The grating layer comprises a set of multiple, discrete, elongated first grating regions that comprise a first dielectric material and are arranged with intervening elongated second grating regions. The bulk refractive index of the dielectric material of the first grating regions is larger than the bulk refractive index of the second grating regions. The first surface layer comprises a first impedance matching layer, and the second surface layer comprises either (i) a second impedance matching layer or (ii) a reflective layer. Each said impedance matching layer is arranged to reduce reflection of an optical signal transmitted through the corresponding surface of the grating layer, relative to reflection of the optical signal in the absence of said impedance matching layer.05-07-2009
20100278484Waveguide Coupling Probe and Methods for Manufacturing Same - A waveguide coupling probe (11-04-2010
20090110352Electronic Device Having Optical Data Connection Of Movable Housing Parts - The present invention provides an electronic device comprising two or more housing parts which are movable in relation to each other with an optical arrangement enabling optical data communication between electronic components located in the housing parts. The device according to the invention comprises a first housing part comprising first electronic components, a second housing part comprising second electronic components, wherein said first housing part and said second housing part are movably connected and capable of taking at least a first and a second position in relation to each other, a first optoelectronic device connected with said first electronic components, a second optoelectronic device connected with said second electronic components, and a first light duct, and a second light duct, wherein said first light duct is arranged to provide a first light path optically coupling said optoelectronic devices in said first position, and said second light duct is arranged to provide a second light path optically coupling said optoelectronic devices in said second position.04-30-2009
20110116743OPTICAL DEVICE - The present disclosure provides an optical device comprising a first optical fibre portion having a first region and further regions between which the first region is positioned. The optical device also comprises a second optical fibre portion having a second region and further regions between which the second region is positioned. Further, the optical fibre comprises at least one member to which the first and second optical fibre portions are attached at the first and second regions. The first and second regions are positioned at opposite sides of an area defined between the first and second regions and spaced apart from each other by a first distance and wherein adjacent further regions are spaced apart by a second distance that is smaller than the first distance.05-19-2011
20100303410ARRAYED WAVEGUIDE GRATING - An arrayed waveguide grating includes: at least one input waveguide; an input slab waveguide connected to the input waveguide; a plurality of output waveguides; an output slab waveguide connected to the output waveguides; and an arrayed waveguide. The arrayed waveguide includes: M channel waveguides connected between the input slab waveguide and the output slab waveguide; and a phase correcting portion configured to provide a predetermined phase to at least a part of the M channel waveguides by a form of the at least the part of the M channel waveguides being changed.12-02-2010
20090180736METHOD AND APPARATUS FOR DETECTING MULTIPLE OPTICAL WAVELENGTHS - Optical gratings that perform a number of functions at various wavelengths are formed by various methods that preserve spectral information within a wavelength band, the functions including: coupling radiation from one wavelength to another, controllable gratings that operate on different wavelengths in response to external control signals.07-16-2009
20130142483ARRAYED WAVEGUIDE GRATING MULTIPLEXER-DEMULTIPLEXER - A multiplexer-demultiplexer including: an AWG chip including a first input-output waveguide, a first slab waveguide connected thereto, an arrayed waveguide connected thereto and formed of parallel channel waveguides of different lengths, a second slab waveguide connected thereto, and second input-output waveguides connected thereto; a base plate joined to an underside of the chip; a fixed piece and a movable piece formed by the chip and the base plate being cut across the first or second slab waveguide; a reference plate to which the fixed piece is joined and against which the movable piece is abutted; a member bridging between these pieces and compensating a temperature-dependent shift of a light transmission center wavelength of the multiplexer-demultiplexer by expanding/contracting according to a temperature change and changing relative positions of the pieces; and a clip sandwiching the reference plate and the movable piece allowing the piece to slide on the plate.06-06-2013
20100322557OPTICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optical device including: an optical waveguide; and a plurality of diffraction grating layers provided along the optical waveguide, wherein each of the diffraction grating layers comprises a diffraction grating, each diffraction grating comprising a discontinuous first semiconductor layer and a second semiconductor layer burying the first semiconductor layer, the first and second semiconductor layers having different refractive indices, the plurality of diffraction grating layers comprise at least two diffraction grating layers being different from each other in terms of the length of a region where the diffraction grating is provided, and the diffraction gratings in an overlap region of the plurality of diffraction grating layers have the same phase and period is provided.12-23-2010
20090067785Optical device comprising an apodized bragg grating and method to apodize a bragg grating - An optical device, i.e., a wavelength selective filter, includes a grating having a finite length and is capable of filtering a given first wavelength within an operating wavelength region, said grating including a plurality of consecutive sections, each section including two sub-sections: a first sub-section having a first period Λ and a second sub-section having a second period Λ03-12-2009
20110110628SEMICONDUCTOR LIGHT-RECEIVING ELEMENT, OPTICAL COMMUNICATION DEVICE, OPTICAL INTERCONNECT MODULE, AND PHOTOELECTRIC CONVERSION METHOD - Provided is a high-speed and highly efficient semiconductor light-receiving element with small dependence on an incident light polarization direction. A semiconductor light-receiving element according to one aspect of the present invention includes a semiconductor layer including a light-absorbing layer 05-12-2011
20100054662OPTICAL COUPLING DEVICE - An optical coupling device for coupling a light beam into a waveguide and a method of manufacturing the device. The device includes a grating portion having a plurality of essentially straight and essentially parallel scattering elements, wherein two or more of the scattering elements have different lengths. The method includes providing a grating layer on a substrate and forming a plurality of essentially straight and essentially parallel scattering elements from the grating layer, wherein two or more of the scattering elements have different lengths.03-04-2010
20110085761ARRAYED WAVEGUIDE GRATING AND METHOD OF MANUFACTURING ARRAYED WAVEGUIDE GRATING - An arrayed waveguide grating includes: at least one first waveguide; a first slab waveguide connected to the at least one first waveguide; a plurality of second waveguides; a second slab waveguide connected to the plurality of second waveguides; and an arrayed waveguide. The arrayed waveguide includes: M channel waveguides connected between the first slab waveguide and the second slab waveguide, wherein M is a natural number; and a phase correcting portion configured to provide a predetermined phase to at least a part of the M channel waveguides by one or both of a width and a length of the at least the part of the M channel waveguides being changed.04-14-2011
20110103743METHOD AND SYSTEM FOR COUPLING RADIATION - The present invention relates to a coupler (05-05-2011
20110249938OPTICAL GRATING COUPLER - An apparatus includes a crystalline inorganic semiconductor substrate. A planar optical waveguide core is located over the substrate such that a first length of the planar optical waveguide core is directly on the substrate. A regular array of optical scattering structures is located within a second length of the planar optical waveguide core. A cavity is located in the substrate between the regular array and the substrate.10-13-2011
20110069928Assembly for Applying a Temperature Gradient to a Refractive Index Grating and Chromatic Dispersion Compensator - A power efficient assembly is provided for applying a temperature gradient to a Fiber Bragg grating. The assembly includes inner and outer enclosures, the outer enclosure defining an insulation chamber around the inner enclosure. The respective ends of the inner and outer enclosures are in thermal contact. A heat exchange system, such as coiled resistive wires or thermo-electric coolers, applies different temperatures to the opposite ends of the outer enclosure.03-24-2011
20110075970Integrated Photonics Device - The present invention relates to an integrated photonic device (03-31-2011
20110150392Reducing optical loss in reflective optical gratings - An optical device includes a light-transmitting medium on a base. The light-transmitting medium at least partially defines a free propagation region through which light signals travel. A reflective grating is positioned such that light signals can travel through the free propagation region and be received by the optical grating. The optical grating is configured to reflect the received light signal back into the free propagation region. The optical grating reflects the light signals such that light signals associated with different wavelengths separate as the light signals travel through the free propagation region. The portion of the light-transmitting medium that defines the free propagation region has a facet through with the light signals are transmitted. The grating includes a buffer layer between the facet and a reflecting layer that is configured to reflect the light signals received by the grating.06-23-2011
20100303411DEVICE FABRICATION WITH PLANAR BRAGG GRATINGS SUPPRESSING PARASITIC EFFECTS - The present invention relates to various methods of fabricating Planar Bragg Gratings (PBG) in a doped waveguide in a Planar Lightwave Circuit (PLC) device, suppressing unwanted parasitic grating effects during fabrication of the device. One approach to reduce parasitic gratings is to use a hard mask before the waveguide photolithography and etch, that results in a steeper sidewall angle that reduces or eliminates the parasitic grating effect. Another method of reducing parasitic grating effect is to deposit a layer of developable Bottom Anti Reflective Coating (BARC) prior to depositing the photo resist for waveguide etch. A third method of resisting parasitic gratings comprises using a planarizing undoped silica layer as a barrier layer on top of the core. During subsequent high temperature annealing germanium outdiffuses laterally into the cladding. The net effect is an optical waveguide with improved lateral uniformity because germanium diffusion smoothes out the sidewall roughness created during the waveguide reactive ion etch process. The undoped silica (SiO2) layer on top of the grating also serves the purpose of significantly reducing germanium outdiffusion from the core in the upward direction.12-02-2010
20090074358Beam Apodization For A Planar Solid Immersion Mirror - An apparatus includes a planar waveguide, first and second gratings for coupling electromagnetic radiation into the planar waveguide, and a beam shaper for controlling the amplitude distribution of the electromagnetic radiation that impinges on the first and second gratings. A method of coupling electromagnetic radiation into a planar waveguide is also provided.03-19-2009
20100322559PLANAR OPTICAL WAVEGUIDE ELEMENT, CHROMATIC DISPERSION COMPENSATOR, OPTICAL FILTER, OPTICAL RESONATOR AND METHODS FOR DESIGNING THE ELEMENT, CHROMATIC DISPERSION COMPENSATOR, OPTICAL FILTER AND OPTICAL RESONATOR - There is provided a planar optical waveguide element in which an optical waveguide comprises a core, and a gap portion that is positioned in a center of a width direction of the core so as to extend in a propagation direction of guided light, and that has a lower refractive index than that of the core; and wherein the core comprises two areas that are separated by the gap portion, and a single mode optical waveguide, in which a single mode is propagated span crossing these two areas, is formed.12-23-2010
20100322558OPTICAL WAVEGUIDE ELEMENT, CHROMATIC DISPERSION COMPENSATOR, METHODS FOR DESIGNING CHROMATIC DISPERSION COMPENSATOR, OPTICAL FILTER, METHODS FOR DESIGNING OPTICAL FILTER, OPTICAL RESONATOR AND METHODS FOR DESIGNING OPTICAL RESONATOR - There is provided an optical waveguide element comprises: a core of an optical waveguide; and a Bragg grating pattern that is provided on the core, wherein a pitch of the Bragg grating pattern takes a value from among three or more predetermined discrete values; the pitches that take the respective discrete values are present in a plurality of locations over an entire length of the optical waveguide respectively; and if a value from among all of the discrete values which has the highest distribution frequency is taken as M, and if the closest value to the M which is larger than the M is taken as A, and if the closest value to the M which is smaller than the M is taken as B, then a difference expressed as A−M is equal to a difference expressed as M−B.12-23-2010
20100329607OPTICAL CONNECTOR WITH REDUCED MECHANICAL-ALIGNMENT SENSITIVITY - An optical connector is described. This optical connector spatially segregates optical coupling between an optical fiber and an optical component, which relaxes the associated mechanical-alignment requirements. In particular, the optical connector includes an optical spreader component disposed on a substrate. This optical spreader component is optically coupled to the optical fiber at a first coupling region, and is configured to optically couple to the optical component at a second coupling region that is at a different location on the substrate than the first coupling region. Moreover, the first coupling region and the second coupling region are optically coupled by an optical waveguide.12-30-2010
20100166368GRATING LIKE OPTICAL LIMITER - A reversible optical energy limiting device comprises a waveguide forming an optical path between an input end and an output end, and an optical energy responsive material located in the optical path for reflecting at least a portion of optical energy received from the input end back toward the input end when the optical energy exceeds a predetermined threshold. The optical energy responsive material does not reflect optical energy when it drops below the predetermined threshold, and thus propagation of optical energy from the input end to the output end is automatically resumed when the optical energy drops below the predetermined threshold. The optical energy responsive material may extend across the optical path an acute angle relative to the longitudinal axis of the optical path so that back-reflected light does not re-enter the optical system.07-01-2010
20110188805OPTICAL FIBER COUPLING SYSTEMS AND METHODS FOR FABRICATING THE SAME - Various embodiments of the present invention are directed to optical fiber coupling systems and to methods for fabricating optical fiber coupling systems. In one aspect, an optical fiber coupling system includes a first resonant cavity abutting the end of an optical fiber. The optical fiber coupling system includes a second resonant cavity located adjacent to the first cavity. The first and second resonant cavities are separated by a sub-wavelength grating layer configured with a non-periodic sub-wavelength grating. The optical fiber coupling system selectively couples light into and/or out of the optical fiber core.08-04-2011
20110188807Hybrid Guided-Mode Resonance Filter And Method Employing Distributed Bragg Reflection - A hybrid guided-mode resonance (GMR) grating, an optical filter and a method of optical filtering employ distributed Bragg reflection. The hybrid GMR grating includes a waveguide layer that supports a GMR having a GMR resonant frequency. The hybrid GMR grating further includes a diffraction grating that couples a portion of a signal incident on the hybrid GMR grating into the waveguide layer; and a distributed Bragg reflector (DBR) that reflects another portion of the incident signal. The coupled portion of the incident signal has a frequency corresponding to the GMR resonant frequency. The reflected portion has a frequency away from the GMR resonant frequency. The optical filter includes the hybrid GMR grating and a coupler. The method includes coupling an optical signal into the hybrid GMR grating and further coupling a reflected signal out of the hybrid GMR grating.08-04-2011
20110188808OPTICAL COUPLING METHOD - An optical coupling device for coupling a light beam into a waveguide and a method of manufacturing the device. The device includes a grating portion having a plurality of essentially straight and essentially parallel scattering elements, wherein two or more of the scattering elements have different lengths. The method includes providing a grating layer on a substrate and forming a plurality of essentially straight and essentially parallel scattering elements from the grating layer, wherein two or more of the scattering elements have different lengths.08-04-2011
20110188806OPTICAL MULTIPLEXER/DEMULTIPLEXER SYSTEMS CONFIGURED WITH NON-PERIODIC GRATINGS - Embodiments of the present invention are directed to multiplexer/demultiplexer systems. In one aspect, a multiplexer/demultiplexer system includes an input/output waveguide, two or more output/input waveguides, and a planar, non-periodic, sub-wavelength grating. The grating is configured so that when the system is operated as a multiplexer, each wavelength of light output from one of the two or more output/input waveguides is reflected by the grating toward the input/output waveguide. When the system is operated as a demultiplexer, each wavelength of light output from the input/output waveguide is reflected toward one of the two or more output/input waveguides.08-04-2011
20100014808Hybrid dielectric/surface plasmon polariton waveguide with grating coupling - The present invention provides a hybrid dielectric/SPP waveguide that can form either a single mode, single polarization waveguide, or a multi-mode waveguide. When multi-mode, this invention effectively transfers energy back and forth between the dielectric waveguide and metal surface. This improves on standard SPP modes, yielding longer range propagation along with high intensity near the metal surface at decisive locations. When single-mode, this hybrid waveguide allows for control of propagation and confinement for applications such as telecommunications optics integrated on silicon microchips. Gratings may be patterned in the metal for coupling light into and out of the modes or for use as mirrors in the mode. For areas where very long ranges are required, a metal grating may be used to couple light into the mode, but then the metal may be removed in other regions and make the range of the mode virtually infinite (limited by surface roughness).01-21-2010
20080285919CURVED GRATING SPECTROMETER WITH VERY HIGH WAVELENGTH RESOLUTION - The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.11-20-2008
20120039568In-Plane Optical Metrology - A structure that is located adjacent to a measurement target on a substrate is used to convert incident radiation from an optical metrology device to be in-plane with the measurement target. The structure may be, e.g., a grating or photonic crystal, and may include a waveguide between the structure and the measurement target. The in-plane light interacts with the measurement target and is reflected back to the structure, which converts the in-plane light to out-of-plane light that is received by the optical metrology device. The optical metrology device then uses the information from the received light to determine one or more desired parameters of the measurement target. Additional structures may be used to receive light that is transmitted through or scattered by the measurement target if desired.02-16-2012
20120039567MULTIPULSE SYSTEM FOR WRITING WAVEGUIDES, GRATINGS, AND INTEGRATED OPTICAL CIRCUITS - The present invention provides a direct laser writing fabrication method and system for devices having periodic refractive index modulation structures, for example, Bragg gratings. By focusing a modulated pulsed laser beam into a transparent material substrate, a path of laser modified volumes can be formed with modified refractive index compared with the unprocessed material. Modulation of exposure conditions provides periodic or modified periodic waveguide structures such that the waveguide structures exhibit grating responses and can be used for a variety of optical applications, for example, as spectral filters, Bragg reflectors, grating couplers, grating sensors, or other devices. The method enables direct one-step fabrication and integration of periodic or modified periodic refractive-index modulation devices together with other optical waveguiding devices to enable low-cost, multifunctional one-dimensional, two-dimensional or three-dimensional optical circuit fabrication of simple and complex optical systems.02-16-2012
20110064359COMPACT OPTICAL FIBRE COMPONENT PACKAGE - The present invention relates to an optical component, which comprises an optical fibre, which has a minimal functional arc radius in each point thereof, and which includes a thermally compensated portion, and a Bragg grating provided in a region of the thermally compensated portion. The optical fibre component comprises furthermore a temperature-compensating structure, which holds the thermally compensated portion of the optical fibre under tension in a linear direction for athermalizing the Bragg grating, and a housing for mechanical protection of the Bragg grating, which is provided with at least a first lead-through, and which housing has a maximal extension in the linear direction from a first housing end to a second housing end. The first lead-through has an exit end located outside the housing and an entrance end located inside the housing. The optical fibre furthermore includes at least a first connecting portion, which extends from a first end of the thermally compensated portion to and through the first lead-through, and at least a first exit portion which extends from a lead-through exit end of the first connecting portion. The first lead-through is located and arranged such that the first exit portion is bendable to the minimal functional arc radius without protruding more than half the minimal functional arc radius in the linear direction beyond the first housing, also when a shorter exit portion is extended to a length equal to the circumference of a circle with the minimal functional arc radius.03-17-2011
20120045173Coherent Optical Detector Having a Multifunctional Waveguide Grating - A coherent optical detector having a waveguide circuit, in which a plurality of waveguides are connected to a waveguide grating. In a representative embodiment, the waveguide grating serves at least three different functions, e.g., those of a fiber-optic coupler, a polarization splitter, and two power splitters, one for each of two orthogonal polarizations. Various embodiments of the coherent optical detector can be used to demodulate various forms of polarization-division-multiplexed (PDM) QAM- and/or PSK-modulated optical communication signals.02-23-2012
20120045172GRATING COUPLER AND PACKAGE STRUCTURE INCORPORATING THE SAME - A method for removing phosphorus and nitrogen from an activated sludge wastewater treatment system is provided consisting of one or more anaerobic zones followed by two or more activated sludge reactors operating in parallel each having independent aeration/mixing means, whereby the utilization of the influent organic carbon under anoxic conditions, and thereby, the selection of denitrifying phosphate accumulating organisms (DNPAOs) over non-denitrifying phosphate accumulating organisms (PAOs), is maximized in order to further maximize the removal of phosphorus and nitrogen in the wastewater treatment system.02-23-2012
20120269483Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers - An optical grating comprising a grating layer and two surface layers, the layers being arranged with the grating layer between the surface layers. The grating layer comprises a set of multiple, discrete, elongated first grating regions that comprise a first dielectric material and are arranged with intervening elongated second grating regions. The bulk refractive index of the dielectric material of the first grating regions is larger than the bulk refractive index of the second grating regions. The first surface layer comprises a first impedance matching layer, and the second surface layer comprises either (i) a second impedance matching layer or (ii) a reflective layer. Each said impedance matching layer is arranged to reduce reflection of an optical signal transmitted through the corresponding surface of the grating layer, relative to reflection of the optical signal in the absence of said impedance matching layer.10-25-2012
20120002922OPTICAL MULTIPLEXER/DEMULTIPLEXER - A polarization-independent optical multiplexer/demultiplexer with wide passbands has a core including an input optical waveguide, an input slab optical waveguide connected to the input optical waveguide, a waveguide array connected to the input slab optical waveguide, an output slab optical waveguide connected to the waveguide array, a pair of multimode couplers connected to the output slab optical waveguide, and a pair of output optical waveguides connected to the multimode couplers. The multimode couplers are dimensioned so that as both TE and TM polarized light propagates through them, the phase difference between the fundamental and second-order modes changes by an odd multiple of pi radians.01-05-2012
20120155806MULTI-CORE OPTICAL CABLE TO PHOTONIC CIRCUIT COUPLER - An optical device includes an array of optical grating couplers and a plurality of single-core fiber couplers located over a planar substrate. The optical grating couplers of the array are located to optically couple in a one-to-one manner to optical cores of a multi-core fiber or optical cable having an end located adjacent to the surface. Each single-core fiber coupler includes a planar optical waveguide connecting a corresponding one of the optical couplers of the array to an edge of the substrate.06-21-2012
20120155805MULTI-CORE OPTICAL CABLE TO PHOTONIC CIRCUIT COUPLER - An optical device includes a substrate and a plurality of three or more planar waveguides formed over the substrate. Each planar waveguide includes a corresponding grating coupler formed therein. The grating couplers are arranged in a non-collinear pattern over said substrate. The plurality of grating couplers is configured to optically couple to a corresponding plurality of fiber cores in a multi-core optical cable.06-21-2012
20120251047MACH-ZEHNDER INTERFEROMETER-ARRAYED WAVEGUIDE GRATING AND PLANAR LIGHT-WAVE CIRCUIT CHIP - The present invention provides a Mach-Zehnder interferometer-arrayed waveguide grating (MZI-AWG) and a planar light-wave circuit chip in which a certain number of chips can be secured without degradation of MZI-AWG characteristics. An MZI-AWG (10-04-2012
20120106893GRATING INSCRIBING IN OPTICAL WAVEGUIDES - There is described herein a method and system for inscribing gratings in optical waveguides. The waveguides may be hydrogen-free, germanium-free, low germanium, low hydrogen, and a combination thereof. Such gratings written in hydrogen-free fibers are suitable for sensor applications in which the use of hydrogen for photosensitizing fibers is undesirable owing to their increased sensitivity to nuclear radiation. The grating are formed by at least one pulse having a wavelength comprised between about 203 nm and about 240 nm. The laser source may be a Continuous Wave (CW) laser source or a pulsed laser source generating at least one pulse having a width in the order of nanoseconds (1005-03-2012
20120121221OPTICAL NANOFIBER RESONATOR - To provide an optical nanofiber resonator having an optical waveguide whose diameter is equal to or smaller than the wavelength of a propagation light, a light emitter disposed at a predetermined position of the optical waveguide, and a first reflector and a second reflector formed in the optical waveguide with the light emitter interposed therebetween, wherein at least one of the first reflector and the second reflector transmits a part of the propagation light. With such a configuration, the channeling efficiency of the light emitted from the light emitter and the propagation mode of the optical waveguide is dramatically improved.05-17-2012
20120314997Method And System For Coupling Optical Signals Into Silicon Optoelectronic Chips - A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of one or more of a plurality of CMOS photonic chips comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chips and optical couplers may receive the optical signals in the front surface of the chips. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.12-13-2012
20100209045Optical resonator, and fluid optical sensor employing an optical resonator - There is provided an optical resonator including: N individual optical waveguide paths of line segment shape disposed in a common flat-plane so as to intersect at a single intersection region, wherein N is an integer of 2 or more; curved optical waveguide paths connecting respective portions of the optical waveguide paths that extend towards the outside from the intersection region, wherein for a first to a 2N08-19-2010
20110182548DEVICE FOR COUPLING AN OPTICAL FIBER AND A NANOPHOTONIC COMPONENT - The invention relates to a device for coupling an optical fiber and a nanophotonic component formed on a first substrate, wherein the device comprises: an intermediate component formed on a second substrate including a first wave guide adapted for receiving light from the optical fiber and for transmitting the same to a first diffraction grating independently from the polarization of the incident light; second and third diffraction gratings formed on the first substrate and coupled to the nanophotonic component, the first diffraction grating being adapted to provide the first and second light beams respectively towards the second diffraction grating and the third diffraction grating, the first and second beams having perpendicular polarizations.07-28-2011
20120251046OPTICAL WAVEGUIDE CIRCUIT - The present invention provides an optical waveguide circuit which includes: a waveguide made of a material whose temperature coefficient of refractive index has a second-order component; a groove formed in a part of the waveguide; and a compensation material having a temperature coefficient of refractive index different from the temperature coefficient of refractive index of the waveguide, and in which a normal line of an interface between the groove and the waveguide, and an optical axis of light propagating through the waveguide intersect at a predetermined intersection angle, and the predetermined intersection angle is determined so as to reduce a second-order component of optical path length change of the waveguide due to the second-order component of temperature coefficient of the refractive index of the waveguide.10-04-2012
20120170891OPTICAL WAVELENGTH MULTI/DEMULTIPLEXER - An optical wavelength multi/demultiplexer having transmission characteristics with a higher rectangular degree than a conventional one includes an AWG and two-stage lattice circuit. An example of a two-stage lattice circuit according to the present invention includes an input waveguide, a third optical coupler, a third and fourth arm waveguides, a second optical coupler, a first and second arm waveguides, a first optical coupler, and output waveguides. The optical path length differences between the third and fourth arm waveguides and between the first and second arm waveguides are designed to be ΔL. The path passing the third and first arm waveguides differs by 2·ΔL in optical length from that the fourth and second arm waveguides. The paths passing the third and second arm waveguides and passing the fourth and first arm waveguides differ by ΔL from that passing the fourth and second arm waveguides.07-05-2012
20100272394ARRAYED WAVEGUIDE GRATING (AWG) WITH DIFFERENT RADII IN THE INPUT AND OUTPUT SLAB REGIONS - Arrayed waveguide grating (AWG) circuits are disclosed, having different radii in the slab regions to supplement and/or replace other mechanical techniques which enable athermal AWGs. Dual band, interleaved pairs of athermal AWGs are also disclosed, with improved cost, space and center wavelength properties, for, e.g., optical line terminal (OLT), and remote node (RN) applications.10-28-2010
20100008627DUAL TWIST SINGLE HELIX OPTICAL FIBER GRATING - A single helix chiral fiber grating of a predetermined grating strength is provided that is operable to control light transmission in a predetermined wavelength range. The novel fiber grating comprises a first optical fiber with a first interface portion at a first end, a second interface portion at a second end, and a middle portion therebetween. The first optical fiber is configured with at least one fiber core, surrounded by a corresponding at least one cladding, with a first longitudinal section disposed within the first interface portion, a second longitudinal section disposed within the second interface portion, and also includes a longitudinal helical section, disposed therebetween within the middle portion, that comprises a longitudinal helix structure of a single predetermined handedness, having a predetermined pitch profile, and having a predetermined helix diameter profile selected and configured to produce the predetermined grating strength. The helical section of the novel fiber grating is preferably produced by placing the first optical fiber, proximal to and parallel with a second fiber (or equivalent elongated member), and longitudinally twisting them together to form a double helix structure. Advantageously, the diameter of the second fiber (or a diameter profile thereof) may be selected to achieve the predetermined helix diameter profile in the helical section of the first fiber. The second fiber may be left proximal to the first fiber after fabrication or removed.01-14-2010
20100008625METHOD FOR DESIGNING OPTIMISED MULTI-CHANNEL GRATING STRUCTURES - A method is described for designing a multi-channel grating structure having at least one specified spectral characteristic in a photosensitive material, the multi-channel grating structure having at least one free spectral characteristic which is not a specified spectral characteristic. An initial value is provided for each free spectral characteristic, and an initial multi-channel grating function is provided that describes an initial multi-channel grating structure by applying a spectral to spatial domain algorithm to the specified predetermined spectral characteristic using the initial value. A target multi-channel grating function is provided which describes a target multi-channel grating structure in the photosensitive material and an updated value is determined for each initial value with reference to the spectral characteristics of the target multi-channel grating function. An updated multi-channel grating function is derived which describes an updated multi-channel grating structure in the photosensitive material by applying a spectral to spatial domain algorithm to the predetermined spectral characteristic using the at least one updated value. After at least one iteration, the updated multi-channel grating function is output to describe the multi-channel grating structure.01-14-2010
20120082415BRAGG GRATING FIBER HYDROPHONE WITH A BELLOWS AMPLIFIER - A Bragg grating fiber hydrophone, includes a fluid chamber and an optical fiber in which a Bragg grating is integrated, the optical fiber passing through the fluid chamber along a longitudinal axis such that the Bragg grating is positioned inside the latter. The fluid chamber is filled with a compressible fluid and is defined by a casing including two ends connected to the optical fiber. The casing includes at least one portion formed by an extensible and compressible tube extending along the longitudinal axis. The portion formed by an extensible and compressible tube includes an outer end coinciding with one of the two casing ends and can be longitudinally deformed by a difference in the pressures applied on the walls thereof, which results in a variation of the length of the optical fiber as measured by a variation in the wavelength of a luminous flux extracted from the optical fiber.04-05-2012
20090016679Ultra-wide band AWG multiplexer - A multiplexing AWG device capable of producing an ultra-wideband, low ripple, flat-top signal is presented. The AWG device includes an AWG unit and a two-section waveguide coupled to the AWG unit. The two-section waveguide has a first section and a second section. The first section produces a signal having a double-peak field profile and has a first input end and a first output end. The second section reduces the phase variation of the signal having the double-peak field profile exiting the first section. The second section has a second input end that is coupled to the first output end. For example, the first section may be a parabolic tapered waveguide and the second section may be a rectangular waveguide.01-15-2009
20110123153ARRAYED WAVEGUIDE GRATING - An arrayed waveguide grating includes input waveguides, an input slab waveguide, n output waveguides, an output slab waveguide, and an arrayed waveguide. Gaps are formed in the output waveguides other than the output waveguides of both sides of an array of the output waveguides, respectively, such that loss increases toward the central side of the array. Sizes of the gaps in the output waveguides increase toward the central side of the array.05-26-2011
20130011098WIDE PASSBAND AWG - Consistent with the present disclosure, an AWG is provided that has grating waveguide groupings that extend between a first free space region and a second free space region. The difference in length (ΔL) between successive grating waveguides differs for each grouping of grating waveguides, such that, for example, the ΔL associated with a given grating waveguide grouping is not an integer multiple of any of the other grating waveguide groupings. The grating waveguide groupings direct images having relatively small wavelength differences to a given output waveguide, and each grating waveguide grouping has an associated passband, which is similar to that of the conventional AWG. Unlike the conventional AWG, however, multiple grating waveguide groupings are included in the same AWG, such that the spectra associated with the grating waveguide groupings combine to provide a transmission characteristic having a passband that is greater than any individual passband. Accordingly, even if the optical signal wavelengths vary or are offset from the center wavelength of the passband, such wavelengths may still be transmitted with less loss.01-10-2013
20130022316Fiber Coupling Technique on a Waveguide - An optical coupling assembly for coupling light from an optical fiber including an angled tip into a planar waveguide via a waveguide coupling element is provided. In one embodiment, the optical fiber extends along the planar waveguide with the angled tip positioned such that light propagating in the optical fiber is coupled by the waveguide coupling element to propagate in the planar waveguide in counter propagation with respect to a fiber propagation direction. In another embodiment, the optical fiber includes a tapered peripheral portion tapering toward the angled tip and is disposed over the planar waveguide with the tapered peripheral portion extending therealong such that light propagating in the optical fiber is coupled to propagate in the planar waveguide with either forward or counter propagation. Embodiments of the present invention may be part of various photonic integrated circuits and may be manufactured more easily than known optical coupling assemblies.01-24-2013
20080226232OPTICAL DEVICE WITH REDUCED TEMPERATURE DEPENDENCE - Optical apparatus with improved center wavelength temperature stability. In an embodiment, an AWG has a plurality of slots inserted along the optical paths. The slots contain one or more compensation materials which collectively correct for an order Q temperature dependency of the AWG base material. Q>=2 or the number of compensation materials is at least 2 or both.09-18-2008
20110274393Erasable Ion Implanted Optical Couplers - Erasable ion implanted optical couplers are described. In one example a method includes implanting ions into a substrate to form a grating in a waveguide of an optical device coupling optical signals into and out of the waveguide and through the grating, and annealing the substrate to remove the grating after coupling optical signals through the waveguide.11-10-2011
20130136396GRATING COUPLER - Disclosed is a grating coupler which includes an optical waveguide transferring an optical signal; and a diffraction grating formed on the optical waveguide. The diffraction grating includes protrusions continuously formed and the protrusions have different heights.05-30-2013
20130094808METHOD AND SYSTEM FOR PRODUCING A COATED FIBER BRAGG GRATING OPTICAL FIBER - A method of producing a coated FBG optical fiber involves coating the optical fiber prior to writing the Bragg grating. A system for producing the coated FBG optical fibers includes a high temperature furnace from which to draw the fiber, a coating applicator that may be a carbon coating applicator, a cooling station, and a grating writing station.04-18-2013
20130114929ARRAYED WAVEGUIDE GRATING - An arrayed waveguide grating includes input waveguides, an input slab waveguide, n output waveguides, an output slab waveguide, and an arrayed waveguide. Gaps are formed in the output waveguides other than the output waveguides of both sides of an array of the output waveguides, respectively, such that loss increases toward the central side of the array. Sizes of the gaps in the output waveguides increase toward the central side of the array.05-09-2013
20130114928OPTICAL WAVELENGTH DISPERSION DEVICE AND METHOD OF MANUFACTURING THE SAME - An optical wavelength dispersion device includes a first substrate, an input unit formed on the first substrate having a slit for receiving an optical signal, a grating formed on the first substrate for producing a first light beam form the optical signal for outputting, and a second substrate covered on the top of the input unit and the grating, wherein the input unit and the grating are formed from a photo-resist layer by high energy light source exposure.05-09-2013
20130101253Compact wearable display - There is provided a wearable display comprising a light source emitting light of a first wavelength; a first SBG device having a front side and a rear side; first and second transparent plates sandwiching said SBG device; independently switchable transparent electrode elements applied to the opposing surfaces of said transparent plates, a means for spatio-temporally modulating light from the light source to provide image light and a means for coupling the image light into the light guide formed by the two transparent plates and the SBG device. The SBG device comprises a multiplicity of selectively switchable grating regions. The SBG device diffracts image into the pupil of an eye.04-25-2013
20100278483ATHERMAL AWG MODULE - An athermal AWG module 11-04-2010
20080199131Optical device having diffraction gratings coupling guided wave, and its manufacture method - An optical waveguide structure formed over a substrate defines an optical waveguide for guiding light along a direction parallel to the substrate surfaces, and biasing a light intensity distribution of transverse modes of guided wave toward a first side of the optical waveguide path. A main diffraction grating is disposed at least on a second side opposite to the first side, and coupled with the guided wave propagating along the optical waveguide. A subsidiary diffraction grating is disposed on the first side, and diffracts the guided wave coupled with the main diffraction grating and propagating along the optical waveguide, to a direction different from an extending direction of the optical waveguide.08-21-2008
20120275746Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers - An optical grating comprising a grating layer and two surface layers, the layers being arranged with the grating layer between the surface layers. The grating layer comprises a set of multiple, discrete, elongated first grating regions that comprise a first dielectric material and are arranged with intervening elongated second grating regions. The bulk refractive index of the dielectric material of the first grating regions is larger than the bulk refractive index of the second grating regions. The first surface layer comprises a first impedance matching layer, and the second surface layer comprises either (i) a second impedance matching layer or (ii) a reflective layer. Each said impedance matching layer is arranged to reduce reflection of an optical signal transmitted through the corresponding surface of the grating layer, relative to reflection of the optical signal in the absence of said impedance matching layer.11-01-2012
20120281950GRATING-BASED OPTICAL FIBER-TO-WAVEGUIDE INTERCONNECTS - Embodiments of the present invention are directed to optical waveguide-to-fiber interconnects. In one aspect, an optical fiber-to-waveguide interconnect includes a grating coupler (11-08-2012
20120281949Mach-Zehnder Wavelength Division Multiplexer Having Flat Passband and Low Crosstalk - A Mach-Zehnder wavelength division multiplexer (WDM) is provided. The WDM has a short length with flat passband and low crosstalk. Since passband is flattened, crosstalk is reduced and length of the WDM is shortened, the WDN can be used for optical communication and optical interconnection in a single chip.11-08-2012
20110286700Extension of steps in reflective optical gratings - An optical device includes a light-transmitting medium positioned on a base. The light-transmitting medium at least partially defines a free propagation region through which light signals travel. A reflective grating includes stepped reflecting surfaces positioned such that light signals that travel through the free propagation region are received by the reflecting surfaces. The reflecting surfaces are configured to reflect the light signal back into the free propagation region such that the light signals associated with different wavelengths separate as the light signals travel through the free propagation region. At least a portion of the reflecting surfaces each includes an overlapping region. Additionally, at least a portion of the reflecting surfaces each includes an overlapped region and un un-overlapped region. The reflecting grating is configured such that the light signals travel toward the overlapped regions and the un-overlapped regions before being reflected. The un-overlapped regions are positioned such that the un-overlapped regions receive the light signals but the overlapping regions are positioned between the overlapped region and the light signals so that the overlapping regions receive the light signals before the light signals can be received by the overlapped regions.11-24-2011
20120027350OPTICAL WAVEGUIDE COUPLING DEVICE AND ASSOCIATED METHODS - The present disclosure provides optical waveguide coupling devices and associated methods. In one example, an optical waveguide coupling device can comprise a dielectric grating coupler, a first optical waveguide attached to a first surface of the dielectric grating coupler, and a second optical waveguide attached to a second surface of the dielectric grating coupler. The second optical waveguide can be oriented opposed to the first optical waveguide allowing for communication therebetween via the sub-wavelength grating. Additionally, the dielectric grating coupler can comprise a first dielectric material; a sub-wavelength grating attached to the first dielectric material, the sub-wavelength grating having a higher refractive index than the first dielectric material; and a second dielectric material optically coupled to the sub-wavelength grating.02-02-2012
20120027349LENS - A lens is described which includes a substrate having a first side and an opposite second side. A first guided mode resonance grating is supported by the first side of the substrate and a second guided mode resonance grating is supported by the second side of the substrate. The second guided mode resonance grating can be offset from the first guided mode resonance grating. The second guided mode resonance grating can shape and reflect a wave front of an incident optical beam within the substrate towards the first guided mode resonance grating. The first guided mode resonance grating can redirect the reflected incident optical beam out of the second side of the substrate.02-02-2012
20120027348Optical Apparatus for Forming a Tunable Cavity - An optical apparatus includes an optical fiber formed of a core surrounded by cladding, in which the optical fiber includes an end portion. In addition, an optical layer composed of a material having a relatively high refractive index is positioned on the end portion, in which the optical layer includes a non-periodic sub-wavelength grating positioned in optical communication with the core.02-02-2012
20120027347GRATING COUPLED CONVERTER - A chip includes a grating coupler and an optoelectronic converter. The grating coupler is patterned to extract a first fraction of incident light and to transmit a second fraction of the incident light as an output optical signal from the chip. The optoelectronic converter receives the first fraction of the incident light from the grating coupler and produces an electrical signal from light received.02-02-2012
20130195404PLANAR OPTICAL BRANCHING CIRCUIT - Embodiments relate to a branching waveguide circuit where two or more waveguides branch from a main waveguide defining between them an intermediate region ranging from said main waveguide. The intermediate region comprises a plurality of holes of cladding material extending from the top of the core layer into intermediate material, said holes being arranged so that the depth of said holes increases away from said main waveguide with an average slope of the hole depth versus distance to main waveguide. This way, loss due to transition between the main and branching waveguides may be reduced.08-01-2013
20120093463FIBER BRAGG GRATING HYDROPHONE COMPRISING A DIAPHRAGM AMPLIFIER - A fiber Bragg grating hydrophone includes a fluid chamber (04-19-2012
20130209035OPTICAL DISPERSION COMPENSATION MODULE USING FIBER BRAGG GRATING WITH MULTIPLE DEGREES OF FREEDOM FOR THE OPTICAL FIELD - Systems and methods are disclosed for enhancing optical communication by performing dispersion compensation in an optical fiber using a fiber Bragg grating (FBG); and providing increased degrees of freedoms (DOFs) to distinguish forward and backward propagating fields with a passive component.08-15-2013
20130209036OPTICAL WAVEGUIDE AND ARRAYED WAVEGUIDE GRATING - An optical waveguide provided with a slab waveguide, which has a plurality of phase gratings arranged at a distance from each other in a direction substantially parallel to a light propagation direction and diffracting propagated light and a plurality of interference regions arranged alternately to the plurality of phase gratings in the direction substantially parallel to the light propagation direction and interfering the light diffracted by the plurality of phase gratings, and an arrayed waveguide whose end is connected to an end of the slab waveguide at a position of a constructive interference portion of a self-image formed by the plurality of phase gratings as an integrated phase grating.08-15-2013

Patent applications in class Grating