Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


TEMPORAL OPTICAL MODULATION WITHIN AN OPTICAL WAVEGUIDE

Subclass of:

385 - Optical waveguides

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
385002000 Electro-optic 303
Entries
DocumentTitleDate
20100021103WAVELENGTH BLOCKER - An object of the present invention is to provide a wavelength blocker having the function of adjusting or cutting off the light intensity of a wavelength division multiplexed (WDM) optical signal of a given wavelength. The wavelength blocker provided by the present invention has the following features. Specifically, the wavelength blocker has a structure configured to cut off light of any diffraction order other than required diffraction order, contained in an optical signal diffracted by an arrayed waveguide grating that demultiplexes a wavelength, and thus, the wavelength blocker has crosstalk characteristics or an extinction ratio superior to those of a conventional wavelength blocker and thus has optimum packaging design. Further, the wavelength blocker can become smaller in size than the conventional wavelength blocker, and enables achieving polarization independence and cost reduction.01-28-2010
20100080499CHANNELIZED DISPERSION COMPENSATION MODULE - There is disclosed an optical device for dispersion compensation of channels within a predetermined wavelength band, comprising: a waveguiding structure; and a grating structure formed in said waveguiding structure; characterized in that said grating structure has a Bragg frequency profile that is divided into contiguous periods, wherein the Bragg frequencies within each period vary between a lower Bragg frequency and an upper Bragg frequency, said lower and upper Bragg frequencies for each period both corresponding to wavelengths outside of said predetermined wavelength band.04-01-2010
20090123107TUNABLE OPTICAL GROUP DELAY BASED ON MICRORESONATOR STRUCTURES - This invention provides a tunable delay of an optical signal having multiple frequency components. The delay comprises at least a first and a second integrated resonators coupled sequentially to a waveguide; the resonators have angular resonant frequencies ω05-14-2009
20100119189OPTICAL DELAY LINE INTERFEROMETER - A demodulator is provided for a multilevel differential phase shift keyed signal, capable of eliminating polarization dependence due to birefringence and polarization coupling-induced light resulting from a waveguide structure, and also, polarization dependence due to dynamic birefringence produced at the time of driving a variable phase adjuster. The demodulator is configured of an optical delay line interferometer of a waveguide interference type. The S/N ratio of a demodulated signal in the demodulator formed by the optical delay line interferometer can be also improved. Further, both the polarization dependence and the temperature dependence of the optical delay line interferometer can be reduced. The disposition of a polarization converter and groves filled with a temperature compensation material makes it possible to provide a circuit configuration suitable for eliminating the polarization dependence and the temperature dependence of the optical delay line interferometer.05-13-2010
20100074570OPTICAL CIRCUIT - According to an aspect of an embodiment, an optical circuit comprising: at least two pairs of two input waveguides; a slab waveguide with one end coupled to two pairs or more of the two input waveguides; and four output waveguides coupled to another end of the slab waveguide; wherein a distance between two pairs of adjacent two input waveguides among two pairs or more of the two input waveguides is approximately four times as long as a distance between the two input waveguides.03-25-2010
20090169147APPARATUS, METHOD, AND COMPUTER PROGRAM PRODUCT FOR INTEGRATED INFLUENCER ELEMENT - An apparatus and method for an influencer structure. The apparatus includes a conductive element disposed in one or more radiation-propagating dielectric structures of a waveguide having a guiding region and one or more bounding regions, the conductive element responsive to an influencer signal to influence an amplitude-controlling property of the waveguide; and a coupling system for communicating the influencer signal to the conductive element. A method of operating an influencer includes: a) communicating an influencer signal to a conductive element disposed in one or more radiation-propagating dielectric structures of a waveguide having a guiding region and one or more bounding regions; and b) influencing, responsive to the influencer signal, an amplitude-controlling property of the waveguide.07-02-2009
20090232438LOW-SPECKLE LIGHT SOURCE DEVICE - A laser light source device which can inexpensively achieve a visually recognizable level of speckle reduction is disclosed. The laser light source device includes: a laser module including a light source and a first optical waveguide, wherein light emitted from the light source is outputted from an output end of the first optical waveguide; a second optical waveguide connected to the first optical waveguide, wherein the light outputted from the output end of the first optical waveguide is inputted to an input end of the second optical waveguide and guided through the second optical waveguide; and an intensity modulation unit disposed in the vicinity of the second optical waveguide, the intensity modulation unit applying intensity modulation to the second optical waveguide, wherein a core diameter at the input end of the second optical waveguide is larger than a core diameter at the output end of the first optical waveguide.09-17-2009
20100247022DUAL-LAYER THERMALLY TUNED OPTICAL DEVICE - Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented using two semiconductor layers (such as silicon), one of which includes a heater and the other includes a thermally tunable optical waveguide. Spatially separating these two functions in the optical device results in more efficient heat transfer between the heater and the optical waveguide, reduced heat transfer to the surroundings, and reduced optical losses in the optical waveguide relative to existing silicon-based optical devices.09-30-2010
20120189238UNBALANCED MACH-ZEHNDER INTERFEROMETER AND MODULATOR BASED THEREUPON - There are provided an unbalanced Mach-Zehnder interferometer and a modulator based thereupon. The interferometer comprises a loop comprising a plurality of cascaded segments of polarization-maintaining fibers, into which an input signal is split such that two light portions of the split signal propagate concurrently in mutually opposite directions along the loop; and a first optical arrangement between a first and a second segment of the loop for rearranging the axes of propagation of the two light portions such that, on at least a one segment, the two light portions propagate along mutually orthogonal polarization axes of the polarization-maintaining fiber. The light portions are then recombined to mutually interfere. Birefringence of the segment(s) where the light portions propagate on mutually orthogonal polarization axes then provides a differential path length of the interferometer. An unbalanced Mach-Zehnder modulator is obtained by inserting a phase modulator within the loop.07-26-2012
20110293215LOW LOSS LASER TRANSMISSION THROUGH TELESCOPES WITH MIRROR OBSCURATIONS - The invention provides micro-optical and fiber based solutions to the problem of reflective telescopes with secondary or tertiary obscurations, and further, it ameliorates secondary or tertiary obscurations in compact reflective fiber-coupled telescopes configured as optical transmitters. One solution uses a custom hollow optical fiber and lens system to generate an annular beam that would not be obscured by the telescope secondary obscuration. Another solution uses a fiber coupled micro-axicon lens assembly to achieve the same result.12-01-2011
20100008616CHIRAL FIBER POLARIZER - An chiral optical fiber polarizer is provided that is capable of being fabricated in-line along a conventional polarization maintaining fiber, preferably one which includes at least one structure element that is external, and parallel, to the fiber's core. The novel chiral fiber polarizer is preferably positioned between two unmodified optical fiber portions, and includes a modified central portion with altered fiber cladding interface elements on each side thereof. The modified central portion is of a non-circular cross section, and comprises at least one diameter reduced sub-section operable to allow a light signal of said predefined operation wavelength to propagate substantially in the core and in the at least one external structure element, at least one diameter expanded sub-section operable to allow a light signal to propagate substantially in the core, each sub-section being produced in accordance with a corresponding predefined diameter reduction and expansion profile, where the modified central portion is further configured in accordance with at least one helical pitch profile that is operable to, upon receiving a light signal with a first and second linear polarization components: convert the first linear polarization component to a first elliptical polarization component while scattering the first elliptical polarization component, and convert the second linear polarization component to a second elliptical polarization component, transmit therethrough, and convert back to the second linear polarization component prior to exit therefrom. The inventive polarizer also substantially eliminates the possibility of an undesirable SBS effect.01-14-2010
20100054653SALICIDE STRUCTURES FOR HEAT-INFLUENCED SEMICONDUCTOR APPLICATIONS - A salicide heater structure for use in thermo-optic and other heat-influenced semiconductor devices is disclosed. In one example embodiment, a system is provided that includes a silicon substrate, and a salicide heating element formed on the substrate, for delivering heat radiation to a heat-influenced semiconductor device. Another example embodiment is a salicide semiconductor system that includes a silicon substrate and a salicide structure formed on the substrate, wherein the salicide structure is for delivering heat radiation to a heat-influenced semiconductor device.03-04-2010
20090022443Thermo-Optic Devices Providing Thermal Recirculation - Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.01-22-2009
20120237153MONOLITHIC PHOTONIC INTEGRATED CIRCUIT - An optical device includes a waveguide slab, first and second input port couplers, and first and second output port couplers located over a planar optical substrate. The waveguide slab has a plane of symmetry. The first and second input port couplers extend from the waveguide slab and have an input coupler pair axis located about midway between the first and second input port couplers. The input coupler pair axis is offset at a nonzero first distance from the plane of symmetry. The first and second output port couplers extend from the waveguide slab and have an output coupler pair axis located about midway between the first and second output port couplers. The output coupler pair axis is offset at a different nonzero second distance from the plane of symmetry.09-20-2012
20100111461THERMO-OPTICAL PHASE SHIFTER - Provided is a thermo-optical phase shifter including a composite body having an optical waveguide formed by a core and a clad and having a ratio Δ of a difference between a core refractivity and a clad refractivity against the core refractivity which is 4% or above and a heater attached to the optical waveguide. The composite body has: a bridge structure portion arranged along a substrate surface and separate from the substrate surface via a void; and a fixed portion which supports the bridge structure portion with respect to the substrate and is continuous to the both ends of the bridge structure portion. The bridge structure has a half-circle-arc shape in the plane along the surface of the substrate.05-06-2010
20090003753METHOD FOR GENERATING A LINEAR SINGLE POLARIZATION OUTPUT BEAM - A method for generating a linear single-polarization output beam comprises providing an optically active linearly birefringent and linearly dichroic fiber for propagating light and having a single polarization wavelength range and a gain bandwidth; optically pumping the optically active linearly birefringent and linearly dichroic fiber for obtaining fluorescence within the gain bandwidth; and aligning the single-polarization wavelength range to overlap a desired spectral region of the gain profile.01-01-2009
20120087613THERMALLY CONTROLLED SEMICONDUCTOR OPTICAL WAVEGUIDE - An apparatus includes a conductive or semiconductive substrate and a dielectric layer located directly thereon. A semiconductor layer is located directly on the dielectric layer. The semiconductor layer includes a ridge waveguide and a heater strip extending parallel to the ridge waveguide. The heater strip is electrically isolated from the ridge waveguide and is doped to carry a current therein about parallel to the ridge waveguide.04-12-2012
20110222812Dopant Profile Control For High Speed Silicon-Based Optical Modulators - A high speed silicon-based optical modulator with control of the dopant profiles in the body and gate regions of the device reduces the series resistance of the structure without incurring substantial optical power loss. That is, the use of increased dopant values in areas beyond the active region will allow for the series resistance to be reduced (and thus increase the modulating speed of the device) without incurring too large a penalty in signal loss. The dopant profiles within the gate and body regions are tailored to exhibit an intermediate value between the high dopant concentration in the contact areas and the low dopant concentration in the carrier integration window area.09-15-2011
20090003754SILICON STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A silicon structure includes a silicon substrate; and an on-substrate structure including a silicon compound film and formed on said silicon substrate. At least one removal section removed through anisotropic etching and at least one supporting column left through the anisotropic etching to support said on-substrate structure are provided for a direct lower portion of said silicon substrate directly beneath said on-substrate structure.01-01-2009
20080260319OPTICAL FIBER DELIVERY SYSTEM FOR DELIVERING ULTRASHORT OPTICAL PULSES AND OPTICAL SYSTEM INCLUDING THE SAME - An optical fiber delivery system for delivering ultrashort optical pulses that can efficiently transmit high peak power, ultrashort optical pulses from an optical pulse source to a desired position in an optical apparatus is provided. An optical system including such an optical fiber delivery system is also provided. The optical fiber delivery system includes light waveguide means 10-23-2008
20120195543FIBER-OPTIC MODULATORS - This disclosure is directed to fiber-optic modulators that can be integrated in optical fibers to encode data in optical signals. In one aspect, a fiber-optic modulator includes a weak planar, sub-wavelength grating disposed between an end of a first optical fiber and an end of a second optical fiber. A first electrode is disposed on an edge of the grating and connected to an electronic signal source, and a second electrode is disposed on the edge of the grating opposite the first electrode and connected to the electronic signal source. The grating includes a grating pattern to reflect a channel input to the first optical fiber when a low or no current portion of an electronic signal to be generated by the electronic signal source is applied to the grating and to transmit the channel when a high current portion of the electronic signal is applied to the grating.08-02-2012
20130216175DUAL POLARIZATION QUADRATURE PHASE SHIFT KEYING OPTICAL MODULATOR - A DP QPSK optical modulator includes an input port; an optical branching unit; an optical modulation unit having first through fourth Mach-Zehnder interferometers; a first phase-change unit connected to the third Mach-Zehnder interferometer; a second phase-change unit connected to the fourth Mach-Zehnder interferometer; an optical multiplexer; and a multimode interference coupler including a multimode interference waveguide, first through third input ports, and an output port having a taper-shaped waveguide. The first Mach-Zehnder interferometer is connected to the first input port. One end of the optical multiplexer is connected to the second Mach-Zehnder interferometer and the third Mach-Zehnder interferometer via the first phase change unit. The other end of the optical multiplexer is connected to the second input port. The fourth Mach-Zehnder interferometer is connected to the third input port via the second phase-change unit.08-22-2013
20100209038HITLESS TUNING AND SWITCHING OF OPTICAL RESONATOR AMPLITUDE AND PHASE RESPONSES - A hitless tunable filter may include a ring resonator, a Mach-Zehnder coupler, and first and second phase shifters. The Mach-Zehnder coupler may include a switching arm that is coupled to the ring resonator at first and second coupling points. The first phase shifter may be used to introduce a first phase shift to light propagating through the ring resonator, while the second phase shifter may be used to introduce a second phase shift to light propagating through the Mach-Zehnder coupler. The Mach-Zehnder coupler may have a free spectral range substantially equal to a free spectral range of the ring resonator divided by a non-negative integer.08-19-2010
20100209039METHOD AND APPARATUS FOR COMPENSATING POLARIZATION-DEPENDENT FREQUENCY SHIFTS IN OPTICAL WAVEGUIDES - The invention relates to a method and to an apparatus for compensating the polarization-dependent shift of the center frequency in an optical filter comprising an interferometer by way of compensating the birefringence in at least one waveguide of the interferometer, wherein at least one half-wave plate is arranged into the optical path of the interferometer and at least a section of the waveguide (08-19-2010
20100296765Method and Device For Suppressing Cross-Coupling Component in Multimode Fibers - A laser system includes a multimode fiber (MMF) receiving a single-mode input beam and a mechanical oscillator coupled to the MMF. The oscillator is operative to modulate a phase of interference wave by periodically extending the fiber total length at such a frequency that a cross-coupling coefficient between fundamental and at least one high-order modes is substantially minimized.11-25-2010
20110243490WAVEGUIDE COUPLER FOR OPTICAL TRANSVERSE-MODE MULTIPLEXING - An optical coupler for coupling a multimode waveguide and two or more other waveguides. In one embodiment, the optical coupler has an optical phase mask disposed between the multimode waveguide and two or more other waveguides. The optical phase mask imposes on the light passing therethrough a spatial phase pattern that causes selective mode-to-waveguide coupling between the multimode waveguide and the other waveguides. The optical coupler can be used, e.g., in transmitters and receivers of optical transverse-mode-multiplexed signals.10-06-2011
20090202189Optical control element - There is provided an optical control element in which non-guided light is prevented from entering into an optical waveguide and which is excellent in optical properties, such as optical modulation properties.08-13-2009
20100014799Optical structures including nanocrystals - An optical structure can include a nanocrystal on a surface of an optical waveguide in a manner to couple the nanocrystal to the optical field of light propagating through the optical waveguide to generate an emission from the nanocrystal.01-21-2010
20110249932SILICON INTEGRATED PHOTONIC OPTICAL PARAMETRIC AMPLIFIER OSCILLATOR AND WAVELENGTH CONVERTER - The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.10-13-2011
20100260452OPTICAL CIRCUIT DEVICE AND METHOD - Techniques are generally disclosed for optical devices that may be used to implement a variety of logic devices or other circuits by optical means. Example optical devices use a photodiode to alter the charge carrier concentration in a waveguide, thereby altering the index of refraction of the waveguide. The photodiode may be driven by an optical signal, which may be coupled to the photodiode through an optical waveguide. The optical signal may be configured to control the phase of coherent light coupled through the waveguide. A variety of logic devices and other circuits may be implemented by allowing the light coupled through the waveguide to constructively or destructively interfere with other coherent light.10-14-2010
20090022444THERMO-OPTIC DEVICES PROVIDING THERMAL RECIRCULATION - Thermo-optical devices providing heater recirculation in an integrated optical device are described. The thermo-optical devices include at least one waveguide having a non-linear path length in thermal communication with a thermal device. Methods of fabrication and use are also disclosed.01-22-2009
20110019955TUNABLE OPTICAL GROUP DELAY - This invention provides a balanced thermal approach to the tuning of an optical time delay device in order to eliminate any long-term time response of the device performance due to thermal time constants of the device, its mount, packaging or electronic temperature control circuits. The invention provides multiple ways to improve the thermal tuning speed of the balanced thermal approach. Additionally, the invention overcomes an issue of microresonator non-uniformity by operating a large group of microresonators as a ‘super-ring’ by tuning the large group together to provide a controllable group delay with large bandwidth.01-27-2011
20120148182POLARIZATION MODULATION DEVICE AND LASER SYSTEM FOR WIDEBAND LASER - A polarization modulation device for wideband laser comprises a first polarization maintaining optical fiber, a second polarization maintaining optical fiber, and a non-polarization maintaining optical fiber. The non-polarization maintaining optical fiber includes a first polarization controller coupled with the first polarization maintaining optical fiber, and a second polarization controller coupled with the second polarization maintaining optical fiber.06-14-2012
20120045161SEMICONDUCTOR OPTICAL MODULATION DEVICE - A temperature control module and a support block are mounted on a metal stem. A dielectric substrate is mounted on a side surface of the support block. A support block is mounted on a cooling surface of the temperature control module. A dielectric substrate is mounted on a side surface of the support block. A semiconductor optical modulation element is mounted on the dielectric substrate. A lead pin and a signal line are connected through a bonding wire. The signal line and a signal conductor are connected through a bonding wire. The signal conductor and the semiconductor optical modulation element are connected through a bonding wire.02-23-2012
20120045160DISPERSION MEASUREMENT APPARATUS - A dispersion measurement apparatus includes: a pulse generator to output optical pulses including an optical pulse with a first wavelength and an optical pulse with a second wavelength to an optical transmission path, the second wavelength being different from the first wavelength; a reception pulse analyzer including an optical receiver that receives the optical pulses output by the pulse generator, and an analyzer that performs a wavelet transform on an electrical pulse output through the reception performed by the optical receiver; and a calculator to detect, based on a result of the wavelet transform, a time difference between the optical pulse with the first wavelength and the optical pulse with the second wavelength, and to determine dispersion in the optical transmission path.02-23-2012
20120014636WAVEGUIDE-TYPE OPTICAL CIRCUIT - A waveguide-type optical circuit comprises an optical coupler being an optical branch coupler constructed from waveguide cores which are closely arranged each other, and dummy patterns that lay along sides of the waveguide cores in the optical coupler for preventing optical major axes of the waveguide cores from inclining.01-19-2012
20110103733NANOMECHANICAL PHOTONIC DEVICES - The present invention relates to devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters. The waveguide can also comprise a gap such that two cantilever bridges are formed.05-05-2011
20120121216Polymer Optical Waveguide Current Sensor - Provided is an integrated optical current sensor for measuring the magnitude of current. The integrated optical current sensor is fabricated by integrating optical elements, such as a thermo-optic phase modulator, a waveguide polarizer and an optical coupler, on a single substrate. As compared to the known current sensors using optical fibers, the integrated optical current sensor is more compact and enables measurement of current with higher reliability. Provided also is a method for producing current sensor chips in a large scale by using a process for fabricating integrated optical elements.05-17-2012
20100247021OPTICAL DEVICE WITH LARGE THERMAL IMPEDANCE - Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented on a substrate (such as silicon), and includes a thermally tunable optical waveguide that has good thermal isolation from its surroundings. In particular, a portion of a semiconductor in the optical device, which includes the optical waveguide, is free standing above a gap between the semiconductor layer and the substrate. By reducing the thermal coupling between the optical waveguide and the external environment, the optical device can be thermally tuned with significantly less power consumption.09-30-2010
20120237154OPTICAL HYBRID CIRCUIT AND OPTICAL RECEIVER - An optical hybrid circuit includes: a first optical coupler including a first input channel, a second input channel, a first output channel, and a second output channel; a second optical coupler including a third input channel, a fourth input channel, a third output channel, and a fourth output channel; a third optical coupler including a fifth input channel, a sixth input channel, a fifth output channel, and a sixth output channel; a fourth optical coupler including a seventh input channel, an eighth input channel, a seventh output channel, and an eighth output channel; a fifth optical coupler including a ninth input channel, a tenth input channel, a ninth output channel, and a tenth output channel, the ninth input channel coupled to the first output channel; and a sixth optical coupler including an eleventh input channel, a twelfth input channel, an eleventh output channel, and a twelfth output channel.09-20-2012
20120177318WAVEGUIDE ELECTRO-ABSORPTION MODULATOR - During operation of an electro-absorption modulator, an optical signal is conveyed, using an optical waveguide in the electro-absorption modulator, to a semiconductor layer that substantially fills a gap between two portions of the optical waveguide. Then, the optical signal is electro-absorption modulated by selectively applying a voltage to electrodes that produces an electric field, approximately perpendicular to the midline of the optical waveguide, in the semiconductor layer. These electrodes are coupled to the edges of the semiconductor layer at the periphery along the width of the semiconductor layer by intervening layers. Furthermore, the intervening layers include a material that has a lower index of refraction than the semiconductor layer, and a lower optical absorption than the electrodes.07-12-2012
20100266232ELECTRO-OPTIC MODULATION - A silicon electro-optic waveguide modulator is formed using a metal-oxide-semiconductor (MOS) configuration. Various embodiments are described using different modes of operation of the MOS diode and gate oxide thicknesses. In one example, a high-speed submicron waveguide active device is formed using silicon-on-insulator. A micro-ring resonator intensity-modulator exhibits switching times on the order of tens of pS with modulation depth of 73% with a bias voltage of 5 volts.10-21-2010
20090290827NONLINEAR OPTICAL LOOP MIRRORS - There are disclosed a nonlinear optical loop mirror. The nonlinear optical loop mirror comprises: an optical coupler which includes a first optical path and a second optical path coupled to each other; and a loop optical path configured to connect the first and second optical paths, wherein the loop optical path is provided with a nonlinear element configured to vary a wavelength of an optical signal and a linear element configured to produce a wavelength dependent time delay for an optical signal. The nonlinear optical loop mirror may function as a delay interferometer for demodulating a differential phase-shift-keying (DPSK) signal.11-26-2009
20100086251PRODUCTION OF OPTICAL PULSES AT A DESIRED WAVELENGTH USING SOLITION SELF-FREQUENCY SHIFT IN HIGHER-ORDER-MODE FIBER - The present invention relates to an apparatus for producing optical pulses of a desired wavelength. The apparatus includes an optical pulse source operable to generate input optical pulses at a first wavelength. The apparatus further includes a higher-order-mode (HOM) fiber module operable to receive the input optical pulses at the first wavelength, and thereafter to produce output optical pulses at the desired wavelength by soliton self-frequency shift (SSFS). The present invention also relates to a method of producing optical pulses having a desired wavelength. This method includes generating input optical pulses using an optical pulse source, where the input optical pulses have a first wavelength and a first spatial mode. The input optical pulses are delivered into an HOM fiber module to alter the wavelength of the input optical pulses from the first wavelength to a desired wavelength by soliton self-frequency shift (SSFS) within the HOM fiber module, thereby producing output optical pulses having the desired wavelength.04-08-2010
20120251028Polarization-Alternating Optical Signal Generation using CSRZ Modulation - A method for optical chirp-free optical polarization modulation includes dividing a data modulated optical signal into a first optical path and a second optical path, using a Mach-Zehnder intensity modulator in the first optical path for imparting a π phase difference between adjacent symbols of the data modulated optical signal in the first optical path, adjusting a delay and amplitude of symbols of the data modulated optical signal in the second path so that the symbols in the first path and the symbols in the second path are synchronized and have substantially equal power levels, and combining the first and second optical paths so that symbols from the first and second optical paths are in orthogonal polarizations.10-04-2012
20130094796APPARATUS AND METHODS FOR PRODUCING AND/OR PROVIDING RECIRCULATING OPTICAL DELAY(S) - Exemplary apparatus and method can be availed for providing at least one electromagnetic radiation. For example, it is possible to provide at least one first electromagnetic radiation having a frequency that changes over time with a first characteristic period. Further, with at least one hardware arrangement, it is possible to receive and modify the first electromagnetic radiation(s) into at least one second electromagnetic radiation having a frequency that changes over time with a second characteristic period. The second characteristic period can be smaller than the first characteristic period. The hardware arrangement(s) can include a resonant cavity having a round-trip propagation time for the first electromagnetic radiation(s) that can be approximately the same as the first characteristic period.04-18-2013
20130101247OPTICAL MODULATOR INCLUDING GRAPHENE - An optical modulator includes a first graphene and a second graphene on an upper surface of a semiconductor layer, a first electrode on the first graphene, and a second electrode on the second graphene. Respective side surfaces of the first graphene and the second graphene are separated from each other. A first ridge portion of the semiconductor layer and a second ridge portion on the second graphene constitute an optical waveguide, and the first and second graphenes are on a center portion of the optical waveguide in a vertical direction to the semiconductor.04-25-2013
20120281942PLANAR LIGHTWAVE CIRCUIT AND PRODUCTION METHOD FOR PLANAR LIGHTWAVE CIRCUIT - A planar lightwave circuit according to the present invention includes at least two interferometers each of which includes a plurality of optical waveguides, and dummy patterns that are provided on both sides of each of the optical waveguides of an interferometer, having an optical waveguide density lower than the highest optical waveguide density, of the interferometers. The optical waveguide density of an interferometer A11-08-2012
20120020608Plasmonic Element With Waveguide Trapping - Various plasmonic elements with waveguide trapping are provided. In one embodiment, a plasmonic element includes a waveguide layer including a first surface through which incident light enters the waveguide layer. The waveguide layer includes a medium and an array of plasmonic structures disposed within the medium. The medium has dielectric properties. The resonant frequency of the plasmonic structures is responsive to the dielectric properties of the medium. The plasmonic element is configured to trap incident light scattered by the plasmonic structures in a waveguide mode.01-26-2012
20120020607Optical waveguide device - An optical waveguide device having multiple functions or high performance, to improve the productivity of products, and to provide an optical waveguide device capable of suppressing deterioration of an operating characteristic of the optical waveguide device, including a thin plate 01-26-2012
20120093454Planar waveguide faraday rotator - A planar core and a cladding disposed on opposite sides of thereof. In the best mode, the rotator includes a very low Numerical Aperture (NA) planar waveguide. The cladding is birefringent and the refractive index and birefringence thereof are optimized to provide equal mode propagation velocities for both TE and TM modes for at least one transverse mode. The refractive index and birefringence of the cladding are optimized to provide equal mode propagation velocities for both TE and TM modes for a wide range of transverse modes.04-19-2012

Patent applications in class TEMPORAL OPTICAL MODULATION WITHIN AN OPTICAL WAVEGUIDE

Patent applications in all subclasses TEMPORAL OPTICAL MODULATION WITHIN AN OPTICAL WAVEGUIDE