Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


DIRECTIVE CIRCUITS FOR MICROPHONES

Subclass of:

381 - Electrical audio signal processing systems and devices

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20130044894SYSTEM AND METHOD FOR EFFICIENT SOUND PRODUCTION USING DIRECTIONAL ENHANCEMENT - A system and method for generating virtual microphone signals having a particular number and configuration for channel playback from an intermediate set of signals that were recorded in an initial format that is different from the channel playback format. In one embodiment, an initial set of intermediate are Bark-banded such that each intermediate signal may lead to a corresponding power spectral density (PSD) signal representative of the initial intermediate signal. Further, one may generate cross-correlations signals for each pair of intermediate signals. Next, from the PSDs and cross correlations, one may more efficiently calculate corresponding channel signals to be used for playback on respective channel speakers. Thus, the PSDs of each channel signal may be generated at chosen angles (as well as other design factors). Further, each channel signal may also be further modified with a corresponding cancellation signal that further enhances the resultant signal in each channel.02-21-2013
20130028439INPUT DEVICE, SIGNAL PROCESSING METHOD, PROGRAM, AND RECORDING MEDIUM - There is provided an input device including at least two microphones placed at different positions on a chassis to face different directions on one of space axes, a low-frequency bandwidth extracting part for extracting a low-frequency bandwidth signal from a signal input from the microphones, a phase difference calculating part for calculating a phase difference using the low-frequency bandwidth signal extracted by the low-frequency bandwidth extracting part; and a control signal generating part for generating a control signal based on the phase difference calculated by the phase difference calculating part.01-31-2013
20120163624Directional sound source filtering apparatus using microphone array and control method thereof - A directional sound source filtering apparatus using a microphone array and a control method thereof are provided. The directional sound source filtering apparatus using a microphone array includes an image detector to detect images in a destination area, a sound collector located by the microphone array in which microphones are arranged to detect sound sources together with the images detected by the image detector. The apparatus includes a controller to precalculate time delay values of sound sources within the images in order to extract sound sources within the image from the sound sources detected by the sound collector, and perform beamforming through the calculated time delay values. Sound source signals only within images may be selectively amplified using beamformers.06-28-2012
20090238377SPEECH ENHANCEMENT USING MULTIPLE MICROPHONES ON MULTIPLE DEVICES - Signal processing solutions take advantage of microphones located on different devices and improve the quality of transmitted voice signals in a communication system. With usage of various devices such as Bluetooth headsets, wired headsets and the like in conjunction with mobile handsets, multiple microphones located on different devices are exploited for improving performance and/or voice quality in a communication system. Audio signals are recorded by microphones on different devices and processed to produce various benefits, such as improved voice quality, background noise reduction, voice activity detection and the like.09-24-2009
20130044893System and method for muting audio associated with a source - In one embodiment, a method includes receiving audio at a plurality of microphones, identifying a sound source to be muted, processing the audio to remove sound received from the sound source at each of the microphones, and transmitting the processed audio. An apparatus is also disclosed.02-21-2013
20100092007Dynamic Switching of Microphone Inputs for Identification of a Direction of a Source of Speech Sounds - This disclosure describes techniques of automatically identifying a direction of a speech source relative to an array of directional microphones using audio streams from some or all of the directional microphones. Whether the direction of the speech source is identified using audio streams from some of the directional microphones or from all of the directional microphones depends on whether using audio streams from a subgroup of the directional microphones or using audio streams from all of the directional microphones is more likely to correctly identify the direction of the speech source. Switching between using audio streams from some of the directional microphones and using audio streams from all of the directional microphones may occur automatically to best identify the direction of the speech source. A display screen at a remote venue may then display images having angles of view that are centered generally in the direction of the speech source.04-15-2010
20100158268TOROID MICROPHONE APPARATUS - A video teleconferencing directional microphone includes two microphone elements arranged coincidentally on a vertical axis. The two microphone elements are placed on a supporting surface so that a first microphone element is on the surface, and the second microphone elements are elevated above the supporting surface. The directional microphone also includes filters, an adder assembly, and an equalizer, which are used to shape the directivity pattern of the directional microphone into a toroid sensitivity pattern. The toroid sensitivity pattern increases sensitivity in the direction of a sound source of interest, while simultaneously reduces sensitivity to any sound waves generated by noise sources from certain elevation angles.06-24-2010
20100046770SYSTEMS, METHODS, AND APPARATUS FOR DETECTION OF UNCORRELATED COMPONENT - Detection of an uncorrelated component in a multi-channel acoustic signal is disclosed. In one example, the detection is based on a relation between (A) a difference in energy between two channels of the signal and (B) a threshold value that is based on an estimate of background energy of the acoustic signal.02-25-2010
20130034241METHODS AND APPARATUSES FOR MULTIPLE CONFIGURATIONS OF BEAMFORMING MICROPHONE ARRAYS - Embodiments include methods and apparatuses for sensing acoustic waves for a conferencing application. A conferencing apparatus includes a plurality of directional microphones oriented to cover a corresponding plurality of direction vectors and disposed in a housing. An orientation sensor is configured to generate an orientation signal indicative of an orientation of the housing. A processor is operably coupled to the plurality of directional microphones and the orientation sensor. The processor is configured to automatically adjust a signal processing characteristic of one or more directional microphones of the plurality of directional microphones responsive to the orientation signal.02-07-2013
20090190777MICROPHONE ARRANGEMENT HAVING MORE THAN ONE PRESSURE GRADIENT TRANSDUCER - A microphone arrangement includes multiple pressure gradient transducers having an acoustic center, a first sound inlet opening leading to a front of a diaphragm, and a second sound inlet opening leading the back of the diaphragm. A directional characteristic of the pressure gradient transducers includes an omni portion and a figure-eight portion. The pressure gradient transducers have a direction of maximum sensitivity in a main direction. Each main direction of the pressure gradient transducers is inclined. The acoustic center of a pressure transducer and the pressure gradient transducers are positioned within an imaginary sphere having a radius that corresponds to double the largest dimension of the diaphragm of one of the transducers.07-30-2009
20100322436ARRAY MICROPHONE SYSTEM INCLUDING OMNI-DIRECTIONAL MICROPHONES TO RECEIVE SOUND IN CONE-SHAPED BEAM - An array microphone system includes a first omni-directional microphone, a second omni-directional microphone, a gain control, and a beam former. The first omni-directional microphone faces a first direction. The second omni-directional microphone faces a second direction opposing the first direction. When receiving sound, the first omni-directional microphone and the second omni-directional microphone respectively generate a first signal and a second signal. The gain control amplifies the second signal to transform into a third signal, wherein strength of the third signal is equal to that of the first signal when the sound comes from the first direction. The beam former separates an in-beam sound signal and an out-beam sound signal from the first signal and the third signal.12-23-2010
20080260178AUDIO SIGNAL TRANSMISSION/RECEPTION DEVICE AND MICROPHONE APPARATUS THEREOF - An audio signal transmission/reception device includes a speaker array having a plurality of linearly arranged speaker units and a microphone apparatus having a microphone array having a plurality of linearly arranged microphone units. Some of the microphone units are aligned with equal spacing corresponding to a prescribed distance therebetween in a high-density alignment section, which is set symmetrical to an alignment origin corresponding to a center point of linear alignment. The remaining microphone units are aligned in a low-density alignment section externally of the high-density alignment section in such a way that the spacing therebetween is progressively widened integer times larger than the prescribed distance. Manufacturing costs can be reduced by reducing the total number of the microphone units, and it is possible to improve sound reception directivity with respect to both high and low frequency bands.10-23-2008
20130083944APPARATUS - An apparatus comprising at least one processor and at least one memory including computer program code the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform determining a change of position of the apparatus, and processing at least one audio signal dependent on the change in position.04-04-2013
20130083943Processing Signals - Method, device and computer program product for processing signals at the device. Signals are received, over a range of angles, at a plurality of sensors of the device, the received signals including an interfering signal received from an interfering source location. An interference delay pattern between receipt of signals at the sensors corresponding to receipt of a signal from the interfering source location is determined. A plurality of regularization signals having a delay pattern matching the determined interference delay pattern are generated. The generated regularization signals are used to determine beamformer coefficients to be applied by a beamformer, and the beamformer applies the determined beamformer coefficients to the signals received by the plurality of sensors, thereby generating a beamformer output.04-04-2013
20130083942Processing Signals - Beamformer coefficients may include a plurality of sets of theoretical statistical data for theoretical signals. Each theoretical signal may have its own particular attributes. The statistical data may be used in computing beamformer coefficients for application by a beamformer to signals received at a device. Signals are received at an input of the device. A respective plurality of weights is determined, for the theoretical statistical data sets, based on an analysis of the extent to which the signals have the particular attributes of the theoretical signals. The theoretical statistical data sets are retrieved, and a statistical data set is calculated for the signals by performing a weighted sum of the theoretical statistical data sets using the determined respective plurality of weights. Beamformer coefficients are computed based on the calculated statistical data set for the signals, which are used by a beamformer to the signals for generating a beamformer output.04-04-2013
20130089218AUDIO EQUIPMENT AND OSCILLATION UNIT - A mobile phone (04-11-2013
20130051577ARRAY MICROPHONE APPARATUS FOR GENERATING A BEAM FORMING SIGNAL AND BEAM FORMING METHOD THEREOF - Embodiments described in the present disclosure relate to an array microphone apparatus for generating a beam forming signal. The apparatus includes first, second, and third omni-directional microphones, each converting an audible signal into a corresponding electrical signal. The second omni-directional microphone is disposed between the other two omni-directional microphones. The apparatus includes a first directional microphone forming device to jointly output a first directional microphone signal with a first bi-directional pattern, and a magnitude and phase response handler device to output a second directional microphone signal with an omni-directional pattern shifted by a prefixed value with respect to first directional microphone signal. The apparatus further includes a combining device receiving the first and second directional microphone signals and outputting a combined directional microphone signal with a combined beam pattern correlated to the first bi-directional and second omni-directional patterns, the combined directional microphone signal being in a broadside configuration.02-28-2013
20130070938NOISE CANCELLING DEVICE - A noise cancelling device includes an extracting unit configured to extract a first noise from a signal, the signal being based on an input audio signal, a storing unit configured to store noise characteristic information on a second noise, the second noise remaining after subtracting the extracted first noise from the signal based on the audio signal. And the device further includes a cancelling unit configured to perform cancelling processing for cancelling a noise on the input audio signal based on the first noise and the noise characteristic information on the second noise.03-21-2013
20110058683METHOD & APPARATUS FOR SELECTING A MICROPHONE IN A MICROPHONE ARRAY - A mobile robotic device includes a microphone array for detecting sound energy in its immediate environment. The sound energy received by each microphone in the microphone array is digitized, sampled and quantified. The quantified sound energy is used to calculate a sound energy difference factor between neighboring microphones in the array, the sound energy difference factors calculated over time are counted to be greater than or lesser than a nominal value and the counts are used to calculate a series of two-dimensional sound energy factors. The output of the microphone with the two highest calculated two-dimensional energy factors is then selected for processing and transmission over a network to be played at a far-end location.03-10-2011
20090279714APPARATUS AND METHOD FOR LOCALIZING SOUND SOURCE IN ROBOT - An apparatus and method for localizing a sound source in a robot are provided. The apparatus includes a microphone unit implemented by one or more microphones, which picks up a sound from a three-dimensional space. The apparatus also includes a sound source localizer for determining a position of the sound source in accordance with Time-Difference of Arrivals (TDOAs) and a highest power of the sound picked up by the microphone unit. Thus, the robot can rapidly and accurately localize the sound source in the three-dimensional space with minimum dead space, using a minimum number of microphones.11-12-2009
20090268925MICROPHONE ARRANGEMENT - A microphone arrangement includes multiple pressure gradient transducers having a diaphragm, a first sound inlet opening, and a second sound inlet opening. A directional characteristic of each of the pressure gradient transducers have a direction of maximum sensitivity in main directions. The main directions of the pressure gradient transducers are inclined. A pressure transducer has an acoustic center lying within an imaginary sphere with multiple acoustic centers of the pressure gradient transducer. The imaginary sphere has a radius corresponding to about double the largest dimension of the diaphragms of the pressure gradient transducers and the pressure transducer.10-29-2009
20120224715Noise Adaptive Beamforming for Microphone Arrays - The subject disclosure is directed towards a noise adaptive beamformer that dynamically selects between microphone array channels, based upon noise energy floor levels that are measured when no actual signal (e.g., no speech) is present. When speech (or a similar desired signal) is detected, the beamformer selects which microphone signal to use in signal processing, e.g., corresponding to the lowest noise channel. Multiple channels may be selected, with their signals combined. The beamformer transitions back to the noise measurement phase when the actual signal is no longer detected, so that the beamformer dynamically adapts as noise levels change, including on a per-microphone basis, to account for microphone hardware differences, changing noise sources, and individual microphone deterioration.09-06-2012
20120224714Host mode for an audio conference phone - A system and method for receiving sound from a teleconference host at a teleconference phone is disclosed. The method comprises identifying a person to act as the teleconference host. A location of the identified teleconference host relative to the teleconference phone is determined. A plurality of microphones on the conference phone are configured as a beamforming receiver to receive an audio signal from the location of the teleconference host. Selected microphones from the plurality of microphones are biased to receive sound from the direction of the teleconference host relative to sound received from other directions.09-06-2012
20130064391Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response - A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.03-14-2013
20080199024Sound source characteristic determining device - There is provided a sound source characteristic determining device (08-21-2008
20090238378Enhanced Immersive Soundscapes Production - An immersive audio-visual system (and a method) for creating an enhanced interactive and immersive audio-visual environment is disclosed. The immersive audio-visual environment enables participants to enjoy true interactive, immersive audio-visual reality experience in a variety of applications. The immersive audio-visual system comprises an immersive video system, an immersive audio system and an immersive audio-visual production system. The video system creates immersive stereoscopic videos that mix live videos, computer generated graphic images and human interactions with the system. The immersive audio system creates immersive sounds with each sound resource positioned correct with respect to the position of an associated participant in a video scene. The immersive audio-video production system produces an enhanced immersive audio and videos based on the generated immersive stereoscopic videos and immersive sounds. A variety of applications are enabled by the immersive audio-visual production including casino-type interactive gaming system and training system.09-24-2009
20090034753Direction detection apparatus, direction detection method and direction detection program, and direction control apparatus, direction control method, and direction control program - A direction detection apparatus is disclosed. The direction detection apparatus includes a distribution obtainment section, an emphasis section, and a direction selection section. The distribution obtainment section obtains a distribution of intensities of sounds in a predetermined directional range. The emphasis section emphasizes sounds in the distribution of the intensities of the sounds obtained by the distribution obtainment section, wherein the emphasis section emphasizes the sounds in a second directional range which is a narrower directional range than the predetermined directional range and a center of the second directional range corresponds to a direction represented by selection information. The direction selection section decides a direction to be selected next based on the distribution of the intensities of the sounds which are output from the emphasis section and outputs the direction decided to be selected next as the selection information.02-05-2009
20090010451Microphone Array With Rear Venting - Microphone arrays (MAs) are described that position and vent microphones so that performance of a noise suppression system coupled to the microphone array is enhanced. The MA includes at least two physical microphones to receive acoustic signals. The physical microphones make use of a common rear vent (actual or virtual) that samples a common pressure source. The MA includes a physical directional microphone configuration and a virtual directional microphone configuration. By making the input to the rear vents of the microphones (actual or virtual) as similar as possible, the real-world filter to be modeled becomes much simpler to model using an adaptive filter.01-08-2009
20090010450Microphone Array With Rear Venting - Microphone arrays (MAs) are described that position and vent microphones so that performance of a noise suppression system coupled to the microphone array is enhanced. The MA includes at least two physical microphones to receive acoustic signals. The physical microphones make use of a common rear vent (actual or virtual) that samples a common pressure source. The MA includes a physical directional microphone configuration and a virtual directional microphone configuration. By making the input to the rear vents of the microphones (actual or virtual) as similar as possible, the real-world filter to be modeled becomes much simpler to model using an adaptive filter.01-08-2009
20090010449Microphone Array With Rear Venting - Microphone arrays (MAs) are described that position and vent microphones so that performance of a noise suppression system coupled to the microphone array is enhanced. The MA includes at least two physical microphones to receive acoustic signals. The physical microphones make use of a common rear vent (actual or virtual) that samples a common pressure source. The MA includes a physical directional microphone configuration and a virtual directional microphone configuration. By making the input to the rear vents of the microphones (actual or virtual) as similar as possible, the real-world filter to be modeled becomes much simpler to model using an adaptive filter.01-08-2009
20120114138SOUND SOURCE SIGNAL PROCESSING APPARATUS AND METHOD - A sound source signal processing apparatus including a first sound source detection unit having at least one microphone to detect a sound source signal, a second sound source detection unit having at least one microphone to detect the sound source signal, the second sound source detection unit being spaced apart from the first sound source detection unit, and a beamforming unit to beamform the sound source signal detected by the first sound source detection unit and the second sound source detection unit. At least one microphone is further provided in addition to the microphone array, and position information of the microphones and sound source information are used, thereby improving beamforming performance of the sound source signal. Also, the number and size of microphone arrays is reduced through further provision of the at least one microphone, thereby improving spatial utilization.05-10-2012
20120114137Acoustic Control Apparatus and Acoustic Control Method - Disclosed herein is an acoustic control apparatus including: a speaker-position computation section configured to find the position of each of a plurality of speakers located in a speaker layout space on the basis of a position computed as the microphone position in the speaker layout space based on a taken image of at least any of the microphone and an object placed at a location close to the microphone position, and a result of sound collection to collect a signal sound each generated by one of the speakers; and an acoustic control section configured to control a sound generated by each of the speakers by computing a user position in the speaker layout space based on a taken image of the user, computing the distance between the user position and the position of each of the speakers, and controlling sounds generated by the speakers according to the computed distances.05-10-2012
20110019836SOUND PROCESSING APPARATUS - A sound emission and collection device includes a main housing and two sub-housings. In the main housing, a microphone array is provided. Microphone arrays are also provided in the sub-housings. Sound collection directions of the microphone arrays are outer directions which are opposite a side of the main housing. The sub-housings are rotatably connected to the main housing. The sound emission and collection device generates a plurality of collected sound beam signals MB01-27-2011
20130129113SOUND SOURCE SIGNAL FILTERING APPARATUS BASED ON CALCULATED DISTANCE BETWEEN MICROPHONE AND SOUND SOURCE - Provided is a sound source signal filtering method and apparatus. The sound source signal filtering method includes: generating two or more microphone output signals by combining sound source signals input through a plurality of microphones; calculating distances between the microphones and a sound source from which the sound source signals are emitted by using distance relationships according to frequencies of the sound source signals extracted from the generated microphone output signals; and filtering the sound source signals to obtain one or more sound source signals corresponding to a predetermined distance by using the calculated distances. Accordingly, it is possible to obtain only sound source signals emitted from a sound source at a particular distance from the microphone array among a plurality of sound source signals input through the microphone array.05-23-2013
20130022217SOUND ZOOM METHOD, MEDIUM, AND APPARATUS - A sound zoom method, medium, and apparatus generating a signal in which a target sound is removed from sound signals input to a microphone array by adjusting a null width that restricts a directivity sensitivity of the microphone array, and extracting a signal corresponding to the target sound from the sound signals by using the generated signal. Thus, a sound located at a predetermined position away from the microphone array can be selectively obtained so that a target sound is efficiently obtained.01-24-2013
20100329478HOUSING FOR MICROPHONE ARRAYS AND MULTI-SENSOR DEVICES FOR THEIR SIZE OPTIMIZATION - A sensor system being is located in an environment composed of a first medium, where waves propagate with a first phase velocity, the sensor system including at least one main enclosure and a sensor array with at least two sensors, said sensor array being arranged inside the main enclosure, wherein the space inside the main enclosure between the sensor array and the inner surface of the main enclosure is filled with a second medium, in which waves propagate with a second phase velocity, the second phase velocity being different from the first velocity.12-30-2010
20090074201METHOD AND APPARATUS FOR MICROPHONE MATCHING FOR WEARABLE DIRECTIONAL HEARING DEVICE USING WEARER'S OWN VOICE - Method and apparatus for microphone matching for wearable directional hearing assistance devices are provided. An embodiment includes a method for matching at least a first microphone to a second microphone, using a user's voice from the user's mouth. The user's voice is processed as received by at least one microphone to determine a frequency profile associated with voice of the user. Intervals are detected where the user is speaking using the frequency profile. Variations in microphone reception between the first microphone and the second microphone are adaptively canceled during the intervals and when the first microphone and second microphone are in relatively constant spatial position with respect to the user's mouth.03-19-2009
20100266140VOICE INPUT/OUTPUT AUTOMATIC SWITCHING CIRCUIT USED IN HAND-HELD MICROPHONE WITH SPEAKER OF COMMUNICATION DEVICE SUCH AS TRANSCEIVER - An object of the invention is to provide a voice input/output automatic switching circuit used in a hand-held microphone with speaker of a communication device such as a transceiver. In the voice input/output automatic switching circuit, a circuit for detecting a handsfree speaker/microphone can be simply configured without requiring a particular detection terminal and moreover, a sufficient countermeasure can be taken against a malfunction caused upon its switching. The voice input/output automatic switching circuit includes a voice input automatic switching circuit constituted of: a current detecting resistor 10-21-2010
20110299701MINIATURE MICRO-ELECTROMECHANICAL SYSTEM (MEMS) BASED DIRECTIONAL SOUND SENSOR - A micro-electromechanical (MEMS) based directional sound sensor includes a two sensor wings attached to a surrounding support structure by two legs. The support structure is hollow beneath the sensor wings allowing the sensor wings to vibrate in response to sound excitation. In one embodiment, interdigitated comb finger capacitors attached on the sensor wing edges and the support structure enable an electrostatic (capacitive) readout related to the vibrations of the sensor which allows determination of the sound direction.12-08-2011
20110286610SURFACE MICROMACHINED DIFFERENTIAL MICROPHONE - A differential microphone having a perimeter slit formed around the microphone diaphragm that replaces the backside hole previously required in conventional silicon, micromachined microphones. The differential microphone is formed using silicon fabrication techniques applied only to a single, front face of a silicon wafer. The backside holes of prior art microphones typically require that a secondary machining operation be performed on the rear surface of the silicon wafer during fabrication. This secondary operation adds complexity and cost to the micromachined microphones so fabricated. Comb fingers forming a portion of a capacitive arrangement may be fabricated as part of the differential microphone diaphragm.11-24-2011
20100128895SIGNAL PROCESSING UNIT, SIGNAL PROCESSING METHOD, AND RECORDING MEDIUM - A signal processing unit is provided. The signal processing unit includes an orthogonal transforming part including at least two sound input parts receiving input sound signals on a time axis, the orthogonal transforming part transforming two of the input sound signals into respective spectral signals on a frequency axis, a phase difference calculating part obtaining a phase difference between the two spectral signals on the frequency axis, and a filter part phasing, when the phase difference is within a given range, each component of a first one of the two spectral signals based on the phase difference at each frequency to calculate a phased spectral signal and combining the phased spectral signal and a second one of the two spectral signals to calculate a filtered spectral signal.05-27-2010
20110286609MULTIPLE MICROPHONE BASED DIRECTIONAL SOUND FILTER - A system and method for use in filtering of an acoustic signal are provided for producing an output signal of attenuated amount of diffuse sound in accordance with predetermined parameters of desired output directional response and required attenuation of diffuse sound. The system includes a filtration module and a filter generation module including a directional analysis module and filter construction module.11-24-2011
20110293108 SYSTEM AND METHOD FOR PRODUCING A DIRECTIONAL OUTPUT SIGNAL - A system and method of producing a directional output signal is described including the steps of: detecting sounds at the left and rights sides of a person's head to produce left and right signals; determining the similarity of the signals; modifying the signals based on their similarity; and combining the modified left and right signals to produce an output signal.12-01-2011
20110293107SOUND SIGNAL PROCESSING APPARATUS AND SOUND SIGNAL PROCESSING METHOD - A sound signal processing apparatus includes a sound source direction determination unit and a filter processing unit. The sound source direction determination unit determines sound source directions with respect to sound signals of a plurality of channels for respective first to n-th bands. The filter processing unit includes first to n-th filters which are connected in series and configured to boost or attenuate the sound signals with respect to the first to n-th bands. The respective first to n-th filters perform boosting or attenuation based on the sound source directions of the first to n-th bands which are determined by the sound source direction determination unit.12-01-2011
20110299702APPARATUS, METHOD AND COMPUTER PROGRAM FOR PROVIDING A SET OF SPATIAL CUES ON THE BASIS OF A MICROPHONE SIGNAL AND APPARATUS FOR PROVIDING A TWO-CHANNEL AUDIO SIGNAL AND A SET OF SPATIAL CUES - An apparatus for providing a set of spatial cues associated with an upmix audio signal having more than two channels on the basis of a two-channel microphone signal has a signal analyzer and a spatial side information generator. The signal analyzer is configured to obtain a component energy information and a direction information on the basis of the two-channel microphone signal, such that the component energy information describes estimates of energies of a direct sound component of the two-channel microphone signal and of a diffuse sound component of the two-channel microphone signal, and such that the directional information describes an estimate of a direction from which the direct sound component of the two-channel microphone signal originates. The spatial side information generator is configured to map the component energy information and the direction information onto a spatial cue information describing the set of spatial cues associated with an upmix audio signal having more than two channels.12-08-2011
20100014690Beamforming Pre-Processing for Speaker Localization - Embodiments of the present invention relate to methods, systems, and computer program products for signal processing. A first plurality of microphone signals is obtained by a first microphone array. A second plurality of microphone signals is obtained by a second microphone array different from the first microphone array. The first plurality of microphone signals is beamformed by a first beamformer comprising beamforming weights to obtain a first beamformed signal. The second plurality of microphone signals is beamformed by a second beamformer comprising the same beamforming weights as the first beamformer to obtain a second beamformed signal. The beamforming weights are adjusted such that the power density of echo components and/or noise components present in the first and second plurality of microphone signals is substantially reduced.01-21-2010
20090279715Method, medium, and apparatus for extracting target sound from mixed sound - A method, medium, and apparatus for extracting a target sound from a mixed sound. The method includes obtaining the mixed signal from a microphone array, generating a first signal which is emphasized and directed toward a target sound source, and a second signal which is suppressed and directed toward the target sound source, calculating a non-linear filter which is adaptive to at least one of an amplitude ratio of the first signal to the second signal in a time-frequency domain, frequencies of the first and second signals, and a ratio of an interference signal to the mixed signal, and filtering the first signal by the non-linear filter.11-12-2009
20110261973APPARATUS AND METHOD FOR REPRODUCING A SOUND FIELD WITH A LOUDSPEAKER ARRAY CONTROLLED VIA A CONTROL VOLUME - Method and, apparatus for implementing the method, the method comprising determining control signal data for an array of loudspeakers, the control signal data being such as to control the loudspeakers to produce a desired sound field associated with an audio signal, the method comprises determining control signal data for different frequency components of the desired sound field in respect of respective different positions in a listening volume of the loudspeaker array, wherein determination of the control signal data comprises sampling the desired sound field at the surface of a control volume (V).10-27-2011
20110268292Apparatus - Apparatus including: an acoustic transducer, and a sound channel coupled to the acoustic transducer, the sound channel including an element having a shape that is electrically controllable, wherein the shape of the element is electrically controllable to change the acoustic properties of the sound channel.11-03-2011
20090147967CONFERENCE APPARATUS - Microphone arrays, which are formed by arranging a plurality of microphones, are provided on a front side and a rear side of a housing, respectively. A virtual focus is set for each of the microphone arrays in a direction opposite to a direction in which sound is picked-up sound signals picked up by the plurality of microphones are delayed such that distances to the virtual focus are the same, and the delayed sound signals are synthesized. Therefore, sound in a sound-pickup area of a predetermined angle on each of the front side and the rear side can be picked up at a high level, and even though there is a noise source in areas other than the sound-pickup area, noise from the noise source is not picked up.06-11-2009
20100128896SOUND RECEIVING DEVICE, DIRECTIONAL CHARACTERISTIC DERIVING METHOD, DIRECTIONAL CHARACTERISTIC DERIVING APPARATUS AND COMPUTER PROGRAM - A sound receiving device 05-27-2010
20120140948DIRECTIONAL MICROPHONE DEVICE AND DIRECTIVITY CONTROL METHOD - A directional microphone apparatus and directivity control method that corrects a level difference and a phase difference generated in a low band in a plurality of non-directional microphone units, improve the directivity, and reduce the size are provided. Level difference calculation section (06-07-2012
20100128892Stabilizing Directional Audio Input from a Moving Microphone Array - A device includes a microphone array fixed to the device. A signal processor produces an audio output using audio beamforming with input from the microphone array. The signal processor aims the beamforming in a selected direction. An orientation sensor—such as a compass, an accelerometer, or an inertial sensor—is coupled to the signal processor. The orientation sensor detects a change in the orientation of the microphone array and provides an orientation signal to the signal processor for adjusting the aim of the beamforming to maintain the selected direction. The device may include a camera that captures an image. An image processor may identify an audio source in the image and provide a signal adjusting the selected direction to follow the audio source. The image processor may receive the orientation signal and adjust the image for changes in the orientation of the camera before tracking movement of the audio source.05-27-2010
20090310797WIND NOISE REJECTION APPARATUS - An apparatus for reduction of wind noise comprised of an electro-acoustic transducer arrangement with at least two and preferably three omni-directional transducer elements. The exposed structure is covered with a thin layer of acoustic-resistive material. The electrical outputs of the elements are added together to provide an output signal with increased signal to noise ratio.12-17-2009
20110200207AUDIO APPARATUS - The invention provides an audio apparatus which hardly causes a directivity to be lowered even in a case where a plurality of unidirectional microphones, each having a directivity toward a center of a housing of the apparatus, are embedded in a recessed part provided on an upper surface of the housing. Microphones 08-18-2011
20090086993Sound source direction detecting apparatus, sound source direction detecting method, and sound source direction detecting camera - Disclosed herein is a sound source direction detecting apparatus including: a plurality of microphones configured to collect sounds from a sound source in order to form an audio frame; a frequency decomposition section configured to decompose the audio frame into frequency components; an error range determination section configured to determine the effects of noises collected together with the sounds as an error range relative to phases; a power level dispersion section configured to disperse power levels of the sounds for each of the frequency components decomposed by the frequency decomposition section, on the basis of the error range determined by the error range determination section; a power level addition section configured to add the power levels dispersed by the power level dispersion section; and a sound source direction detection section configured to detect the direction of the sound source based on the phase at which is located the highest of the power levels added by the power level addition section.04-02-2009
20120106755HANDHELD ELECTRONIC DEVICE WITH MICROPHONE ARRAY - A handheld electronic device includes a body and a microphone array. The body includes a side and a recess formed on the side. The microphone array includes a first microphone and a second microphone. Either the first and second microphones are disposed in the recess, or the first microphone is disposed in the recess while the second microphone is disposed outside the recess.05-03-2012
20120106754TRANSITIONING MULTIPLE MICROPHONES FROM A FIRST MODE TO A SECOND MODE - An apparatus includes multiple microphones and a controller. The controller is coupled to receive a signal from each of the multiple microphones. The controller is configured to control a transition of the multiple microphones from an active mode to a dormant mode. When the multiple microphones are in the active mode, the controller is configured to perform signal processing responsive to signals received from at least two of the multiple microphones. When the multiple microphones are in the dormant mode, the controller is configured to select a microphone of the multiple microphones and to perform signal processing corresponding to the selected microphone while suspending signal processing corresponding to unselected microphones.05-03-2012
20120106753DIGITAL DUAL MICROPHONE MODULE WITH INTELLIGENT CROSS FADING - A method of operating a microphone system includes providing first and second microphones associated with a same human speaker. An analog ambient noise signal is received from the first microphone. An analog speech signal is received from the second microphone. The analog ambient noise signal is converted into a digital ambient noise signal. The analog speech signal is converted into a digital speech signal. Digital noise cancellation is performed on the digital speech signal dependent upon the digital ambient noise signal. The digital noise cancellation is performed by digital circuitry. The noise canceled digital speech signal is inputted into an intercom system. A low power condition of the microphone system and/or a failure of the digital circuitry is sensed. In response to the sensing step, an analog-based intercom signal is inputted into the intercom system. The analog-based intercom signal is dependent on the analog speech signal and substantially independent of the analog ambient noise signal. The analog-based intercom signal is inputted into the intercom system without noise cancellation having been performed on the analog-based intercom signal.05-03-2012
20090190775MICROPHONE ARRANGEMENT COMPRISING PRESSURE GRADIENT TRANSDUCERS - A microphone arrangement includes pressure gradient transducers that include a diaphragm. Each pressure gradient transducer has a first sound inlet opening that leads to a front portion of the diaphragm and a second sound inlet opening that leads to a back portion of the diaphragm. The directional characteristic of each pressure gradient transducer includes an omni portion, a figure-eight portion, and a direction of maximum sensitivity in a main direction. The acoustic centers of the pressure gradient transducers lie within an imaginary sphere having a radius corresponding to about double the largest dimension of the diaphragm. Projections of the main directions of the pressure gradient transducers form angles between about 110° and about 130° in a base plane.07-30-2009
20110170705DIRECTIONAL MICROPHONE DEVICE - The directional microphone device according to the present invention solves a problem of increase in thermal noise (problem of decrease in sensitivity) that occurs at the time of directivity synthesis. The directional microphone device includes: a plurality of microphones which have directional and non-directional characteristics; a control unit which generates an output signal using signals outputted from each of the plurality of microphones; and an output unit which outputs the output signal generated by the control to unit. The control unit generates the output signal such that a nearly non-directional directivity and a high sensitivity are obtained in small amplitude range of the output signal, and a directivity and a low sensitivity are obtained in large amplitude range of the output signal.07-14-2011
20090296957SOUND SYSTEM AND METHOD FOR CREATING A SOUND EVENT BASED ON A MODELED SOUND FIELD - A sound system and method for modeling a sound field generated by a sound source and creating a sound event based on the modeled sound field is disclosed. The system and method captures a sound field over an enclosing surface, models the sound field and enables reproduction of the modeled sound field. Explosion type acoustical radiation may be used. Further, the reproduced sound field may be modeled and compared to the original sound field model.12-03-2009
20110200205SOUND PICKUP APPARATUS, PORTABLE COMMUNICATION APPARATUS, AND IMAGE PICKUP APPARATUS - A sound pickup apparatus includes: a microphone array including at least three microphones, wherein a first pair of microphones in which two of the at least three microphones are aligned on a first axis, and a second pair of microphones in which two of the at least three microphones are aligned on a second axis; a first null signal generator which outputs a first null signal based on a differential output of the first pair of microphones; a second null signal generator which outputs a second null signal based on a differential output of the second pair of microphones; and a combiner which generates a target signal based on the first null signal and the second null signal, the target signal having a directional characteristic in which the lowest sensitivity is formed in a direction to a line along which the first null surface meets the second null surface.08-18-2011
20110200206METHOD AND DEVICE FOR PHASE-SENSITIVE PROCESSING OF SOUND SIGNALS - A method and device for phase-sensitive processing of sound signals of at least one sound source may include arranging two microphones at a distance d from each other, capturing sound signals with both microphones, generating associated microphone signals, and processing the sound signals of the microphones. During a calibration mode, a calibration-position-specific, frequency-dependent phase difference vector φ08-18-2011
20110206219Electronic device for receiving and transmitting audio signals - The present invention relates to an electronic device (08-25-2011
20090003625Dual Omnidirectional Microphone Array (DOMA) - A dual omnidirectional microphone array noise suppression is described. Compared to conventional arrays and algorithms, which seek to reduce noise by nulling out noise sources, the array of an embodiment is used to form two distinct virtual directional microphones which are configured to have very similar noise responses and very dissimilar speech responses. The only null formed is one used to remove the speech of the user from V01-01-2009
20090003626Dual Omnidirectional Microphone Array (DOMA) - A dual omnidirectional microphone array noise suppression is described. Compared to conventional arrays and algorithms, which seek to reduce noise by nulling out noise sources, the array of an embodiment is used to form two distinct virtual directional microphones which are configured to have very similar noise responses and very dissimilar speech responses. The only null formed is one used to remove the speech of the user from V01-01-2009
20090003624Dual Omnidirectional Microphone Array (DOMA) - A dual omnidirectional microphone array noise suppression is described. Compared to conventional arrays and algorithms, which seek to reduce noise by nulling out noise sources, the array of an embodiment is used to form two distinct virtual directional microphones which are configured to have very similar noise responses and very dissimilar speech responses. The only null formed is one used to remove the speech of the user from V01-01-2009
20090003623Dual Omnidirectional Microphone Array (DOMA) - A dual omnidirectional microphone array noise suppression is described. Compared to conventional arrays and algorithms, which seek to reduce noise by nulling out noise sources, the array of an embodiment is used to form two distinct virtual directional microphones which are configured to have very similar noise responses and very dissimilar speech responses. The only null formed is one used to remove the speech of the user from V01-01-2009
20100128893Communication system - There is provided a communication system having at least one headset (05-27-2010
20080279391MICROPHONE UNIT AND SOUND SOURCE DIRECTION IDENTIFICATION SYSTEM - A microphone unit is provided to minimize the attenuation levels of received sound information, which differs depending upon the distance between the positions of microphones and a sound source. A sound source direction identification system is provided to identify the sound source direction. In addition, a moving head control system is provided, where the moving head control system includes a microphone system for receiving sound from a sound source, a sound source direction identification section for identifying the direction of the sound source by obtaining received sound information, a motor control section for generating an appropriate control command to a head moving motor, and a head moving motor for receiving the control command from the motor control section and moving or rotating a robot head in a direction according to the command.11-13-2008
20080285770SERIALLY CONNECTED MICROPHONES - The invention provides a microphone. The microphone receives a first sound signal and at least one second electrical signal and outputs a third electrical signal. In one embodiment, the microphone comprises a transducer and a signal processor. The transducer converts the first sound signal to a first electrical signal. The signal processor has a first input terminal receiving the first electrical signal and at least one second input terminal receiving the at least one second electrical signal, and derives the third electrical signal from the first electrical signal and the second electrical signal. In one embodiment, the at least one second electrical signal is derived from a t least one second sound signal by at least one second microphone located in the vicinity of the microphone. In another embodiment, the at least one second electrical signal comprises a wind noise signal derived from wind pressure by a pressure sensor located in the vicinity of the microphone.11-20-2008
20080285771Teleconferencing Apparatus - A teleconferencing apparatus includes the functions of a transmitting unit and a receiving unit and the transmitting unit transmits a sound signal formed from sound pick-up signals of a microphone array made up of microphones Mi (i=1 to N) and position information. The position information is provided by forming a plurality of sound pick-up beams directed in a specific direction and selecting the sound pick-up beam with the largest volume. In the receiving unit, a parameter calculation section sets a virtual sound source based on data of a reception signal and sets a delay parameter. A virtual sound source generation signal processing section forms a sound emission beam based on the parameters and outputs the beam to a loudspeaker SPi.11-20-2008
20080310649Sound collector and sound recorder - A sound collector includes a first microphone unit and a second microphone unit having a single directivity and being pivotally supported in a manner that directions of directional axes of the units are changeable in an identical flat plane and a switch to be controlled in conjunction with the rotations of the first and the second microphone units. Output signals of the first and the second microphone units are outputted with channels of the signals being exchanged or non-exchanged by the switch in accordance with an angle formed by the directional axes.12-18-2008
20120294456SIGNAL SOURCE LOCALIZATION USING COMPRESSIVE MEASUREMENTS - In one aspect, a method for performing signal source localization is provided. The method comprises the steps of obtaining compressive measurements of an acoustic signal or other type of signal from respective ones of a plurality of sensors, processing the compressive measurements to determine time delays between arrivals of the signal at different ones of the sensors, and determining a location of a source of the signal based on differences between the time delays. The method may be implemented in a processing device that is configured to communicate with the plurality of sensors. In an illustrative embodiment, the compressive measurements are obtained from respective ones of only a designated subset of the sensors, and a non-compressive measurement is obtained from at least a given one of the sensors not in the designated subset, with the time delays between the arrivals of the signal at different ones of the sensors being determined based on the compressive measurements and the non-compressive measurement.11-22-2012
20080285772ACOUSTIC LOCALIZATION OF A SPEAKER - A system locates a speaker in a room containing a loudspeaker and a microphone array. The loudspeaker transmits a sound that is partly reflected by a speaker. The microphone array detects the reflected sound and converts the sound into a microphone signal. A processor determines the speaker's direction relative to the microphone array, the speaker's distance from the microphone array, or both, based on the characteristics of the microphone signals.11-20-2008
20080253583ALWAYS ON HEADWEAR RECORDING SYSTEM - At least one exemplary embodiment is directed to an earpiece that records audio and stores the recording for a period of time.10-16-2008
20090190776SYNTHESIZING A MICROPHONE SIGNAL - A method synthesizes a microphone signal from a coincident microphone arrangement through multiple pressure gradient transducers. The pressure gradient transducers have directional characteristics that include an omni portion and a figure-eight portion. The direction of maximum sensitivity of the transducers lies within in a main direction. The method synthesizes a signal by forming a difference signal and a summed signal from the output of the two pressure gradient transducers. The difference and summed signals are converted into the frequency domain before the signals are spectrally subtracted. The method designates a representative phase to the magnitude of the spectrally subtracted signal. The phase corresponds to the phase of the summed signal. The signal and phase is then converted into the time domain.07-30-2009
20090190774ENHANCED BLIND SOURCE SEPARATION ALGORITHM FOR HIGHLY CORRELATED MIXTURES - An enhanced blind source separation technique is provided to improve separation of highly correlated signal mixtures. A beamforming algorithm is used to precondition correlated first and second input signals in order to avoid indeterminacy problems typically associated with blind source separation. The beamforming algorithm may apply spatial filters to the first signal and second signal in order to amplify signals from a first direction while attenuating signals from other directions. Such directionality may serve to amplify a desired speech signal in the first signal and attenuate the desired speech signal from the second signal. Blind source separation is then performed on the beamformer output signals to separate the desired speech signal and the ambient noise and reconstruct an estimate of the desired speech signal. To enhance the operation of the beamformer and/or blind source separation, calibration may be performed at one or more stages.07-30-2009
20100142725METHOD AND SYSTEM FOR SOUND MONITORING OVER A NETWORK - A mobile communication (06-10-2010
20090129608Method for reducing interference powers and corresponding acoustic system - The object is to improve the action of a directional microphone in real acoustic environments. To do this, it is envisaged that the interference powers in a directional microphone with three microphones are reduced in that a first and a second microphone signal are adaptively filtered with respect to a first direction, with a direction-determining first parameter being adapted in such a way that the summation of interference powers is reduced. The second and a third microphone signal is adaptively filtered with respect to the first direction, with a direction-determining second parameter being adapted in such a way that the summation of interference powers is reduced. The two parameters are different from each other. This makes it possible, even in real environments, to suppress two interference sources from different directions with one second-order directional microphone.05-21-2009
20120070015APPARATUS AND METHOD FOR ENHANCING AUDIO QUALITY USING NON-UNIFORM CONFIGURATION OF MICROPHONES - An audio quality enhancing apparatus and method is provided in which a microphone array has a non-uniform configuration and thus a beam pattern of a desired direction is obtained in a wide range of frequencies including higher frequency bands and lower frequency bands even when the microphone array is relatively small. The audio quality enhancing apparatus includes at least three microphones which are disposed in a non-uniform configuration, a frequency conversion unit configured to transform acoustic signals input from the at least three microphones to acoustic signals of frequency domain; a band division and merging unit configured to divide frequencies of the transformed acoustic signals into bands based on intervals between the at least three microphones and to merge the acoustic signals in the frequency domain into signals of two channels based on the divided frequency bands; and a two channel beamforming unit configured to reduce noise of signals including input from a direction other than the direction of a target sound by performing beamforming on the signals of the two channels and to output the noise-reduced signals.03-22-2012
20090003622Advanced Speech Encoding Dual Microphone Configuration (DMC) - A microphone array is described for use in ultra-high acoustical noise environments. The microphone array includes two directional close-talk microphones. The two microphones are separated by a short distance so that one microphone picks up more speech than the other. The microphone array can be used along with an adaptive noise removal program to remove a significant portion of noise from a speech signal of interest.01-01-2009
20090003621SOUND-DIRECTION DETECTOR HAVING A MINIATURE SENSOR - A representative embodiment of the invention provides a sound-direction detector having a miniature sensor coupled to a signal-processing block. The sensor has (i) a microphone responsive to a sound wave and (ii) a differential pressure sensor (DPS) responsive to a pressure difference induced by the sound wave between two inlet ports located in proximity to the microphone. The signal-processing block applies phase-sensitive detection to the output signal generated by the DPS, while using the output signal generated by the microphone as a reference for the phase-sensitive detection, to measure the pressure difference. The signal-processing block then determines direction to the sound-wave source based on the amplitude of the sound wave at the microphone and the measured pressure difference.01-01-2009
20080317260SOUND DISCRIMINATION METHOD AND APPARATUS - A method of distinguishing sound sources includes the step of transforming data, collected by at least two transducers which each react to a characteristic of an acoustic wave, into signals for each transducer location. The transducers are separated by a distance of less than about 70 mm or greater than about 90 mm. The signals are separated into a plurality of frequency bands for each transducer location. For each band a comparison is made of the relationship of the magnitudes of the signals for the transducer locations with a threshold value. A relative gain change is caused between those frequency bands whose magnitude relationship falls on one side of the threshold value and those frequency bands whose magnitude relationship falls on the other side of the threshold value. As such, sound sources are discriminated from each other based, on their distance from the transducers.12-25-2008
20110222708BIOLOGY-INSPIRED MINIATURE SYSTEM AND METHOD FOR SENSING AND LOCALIZING ACOUSTIC SIGNALS - A system and method for sensing acoustic sounds is provided having at least one directional sensor, each directional sensor including at least two compliant membranes for moving in reaction to an excitation acoustic signal and at least one compliant bridge. Each bridge is coupled to at least a respective first and second membrane of the at least two membranes for moving in response to movement of the membranes it is coupled to for causing movement of the first membrane to be related to movement of the second membrane when either of the first and second membranes moves in response to excitation by the excitation signal. The directional sensor is controllably rotated to locate a source of the excitation signal, including determining a turning angle based on a linear relationship between the directionality information and sound source position described in experimentally calibrated data.09-15-2011
20110222707SOUND SOURCE LOCALIZATION SYSTEM AND METHOD - A sound source localization system includes a plurality of microphones for receiving a signal as an input from a sound source; a time-difference extraction unit for decomposing the signal inputted through the plurality of microphones into time, frequency and amplitude using a sparse coding and then extracting a sparse interaural time difference (SITD) inputted through the plurality of microphones for each frequency; and a sound source localization unit for localizing the sound source using the SITDs. A sound source localization method includes receiving a signal as an input from a sound source; decomposing the signal into time, frequency and amplitude using a sparse coding; extracting an SITD for each frequency; and localizing the sound source using the SITDs.09-15-2011
20110142253RECORDING/REPRODUCING APPARATUS - A recording/reproducing apparatus includes a plurality of unidirectional microphones and a plurality of direction indicator switches. The unidirectional microphones are each disposed in the periphery with a predetermined angle interval therebetween, whereas the direction indicator switches are able to indicate other directions other than a plurality of directions corresponding to the unidirectional microphones. In a normal reproducing mode, a plurality of audio signals which are picked up by the unidirectional microphones and subsequently recorded is read and reproduced in parallel. When any one of the direction indicator switches is operated, only the audio signal emitted in the designated direction is selectively read and reproduced. When another direction other than a plurality of directions corresponding to the unidirectional microphones is designated, audio signals picked up by two unidirectional microphones which are disposed to sandwich the designated direction is selectively read and reproduced.06-16-2011
20090074202SYSTEM AND METHOD FOR LOCATING SOUND SOURCES - An exemplary method for locating sound sources is disclosed. The method includes the steps of: loading a sound source location program into a handheld device; activating the sound source location program; calculating a total voltage representing sound waves received by a microphone array via a waveform computation algorithm; calculating energy intensities of the total voltage according to the total voltage; and selecting a maximum energy intensity from the calculated energy intensities, and determining the location of the maximum energy intensity, the location of the maximum energy intensity is the location of the sound source. A related system is also disclosed.03-19-2009
20120288113MICROPHONE - A microphone includes a plurality of microphone units; in which the microphone units include a first group of microphone units and a second group of microphone units, the first group of microphone units and the second group of microphone units are disposed alternately, the first group of microphone units are connected in series such that outputs from the first group of microphone units are added and outputted as an added output, the second group of microphone units are connected in series such that outputs from the second group of microphone units are added and outputted as another added output, and the added output of one of the first group of microphone units and the second group of microphone units is output from a hot terminal as a balanced output and the other added output is output from a cold terminal as a balanced output.11-15-2012
20110142252Source sound separator with spectrum analysis through linear combination and method therefor - In a source sound separator, first and second target sound predominant spectra are generated respectively by first and second processing operations for linear combination for emphasizing the target sound, using received sound signals of two microphones arrayed at a distance from each other. A target sound suppressed spectrum is generated by processing for linear combination for suppression of the target sound, using the two received sound signals. Further, a phase signal containing a larger amount of signal components of the target sound and exhibiting directivity in the direction of the target sound is generated by processing of linear combination, using the two received sound signals. The target sound and the interfering sound are separated from each other using the first and second target sound predominant spectra, the target sound suppressed spectrum, and the phase signal.06-16-2011
20120140947Apparatus and method to localize multiple sound sources - An apparatus and method to localize multiple sound sources is provided. Virtual microphone signals are generated based on actual microphone signals from a microphone array including a plurality of microphones, which are arranged at intervals that may minimize space aliasing at a given sampling frequency, and sound source directions are tracked using the actual microphone signals and the virtual microphone signals. Thus, without increasing the aperture length of the microphone array, it is possible to achieve almost the same resolution as when a microphone array having a relatively long length is used.06-07-2012
20090274318AUDIO CONFERENCE DEVICE - A audio conference device capable of detecting a talker's direction exactly and collecting a sound emitted from this direction at a high signal S/N ratio is provided. A detecting beam generating portion 11-05-2009
20100189279MICROPHONE ARRAY SIGNAL PROCESSING APPARATUS, MICROPHONE ARRAY SIGNAL PROCESSING METHOD, AND MICROPHONE ARRAY SYSTEM - A microphone array signal processing apparatus which is capable of picking up sound in a low frequency band even with a compact microphone array. The microphone array signal processing apparatus is comprised of delay devices (07-29-2010
20100177908ADAPTIVE BEAMFORMER USING A LOG DOMAIN OPTIMIZATION CRITERION - Described is a audio signal processing technology in which an adaptive beamformer processes input signals from microphones based on an estimate received from a pre-filter. The adaptive beamformer may compute its parameters (e.g., weights) for each frame based on the estimate, via a magnitude-domain objective function or log-magnitude-domain objective function. The pre-filter may include a time invariant beamformer and/or a non-linear spatial filter, and/or may include a spectral filter. The computed parameters may be adjusted based on a constraint, which may be selectively applied only at desired times.07-15-2010
20100254543CONFERENCE MICROPHONE SYSTEM - A method and system for controlling selective audio output of captured sounds from an audience by means of a system comprising at least one microphone array located above or in front of said audience, and at least one camera.10-07-2010
20100027809METHOD FOR DIRECTING OPERATION OF MICROPHONE SYSTEM AND ELECTRONIC APPARATUS COMPRISING MICROPHONE SYSTEM - The invention provides a method for directing operation of a microphone system. In one embodiment, the microphone system comprises a plurality of component modules. First, a diagnostic test is performed to determine a diagnostic result indicating whether the component modules have failed the diagnostic test. Whether a plurality of required component modules corresponding to a current application mode for operating the microphone system have failed the diagnostic test is then determined according to the diagnostic result, wherein the application mode requires cooperation of the required component modules selected from the component modules of the microphone system. When some of the required component modules have failed the diagnostic test, the current application mode is changed to an altered application mode and the microphone system is directed to operate according to the altered application mode, wherein a plurality of second required component modules corresponding to the altered application mode are in good condition. When the required component modules are all in good condition, the microphone system is directed to operate according to the current application mode.02-04-2010
20120140946Wind Noise Mitigation - A method of compensating for noise in a receiver having a first receiver unit and a second receiver unit, the method includes receiving a first transmission at the first receiver unit, the first transmission having a first signal component and a first noise component; receiving a second transmission at the second receive unit, the second transmission having a second signal component and a second noise component; determining whether the first noise component and the second noise component are incoherent and; only if it is determined that the first and second noise components are incoherent, processing the first and second transmissions in a first processing path, wherein the first processing path is configured to compensate for incoherent noise.06-07-2012
20110129101Directional Microphone - A directional microphone system includes an ultrasonic emitter and receiver. The emitter directs a beam of ultrasound at the audio source with sufficient intensity that non-linear air effects cause non-linear interactions between the ultrasonic sound and the source's sonic sound. Ultrasonic frequency-mired sounds are thereby generated and these are received by the ultrasonic receiver. Signal-processing is carried out on the received signals to strip out the audio signals. The emitter and receiver may be co-located and the emitted beam may be focussed at the location of the audio source. The receiver may also be directional acid focussable. The directional microphone system may be very small and yet highly directional at sonic including low audible frequencies.06-02-2011
20110026730AUDIO PROCESSING APPARATUS AND METHOD - An audio processing apparatus is provided, comprising: a main microphone for receiving sounds from a source and noises from non-source sources and generating a main input; a reference microphone for receiving the sounds and the noises and generating a reference input; a short-time Fourier transformation (STFT) unit for applying short time Fourier transformation to convert the main input of a time domain signals into a main signal of a frequency domain and convert the reference input of the time domain signals into a reference signal of the frequency domain; a sensitivity calibrating unit for performing sensitivity calibration on the main signal and the reference signal and generating a main calibrated signal and a reference calibrated signal; and a voice active detector (VAD) for generating a voice active signal according to the main calibrated signal, the reference calibrated signal and a direction of arrival (DOA) signal.02-03-2011
20110026732System for Detecting and Reducing Noise via a Microphone Array - A system for detecting noise in a signal received by a microphone array and a method for detecting noise in a signal received by a microphone array is disclosed. The system also provides for the reduction of noise in a signal received by a microphone array and a method for reducing noise in a signal received by a microphone array. The signal to noise ratio in handsfree systems may be improved, particularly in handsfree systems present in a vehicular environment.02-03-2011
20090110212Audio Transmission System and Communication Conference Device - In an audio transmission system, a control section of a communication conference device emits measurement sound waves from a loudspeaker array to a terminal unit and measures the time until a response is received, thereby detecting the position of the terminal unit. The control section sets directivity characteristics so that microphone sensitivity of the microphone array is brought to point to the position of the terminal unit, and sends the collected audio to another communication conference device. In a communication conference device on the reception side, the directivity characteristic of the loudspeaker array is set so that the received audio appears as if it was emitted from the position of the terminal unit on the transmission side.04-30-2009
20110235821Variable directional microphone - There is provided a variable directional microphone including dynamic microphone units that is small in size and has good directional frequency response. In a variable directional microphone 09-29-2011
20100303254AUDIO SOURCE DIRECTION DETECTING DEVICE - A sound source direction detector comprises FFT analysis sections (12-02-2010
20130136273REAL-TIME QUALITY MONITORING OF SPEECH AND AUDIO SIGNALS IN NOISY REVERBERANT ENVIRONMENTS FOR TELECONFERENCING SYSTEMS - A method for real-time monitoring of audio signals reception quality includes receiving output signals from a plurality of microphone clusters, each microphone cluster having at least two microphone units to receive audio signals from at least two distinct directions and output corresponding electrical signals; identifying comparative features of output signals for each of the microphone clusters; and selecting at least one microphone cluster based on the identified features. A system for real-time monitoring of audio signals reception quality includes a plurality of microphone clusters, each microphone cluster having at least two microphone units to receive audio signals from at least two distinct directions and output corresponding electrical signals; and a main audio unit to identify comparative features of output signals for each of the microphone clusters and to select at least one microphone cluster based on the identified features.05-30-2013
20100316233METHOD OF OBJECT TRACKING IN 3D SPACE BASED ON PARTICLE FILTER USING ACOUSTIC SENSORS - There is provided a method of tracking an object in a three-dimensional (3-D) space by using particle filter-based acoustic sensors, the method comprising selecting two planes in the 3-D space; executing two-dimensional (2-D) particle filtering on the two selected planes, respectively; and associating results of the 2-D particle filtering on the respective planes.12-16-2010
20100322435Position Detecting System, Audio Device and Terminal Device Used in the Position Detecting System - A position detecting system is provided, which is capable of effectively preventing erroneous detection of audio to be measured. The position detecting system includes a terminal device that inputs an audio signal from an audio device and a microphone. The audio device sequentially inputs measurement audio signals that have been formed by two or more audio signals of different frequencies to a speaker and receives a notification signal, wherein the report signal indicates that the audio of the measurement audio signal has been collected from the terminal device. The audio device clocks a time t12-23-2010
20110110531APPARATUS, METHOD AND COMPUTER PROGRAM FOR LOCALIZING A SOUND SOURCE - An apparatus for localizing a sound source includes at least two rotatably arranged microphones, a drive formed to set the microphones into rotation, and an evaluator. The evaluator is formed to receive microphone signals of the at least two microphones, while the at least two microphones are moving, and to obtain information on a direction from which sound arrives from the sound source or information on a position of the sound source, using the microphone signals obtained during the movement of the microphones.05-12-2011
20110026731MICROPHONE CIRCUIT AND METHOD FOR PREVENTING MICROPHONE CIRCUIT FROM GENERATING NOISE WHEN RESET - The invention provides a microphone circuit. In one embodiment, the microphone circuit comprises a transducer, a biasing resistor, a pre-amplifier, and a switch circuit. The transducer is coupled between a ground and a first node for converting a sound into a voltage signal output to the first node. The biasing resistor is coupled between the ground and the first node. The pre-amplifier is biased with a biasing voltage and coupled between the first node and a second node, and amplifies the voltage signal to obtain an output signal at the second node. The switch circuit is coupled between the first node and the ground, couples the first node to the ground when the microphone circuit is reset, and decouples the first node from the ground after a voltage status of the microphone circuit is stable, thus clamping a voltage of the first node to the ground to prevent generation of a popping noise when the microphone circuit is reset.02-03-2011
20110007911METHODS FOR LOCATING EITHER AT LEAST ONE SOUND GENERATING OBJECT OR A MICROPHONE USING AUDIO PULSES - In a first aspect, there is provided a method for locating a position of at least one sound generating object using at least one audio pulse, with the at least one audio pulse being detected by a plurality of stationary microphones located at a first position being spaced apart by a pre-determined distance. In a second aspect, there is provided a method for locating a position of a microphone using audio pulses emitted from a plurality of sound generating objects. The at least one audio pulse may preferably be in a form of a logarithmic swept sine (LSS) signal, as the LSS signal is detectable at both low volumes and amidst background noises.01-13-2011
20100177909BEAMFORMING SYSTEM COMPRISING A TRANSDUCER ASSEMBLY - A beamforming system (ASY) comprises a modular transducer assembly (MTA) composed of a plurality of transducer modules (TM07-15-2010
20090034752CONSTRAINTED SWITCHED ADAPTIVE BEAMFORMING - An audio device, comprising a microphone array, a constrained switched adaptive beamformer with input coupled to said microphone array, said beamformer including (i) a first stage speech adaptive beamformer with first adaptive filters having a first adaptive step size, and (ii) a second stage noise adaptive beamformer with second adaptive filters having a second adaptive step size, and a single channel speech enhancer with input coupled to an output of said constrained switched adaptive beamformer.02-05-2009
20110033063SURROUND SOUND GENERATION FROM A MICROPHONE ARRAY - A signal from each of an array of microphones is analyzed. For at least one subset of microphone signals, a time difference is estimated, which characterizes the relative time delays between the signals in the subset. A direction is estimated from which microphone inputs arrive from one or more acoustic sources, based at least partially on the estimated time differences. The microphone signals are filtered in relation to at least one filter transfer function, related to one or more filters. A first filter transfer function component has a value related to a first spatial orientation of the arrival direction, and a second component has a value related to a spatial orientation that is substantially orthogonal in relation to the first. A third filter function may have a fixed value. A driving signal for at least two loudspeakers is computed based on the filtering.02-10-2011
20110033062ACOUSTIC VELOCITY MICROPHONE USING A BUOYANT OBJECT - Embodiments of a directional acoustic sensor or acoustic velocity microphone are disclosed that include a sensor frame structure, a support means, and a buoyant object. The buoyant object is suspended in the sensor frame structure using the support means. The buoyant object has a feature size smaller than a wavelength of the highest frequency of an acoustic wave in air. The buoyant object receives three-dimensional movement of the air excited by the acoustic wave. The three-dimensional movement that the buoyant object receives is detected using a detection means. A particle velocity of the acoustic wave is derived from the three-dimensional movement of the buoyant object using the detection means. The detection means can be an optical detection means, an electromagnetic detection means, or an electrostatic detection means. An acoustic image of the acoustic wave can be determined by distributing two or more directional acoustic sensors a multi-dimensional array.02-10-2011
20110243347PIPE CALIBRATION DEVICE FOR CALIBRATION OF OMNIDIRECTIONAL MICROPHONES - Embodiments include a device comprising a pipe having at least one section that spans between a first end and a second end of the pipe. The pipe has a cylindrical cross-section. The device comprises a receptacle positioned in the pipe a first distance from the first end and a second distance from the second end. The receptacle receives an electronic device having microphones that are to be calibrated and secures the microphones a third distance inside an inside surface of the pipe. The device comprises an adapter connected to the first end. The adapter connects a loudspeaker to the pipe. The pipe controls an acoustic energy experienced by the plurality of microphones so that each microphone of the plurality of microphones receives equivalent acoustic energy.10-06-2011
20090214053POSITION DETERMINATION OF SOUND SOURCES - A microphone arrangement includes a database and multiple pressure gradient transducers having a diaphragm, a first sound inlet opening, and a second sound inlet opening. A directional characteristic of each of the pressure gradient transducers have a direction of maximum sensitivity in main directions. The main directions of the pressure gradient transducers are inclined. A pressure transducer has an acoustic center lying within an imaginary sphere with multiple acoustic centers of the pressure gradient transducer. The imaginary sphere has a radius corresponding to about double the largest dimension of the diaphragms of the pressure gradient transducers and the pressure transducer. The database retains representative signals of the multiple pressure gradient transducers and the pressure transducer. A processor accesses the database to determine a position of a sound source.08-27-2009
20090214052SPEECH SEPARATION WITH MICROPHONE ARRAYS - A system that facilitates blind source separation in a distributed microphone meeting environment for improved teleconferencing. Input sensor (e.g., microphone) signals are transformed to the frequency-domain and independent component analysis is applied to compute estimates of frequency-domain processing matrices. Modified permutations of the processing matrices are obtained based upon a maximum magnitude based de-permutation scheme. Estimates of the plurality of source signals are provided based upon the modified frequency-domain processing matrices and input sensor signals.08-27-2009
20090129609Method and apparatus for acquiring multi-channel sound by using microphone array - Provided are a method and an apparatus for acquiring a multi-channel sound by using a microphone array. The method estimates positions of sound sources corresponding to sound source signals, which are mixed together, from the sound source signals input via a microphone array; and generates a multi-channel sound source signal by compensating for the sound source signals, based on differences between the estimated positions of the sound sources and a position of a virtual microphone array substituting for the microphone array. By doing so, the multi-channel sound having a stereoscopic effect can be acquired from a plurality of distant sound source signals which are input via the microphone array from a portable sound acquisition device.05-21-2009
20110085675Switchable Two-Element Directional Microphone System - A directional microphone system includes a first microphone that is disposed so as to receive sound energy originating from a first direction, convert the sound energy into a first voltage to be presented at a output. A second microphone is disposed to receive sound energy from a second direction different from the first direction and converts the sound energy into a second voltage presented at a second output. A first amplification circuit provides a first voltage gain at a third output. A second amplification circuit provides a second voltage gain at a fourth output and a predetermined time delay compared to the first amplification circuit. A controlled switch selectively switches a coupling of the first output between the first amplification circuit and the second amplification circuit and vice versa, and the coupling of the second output between the second amplification circuit and the first amplification circuit and vice versa. An output processing circuit is coupled to the first amplification circuit and the second amplification circuit and subtracts the fourth output from the third output such that a generally cardioid-shaped response is provided at its output.04-14-2011
20090052688REMOTE CONFERENCE APPARATUS AND SOUND EMITTING/COLLECTING APPARATUS - A speaker array and microphone arrays positioned on both sides of the speaker array are provided. A plurality of focal points each serving as a position of a talker are set in front of the microphone arrays respectively symmetrically with respect to a centerline of the speaker array, and a bundle of sound collecting beams is output toward the focal points. Difference values between sound collecting beams directed toward the focal points that are symmetrical with respect to the centerline are calculated to cancel sound components that detour from the speaker array to microphones. Then, it is estimated based on totals of squares of peak values of the difference values for a particular time period that the position of the talker is close to which one of the focal points, and the position of the talker is decided by comparing the totals of the squares of the peak values of the sound collecting beams directed to the focal points that are symmetrical mutually.02-26-2009
20090052686ELECTRONIC DEVICE WITH AN INTERNAL MICROPHONE ARRAY - An electronic device includes a front cover, a circuit board, a plurality of flexible boots, a plurality of microphones, and an abutting mechanism. The front cover includes a plurality of wall portions, a plurality of storage spaces encircled by the wall portions, and a plurality of acoustic openings connecting to the storage spaces. The flexible boots are disposed in the storage spaces. The microphones are mounted on the circuit board and disposed in the boots. The abutting mechanism pushes the circuit board toward the front cover to squeeze the flexible boot.02-26-2009
20090323980ARRAY MICROPHONE SYSTEM AND A METHOD THEREOF - An array microphone system of compensating phase drift of input signals and a method thereof. The microphone system comprises a speaker, first and second microphones, a delay estimator, and a memory. The speaker outputs an acoustic signal. The first and second microphones, spaced by a predetermined distance, receive the acoustic signal to generate first and second input signals. The delay estimator, coupled to the first and second microphones, computes a time difference between the first and second input signals. The memory, coupled to the delay estimator, stores the time difference.12-31-2009
20090323981Satellite Microphone Array For Video Conferencing - Speakers are identified based on sound origination detection through use of infrared detection of satellite microphones, estimation of distance between satellite microphones and base unit utilizing captured audio, and/or estimation of satellite microphone orientation utilizing captured audio. Multiple sound source localization results are combined to enhance sound source localization and/or active speaker detection accuracy.12-31-2009
20100008515MULTIPLE ACOUSTIC THREAT ASSESSMENT SYSTEM - A system is provided for locating and identifying an acoustic event. An acoustic sensor having a pair of concentric opposing microphones at a fixed distance on a microphone axis is used to measure an acoustic intensity, from which a vector incorporating the acoustic event is identified. A second acoustic sensor or movement of the first acoustic sensor is used to provide a second vector incorporating the acoustic event. Combination of the first and the second vector locates the acoustic event in space. A command unit in communication with the acoustic sensors can be used for combining the vectors as well as comparing a signal spectra of the acoustic event to stored identified spectra to provide an identification of acoustic event.01-14-2010
20100008518METHODS FOR PROCESSING AUDIO INPUT RECEIVED AT AN INPUT DEVICE - A method for processing an audio signal received through a microphone array coupled to an interfacing device is provided. The method is processing at least in part by a computing device that communicates with the interfacing device. The method includes receiving a signal at the microphone array and applying adaptive beam-forming to the signal to yield an enhanced source component of the signal. Also, an inverse beam-forming is applied to the signal to yield an enhanced noise component of the signal. The method combines the enhanced source component and the enhanced noise component to produce a noise reduced signal, where the noise reduced signal is a target voice signal. Then, monitoring an acoustic set-up associated with the audio signal as a background process using the adaptive beam-forming inverse beam-forming to track the target signal component, and periodically setting a calibration of the monitored acoustic set-up. The calibration implements blind source separation that uses second order statistics to separate the enhanced source component from the enhanced noise component, and the calibration remains fixed between the periodic setting. By executing this method, the target signal is able to freely move around relative to the microphone array of the interface device.01-14-2010
20100008516METHOD AND SYSTEM FOR POSITION DETECTION OF A SOUND SOURCE - A position detection method, system, and computer readable article of manufacture tangibly embodying computer readable instructions for executing the method for detecting the position of a sound source using at least two microphones. The method includes the steps of: emitting a reproduced sound from the sound source; observing the reproduced sound and an observed sound at the microphones; converting the reproduced sound and the observed sound into electrical signals; transforming the signals of the reproduced sound and of the observed sound into frequency spectra by a frequency spectrum transformer apparatus; calculating Crosspower Spectrum Phase (CSP) coefficients of the frequency spectra of the signals by a CSP coefficient calculator apparatus; and calculating distances between the position of the sound source and the positions of the microphones based on the calculated CSP coefficients by a distance calculating apparatus, thereby detecting the position of the sound source.01-14-2010
20100008517AUDIO SYSTEM BASED ON AT LEAST SECOND-ORDER EIGENBEAMS - A microphone array-based audio system that supports representations of auditory scenes using second-order (or higher) harmonic expansions based on the audio signals generated by the microphone array. In one embodiment, a plurality of audio sensors are mounted on the surface of an acoustically rigid sphere. The number and location of the audio sensors on the sphere are designed to enable the audio signals generated by those sensors to be decomposed into a set of eigenbeams having at least one eigenbeam of order two (or higher). Beamforming (e.g., steering, weighting, and summing) can then be applied to the resulting eigenbeam outputs to generate one or more channels of audio signals that can be utilized to accurately render an auditory scene. Alternative embodiments include using shapes other than spheres, using acoustically soft spheres and/or positioning audio sensors in two or more concentric patterns.01-14-2010
20100014689SYSTEMS AND METHODS FOR INTRA-ORAL BASED COMMUNICATIONS - Systems and methods are disclosed for capturing sound for communication by mounting one or more intra-oral microphones to capture sound; and mounting a mouth wearable communicator in the oral cavity to communicate sound with a remote unit.01-21-2010
20100054495Noise Mitigating Microphone System and Method - A microphone system has a base coupled with first and second microphone apparatuses. The first microphone apparatus is capable of producing a first output signal having a noise component, while the second microphone apparatus is capable of producing a second output signal. The first microphone apparatus may have a first back-side cavity and the second microphone may have a second back-side cavity. The first and second back-side cavities may be fluidly unconnected. The system also has combining logic operatively coupled with the first microphone apparatus and the second microphone apparatus. The combining logic uses the second output signal to remove at least a portion of the noise component from the first output signal.03-04-2010
20110249830MICROPHONE UNIT - There is provided a microphone unit having a plurality of miniature microphones for respectively recording audio signals and a carrier unit. The miniature microphones can be arranged on a side of the carrier unit.10-13-2011
20110176690INTEGRATED CIRCUIT DEVICE, VOICE INPUT DEVICE AND INFORMATION PROCESSING SYSTEM - There is provided an integrated circuit device having a wiring board 07-21-2011
20110176691SOUND CONTROL APPARATUS, SOUND CONTROL METHOD, AND SOUND CONTROL PROGRAM - A sound control apparatus includes a direction accepting portion to accept designation of any one of a plurality of predetermined directions, a display control portion to allow a display portion to output a plurality of direction marks respectively indicating the plurality of directions, a plurality of microphones arranged at a distance away from each other, and a directivity control portion to control directivity of sounds respectively obtained by the plurality of microphones. The display control portion allows the display portion to display a direction mark corresponding to the direction accepted by the direction accepting portion in such a manner as to be enhanced as compared with any other direction mark.07-21-2011
20110103611HEARING DEVICE AND METHOD FOR SUPPRESSING FEEDBACK WITH A DIRECTIONAL MICROPHONE - A hearing device and an associated method use an adaptive directional microphone for suppressing feedback. The hearing device includes an adaptation unit which sets the directional microphone so that a sound signal fed back from an earpiece of the hearing device to the directional microphone is attenuated. Acoustic feedback is advantageously attenuated or suppressed simply in an artifact-free manner.05-05-2011
20100128894Acoustic Voice Activity Detection (AVAD) for Electronic Systems - Acoustic Voice Activity Detection (AVAD) methods and systems are described. The AVAD methods and systems, including corresponding algorithms or programs, use microphones to generate virtual directional microphones which have very similar noise responses and very dissimilar speech responses. The ratio of the energies of the virtual microphones is then calculated over a given window size and the ratio can then be used with a variety of methods to generate a VAD signal. The virtual microphones can be constructed using either an adaptive or a fixed filter.05-27-2010
20110069847Sound collecting device, acoustic communication system, and computer-readable storage medium - There is provided a sound collecting device, including: an orientation direction forming section that forms an orientation direction of a microphone array; and a control section that, when a characteristic in a frequency band of a synthesized signal obtained by synthesizing the acoustic signals corresponds to a characteristic of an acoustic signal corresponding to a sound other than a target sound, controls the orientation direction forming section such that an orientation direction that is a direction that is different than an orientation direction of the microphone array at a present point in time is formed, and, when the characteristic in the frequency band of the synthesized signal does not correspond to a characteristic of an acoustic signal corresponding to a sound other than the target sound, controls the orientation direction forming section such that the orientation direction of the microphone array is maintained.03-24-2011
20110075859APPARATUS FOR GAIN CALIBRATION OF A MICROPHONE ARRAY AND METHOD THEREOF - An apparatus and method for calibrating gain difference between microphones included in a microphone array are provided. In the gain calibrating apparatus, weights for each frequency component of the acoustic signals, which have been converted into the signals in the frequency domain are calculated. The weights are used to calibrate the acoustic signals such that the plurality of acoustic signals each have the same amplitude while the acoustic signals maintain their individual phase. The amplitudes of the acoustic signals are calibrated by use of the calculated weights. The gain calibrating apparatus calibrates gain in real time while calculating weights for frequency components of the frame of acoustic signals in real time.03-31-2011
20110069846AUDIO PROCESSING METHODS AND APPARATUSES UTILIZING THE SAME - An audio processing apparatus is provided. A microphone array includes microphone units. Amplifier modules each receives and amplifies an input signal from one microphone unit to generate amplified signals. A compensation module receives adjusted gains corresponding to the amplifier modules, obtains a gain difference between the adjusted gains, and adjusts one amplified signal according to the gain difference to obtain a compensated signal.03-24-2011
20090022335Dual Adaptive Structure for Speech Enhancement - A clear, high quality voice signal with a high signal-to-noise ratio is achieved by use of an adaptive noise reduction scheme with two microphones in close proximity. The method includes the use of two omini directional microphones in a highly directional mode, and then applying an adaptive noise cancellation algorithm to reduce the noise.01-22-2009
20090136059MICROPHONE SYSTEM, SOUND INPUT APPARATUS AND METHOD FOR MANUFACTURING THE SAME - A microphone system, includes: a housing, adapted to be placed in a reference position relative to a sound source; a first microphone, configured to receive sound from the sound source at a first position within the housing; a second microphone, configured to receive sound from the sound source at a second position within the housing; and a differential signal generator, wherein: the first and second positions are arranged on a first line; and the first line perpendicularly intersects a second line that is extended from the sound source at a third position which is not between the first and second positions, and obliquely intersects a third line that is extended from the sound source at a fourth position which is between the first and second positions, when the housing is placed at the reference position.05-28-2009
20100272286Acoustic camera - An acoustic camera comprises a first sound pick-up device, a second sound pick-up device, and a switch. The switch is respectively connected to the first sound pick-up device and the second pick-up device and used to select the first sound pick-up device or the second sound pick-up device to reconstruct the sound field of the sound source of a detected object. The first sound pick-up device has a first microphone array, and the first microphone array is a near-field uniform microphone array. The second sound pick-up device has a second microphone array, and the second microphone array is a far-field non-uniform microphone array.10-28-2010
20080267423Object sound extraction apparatus and object sound extraction method - An object sound extraction apparatus includes sound source separation sections for separating and generating an object sound separation signal corresponding to an object sound and reference sound separation signals corresponding to the other reference sound based on each combination of a main acoustic signal and sub acoustic signals, an object sound separation signal synthesis section for synthesizing the object sound separation signals, and a spectrum subtraction processing section for extracting an acoustic signal corresponding to the object sound from the synthesis signal by performing a spectrum subtraction processing between the synthesis signal and the reference sound separation signals. Accordingly, in acoustic environments where the object sound and the noises are mixed in the acoustic signals obtained via the microphones, and the mixed conditions can vary, a high object sound extraction performance can be ensured by a small object sound extraction apparatus.10-30-2008
20080317259METHOD AND APPARATUS FOR NOISE SUPPRESSION IN A SMALL ARRAY MICROPHONE SYSTEM - A small array microphone system includes an array microphone having a plurality of microphones and operative to provide a plurality of received signals, each microphone providing one received signal. A first voice activity detector (VAD) provides a first voice detection signal generated using the plurality of received signals to indicate the presence or absence of in-beam desired speech. A second VAD provides a second voice detection signal generated using the plurality of received signals to indicate the presence or absence of out-of-beam noise when in-beam desired speech is absent. A reference signal generator provides a reference signal based on the first voice detection signal, the plurality of received signals, and a beamformed signal, wherein the reference signal has the desired speech suppressed. A beamformer provides the beamformed signal based on the second voice detection signal, the reference signal, and the plurality of received signals, wherein the beamformed signal has noise suppressed. A multi-channel noise suppressor operative to further suppress noise in the beamformed signal and provide an output signal. A speech reliability detector provides a reliability detection signal indicating the reliability of each frequency subband. The first voice detection signal, the second voice detection signal, the reliability detection signal and the output signal are provided to the speech recognition engine.12-25-2008
20080267422Microphone Array and Digital Signal Processing System - A digital microphone array is configured in an open geometry such as a sphere with a large number of inexpensive microphone elements mounted in opposite-facing pairs. The microphone array with DSP is intended to be placed in a three-dimensional sound field, such as a concert hall or film location, and to completely isolate all sound sources from each other while maintaining their placement in a coherent sound field including reverberance.10-30-2008
20110255709Audio control device and audio output device - An audio output device includes two digital microphone units that, upon receiving sound, convert the sound to PDM digital audio signals in which a state is represented by 1 or 0 in each predetermined period. The audio output device generates half-period digital audio signals, which are signals of a half period of the predetermined period, by using first digital audio signals and second digital audio signals that are the digital audio signals converted by the two digital microphones, where the states of the first digital audio signals are each reflected in one of two half periods corresponding to the predetermined period and states of the second audio signals are each reflected in the other half period. The audio output device then converts the half-period digital audio signals, which are generated by the generator, to analog audio signals and outputs the analog audio signals.10-20-2011
20080205665VOICE CONFERENCE APPARATUS - A voice conference apparatus includes a sound collecting unit and a loudspeaker, while the sound collecting unit has a directional polar sensitivity characteristic which has a higher sensitivity with respect to sounds which are radiated from at least one direction, as compared with sounds radiated from other directions. The sound collecting unit of the voice conference apparatus has a plurality of omnidirectional microphones, and forms a desirable sensitivity characteristic. Since the omnidirectional microphones are employed, aging changes and fluctuations contained in the sensitivity characteristics of the respective sound collecting units can be reduced, so that the sensitivity characteristics thereof can become stable, and thus, full duplex communications with higher qualities can be carried out.08-28-2008
20110164761MICROPHONE ARRAY SYSTEM AND METHOD FOR SOUND ACQUISITION - A microphone array system (07-07-2011
20110164760SOUND SOURCE TRACKING DEVICE - The sound source tracking device of the present invention comprises a plurality of differential microphones having bidirectionality, and a support member adapted to support the plurality of differential microphones such that the plurality of differential microphones are disposed in an array within a given plane. The plurality of differential microphones are supported on the support member such that their principal axes of directionality are approximately orthogonal to the given plane.07-07-2011
20100329479SOUND SOURCE LOCALIZATION APPARATUS AND SOUND SOURCE LOCALIZATION METHOD - A sound source localization apparatus for localizing a sound source using an eigenvector, includes, a sound signal input unit inputting a sound signal, a correlation matrix calculation unit calculating a correlation matrix of the input sound signal, and an eigenvector calculation unit calculating an eigenvalue of the correlation matrix using the calculated correlation matrix, wherein the eigenvector calculation unit calculates the eigenvector using the correlation matrix of the input sound signal and one or more predetermined correlation matrices.12-30-2010
20110075857Apparatus for estimating sound source direction from correlation between spatial transfer functions of sound signals on separate channels - An apparatus estimates the direction of a sound source from signals plural microphones capture sound to produce. Data are stored on reverse characteristics of spatial transfer functions defined on sound transmitted from sound source positions to the respective microphones. To the signal produced by each microphone, applied are the reverse characteristics of the spatial transfer functions thus stored in connection with that microphone with respect to the sound source positions to thereby estimate a sound source signal on a sound source position associated with the sound captured. Between the sound source signals estimated on the sound source positions associated with the sounds captured by the microphones, coincidence or higher correlation is found on a sound source position to thereby produce information on at least the direction of the sound source thus found.03-31-2011
20100226507Microphone Unit - A microphone unit comprises first and second microphones and a delay element. When sound is input to the first and second microphones, the delay element delays an output signal of the first microphone so as to detect the sound by a difference signal between the output signal of the first microphone and an output signal of the second microphone. The delay element delays the output signal of the first microphone so as to satisfy relation 0.76≦D/Δr≦2.0 where D is amount of delay for the output signal of the first microphone while Δr is distance between the first and second microphones. The relation D/Δr≦2.0 can reduce far-field noise, while the relation 0.76≦D/Δr can increase the detection sensitivity to sound emitted from a null point.09-09-2010
20110096941SELF-STEERING DIRECTIONAL LOUDSPEAKERS AND A METHOD OF OPERATION THEREOF - A directional sound system, a method of transmitting sound to a spatial location determined by the gaze of a user and a directional communication system are disclosed. In one embodiment, the directional sound system includes: (1) a direction sensor configured to produce data for determining a direction in which attention of a user is directed, (2) a microphone configured to generate output signals indicative of sound received thereat, (3) loudspeakers configured to convert directed sound signals into directed sound and (4) an acoustic processor configured to be coupled to the direction sensor, the microphone, and the loudspeakers, the acoustic processor configured to convert the output signals to the directed sound signals and employ the loudspeakers to transmit the directed sound to a spatial location associated with the direction.04-28-2011
20100215189CEILING MICROPHONE ASSEMBLY - A video teleconferencing directional microphone has two surfaces joined with an angle of 90° relative to each other, a first omni directional microphone element arranged adjacent to the intersection between the two surfaces. The ceiling microphone assembly also includes a second omni directional microphone element arranged at a predetermined distance (d) from both surfaces. A subtractor subtracts the output of the first microphone element from the output of the second microphone element, and the output of the subtractor is equalized by an equalizer (H08-26-2010
20100166212SOUND EMISSION AND COLLECTION DEVICE - It is possible to provide a sound emission and collection device having a compact configuration and being capable of suppressing a wraparound sound from a speaker to a microphone and improving the S/N ratio. In the sound emission and collection device, a plurality of speakers (07-01-2010
20110051953CALIBRATING MULTIPLE MICROPHONES - The specification and drawings present a new method, apparatus and software product for calibrating multiple microphones (e.g., a microphone array) to match their sensitivity using an ambient noise by creating and updating one or more calibration signal level difference histograms.03-03-2011
20110051952SOUND SOURCE IDENTIFYING AND MEASURING APPARATUS, SYSTEM AND METHOD - A sound source can be identified and measured for a long time period outdoors and indoors. A sound source identifying and measuring apparatus including a baffle provided with a frame and a weather-resistant screen for providing an aerial clearance is used for long-term indoor and outdoor measurement at a sound source measurement location to acquire sound source information in all the directions and associate the azimuth, elevation, sound pressure information and/or frequency characteristics or the like per elapsed time. A directional digital filter as well as identification parameters of a target sound source and untargeted sound source are used to identify the sound source more accurately for identification and measurement of the target sound source. Contribution of all of a plurality of sound sources to a sound pressure level is separated in terms of the coming direction for analysis. Thus, whether or not the sound source is a target sound is determined, and determination such as estimation of its sound source intensity and sound pressure level is made.03-03-2011
20110051951Calibrated Dual Omnidirectional Microphone Array (DOMA) - Systems and methods are described by which microphones comprising a mechanical filter can be accurately calibrated to each other in both amplitude and phase.03-03-2011
20110051950Calibrating a Dual Omnidirectional Microphone Array (DOMA) - Systems and methods are described by which microphones comprising a mechanical filter can be accurately calibrated to each other in both amplitude and phase.03-03-2011
20100027808SOUND COLLECTION/REPRODUCTION METHOD AND DEVICE - To provide a sound collection system using a plurality of microphones arranged in the proximity to one another and having an excellent directivity for an arbitrary position in the sound field space. A plurality of control points are set around a plurality of sound collecting microphones. A desired response function matrix A(ω) and a transfer function matrix C(ω) between the control points and the respective microphones are measured. A control filter H arranged in a digital signal processing unit (02-04-2010
20120308040MICROPHONE ARRAY CALIBRATION METHOD AND APPARATUS - An apparatus for providing real-time calibration for two or more microphones. A calibrator for receiving a left microphone signal and a right microphone signal and generating phase difference data. A phase and amplitude correction system for receiving one of the left microphone signal or the right microphone signal the phase difference data and generating calibration data for a beamformer. The beamformer receiving the calibration data, the left microphone signal and the right microphone signal and generating a monaural beamformed signal.12-06-2012
20120308039SOUND SOURCE SEPARATION SYSTEM, SOUND SOURCE SEPARATION METHOD, AND ACOUSTIC SIGNAL ACQUISITION DEVICE - A sound source separation system separates a target sound and a disturbance sound coming from an arbitrary direction other than the direction the target sound comes from. The system includes different-directional-signal-group generators and a sensitive region formation unit. The generators each generate two or more combinations of spectra of signals each of which has a different directivity, using received sound signals of microphones. The sensitive region formation unit determines, for each frequency band, whether or not a relationship between powers of the spectra in each combination simultaneously satisfies conditions each defined for each combination, using two or more combinations of the spectra of the signals generated by the respective different-directional-signal-group generators, and performs multidimensional band selection of assigning power of a spectrum selected beforehand to a spectrum of the target sound to be separated, for a frequency band where the conditions are simultaneously satisfied.12-06-2012
20120308038Sound Source Localization Apparatus and Method - Sound source localization apparatuses and methods are described. A frame amplitude difference vector is calculated based on short time frame data acquired through an array of microphones. The frame amplitude difference vector reflects differences between amplitudes captured by microphones of the array during recording the short time frame data. Similarity between the frame amplitude difference vector and each of a plurality of reference frame amplitude difference vectors is evaluated. Each of the plurality of reference frame amplitude difference vectors reflects differences between amplitudes captured by microphones of the array during recording sound from one of a plurality of candidate locations. A desired location of sound source is estimated based at least on the candidate locations and associated similarity. The sound source localization can be performed based at least on amplitude difference.12-06-2012
20120308037MICROELECTROMECHANICAL MICROPHONE CHIP HAVING STEREOSCOPIC DIAPHRAGM STRUCTURE AND FABRICATION METHOD THEREOF - A microelectromechanical microphone chip having a stereoscopic diaphragm structure includes a base, having a chamber; a diaphragm, disposed on the chamber and having steps with height differences; and a back plate, disposed on the diaphragm, forming a space with the diaphragm in between, and having a plurality of sound-holes communicating with the space.12-06-2012
20100158267Microphone Array Calibration Method and Apparatus - An apparatus for providing real-time calibration for two or more microphones. A calibrator for receiving a left microphone signal and a right microphone signal and generating phase difference data. A phase and amplitude correction system for receiving one of the left microphone signal or the right microphone signal the phase difference data and generating calibration data for a beamformer. The beamformer receiving the calibration data, the left microphone signal and the right microphone signal and generating a monaural beamformed signal.06-24-2010
20100054494MICROPHONE CIRCUIT - A microphone circuit includes a signal generating module, a filtering module, a transmitting module and a switch module. The signal generating module transforms audio signals into electronic signals. The filtering module is connected to the signal generating module to filter the electronic signals sent from the signal generating module. The transmitting module is connected to the filtering module to transmit the signals sent from the filtering module. The switch module is connected to the signal generating module to selectively regulate the microphone circuit to function as a differential microphone circuit or a single-ended microphone circuit.03-04-2010
20090086992MICROPHONE CIRCUIT AND CHARGE AMPLIFIER THEREOF - The invention provides a microphone circuit. In one embodiment, the microphone circuit comprises a microphone, a self-biased amplifier with a finite gain, and a feedback capacitor. The microphone coupled between a ground and a first node generates a first voltage at the first node according to sound pressure. The self-biased amplifier has a positive input terminal coupled to the ground and a negative input terminal coupled to the first node and amplifies the first voltage according to the finite gain to generate a second voltage at a second node. The feedback capacitor coupled between the first node and the second node feeds back the second voltage to the first node. The second voltage is then output to a following module subsequent to the microphone circuit.04-02-2009
20110075858INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM - There is provided an information processing apparatus including microphones, a parameter setting unit, and an audio signal processing unit. At least one pair of the microphones are provided, and the microphone picks up external audio to convert the external audio into an audio signal. The parameter setting unit sets a processing parameter specifying at least the sensitivity of the microphone according to at least an instruction from a user. Based on the processing parameter, the audio signal processing unit applies processing, including beamforming processing, to the audio signal input from the microphone.03-31-2011
20130010980VEHICLE DIRECTION IDENTIFICATION DEVICE, VEHICLE DIRECTION IDENTIFICATION METHOD AND PROGRAM THEREFOR - A vehicle direction identification device includes: a frequency analysis unit which analyzes phase of the surrounding sound in each analysis section specified by predetermined frequency regions and time intervals; a sound source direction identification unit which identifies a sound source direction indicating a direction of a sound included in the vehicle sound for each analysis section; a reflection information storage unit which stores (i) state information relating to rates of occurrence each of which are a count of the analysis sections of a corresponding one of the sound source directions, and (ii) reflection patterns each of which includes an estimated vehicle direction which is a vehicle direction associated with a set of the state information; and a vehicle direction identification unit which identifies a vehicle direction by checking the rates of occurrence obtained from an identification result by the sound source direction identification unit against one of the reflection patterns.01-10-2013
20120148067WIND NOISE DETECTION METHOD AND SYSTEM - The present invention relates to a multi-microphone system and method adapted to determine phase angle differences between a first microphone and a second microphone signal to detect presence of wind noise.06-14-2012
20120099739ESTIMATION OF SYNTHETIC AUDIO PROTOTYPES - An approach to forming output signals both permits flexible and temporally and/or frequency local processing of input signals while limiting or mitigating artifacts in such output signals. Generally, the approach involves first synthesizing prototype signals for the output signals, or equivalently characterizing such prototypes, for example, according to their statistical characteristics, and then forming the output signals as estimates of the prototype signals, for example, as weighted combinations of the input signals.04-26-2012
20120207322MICROPHONE ARRAY WITH REAR VENTING - Microphone arrays (MAs) are described that position and vent microphones so that performance of a noise suppression system coupled to the microphone array is enhanced. The MA includes at least two physical microphones to receive acoustic signals. The physical microphones make use of a common rear vent (actual or virtual) that samples a common pressure source. The MA includes a physical directional microphone configuration and a virtual directional microphone configuration. By making the input to the rear vents of the microphones (actual or virtual) as similar as possible, the real-world filter to be modeled becomes much simpler to model using an adaptive filter.08-16-2012
20120207323METHOD AND APPARATUS FOR SOUND SOURCE LOCALIZATION USING MICROPHONES - A method and apparatus for sound source localization using microphones are disclosed. The method includes: receiving signals coming from a sound source through microphones covering all directions; distinguishing the received signals into those signals directly input to the microphones from the sound source (direct signals) and those signals indirectly input to the microphones (indirect signals); identifying a candidate region at which the sound source is present using locations of the microphones receiving direct signals; selecting a point in the candidate region as a candidate location; drawing one or more virtual tangent lines, contacting with the circumference of the apparatus, from the candidate location; placing locations of the microphones receiving indirect signals on the virtual tangent lines; and localizing the sound source on the basis of signals passing through the microphones receiving direct signals and through the virtual locations of the microphones receiving indirect signals.08-16-2012
20120014535SOUND COLLECTION DEVICE - The invention provides a sound collection device having little error in a desired directivity. The sound collection device includes a unidirectional microphone 01-19-2012
20120063613RECORDING APPARATUS, RECORDING CONDITION SETTING METHOD, AND NON-TRANSITORY COMPUTER-READABLE RECORDING MEDIUM ENCODED WITH RECORDING CONDITION SETTING PROGRAM - A recording apparatus includes: a plurality of microphones having directivity to output collected sound; a switch portion to switch a direction of directivity of each of the plurality of microphones to one of a plurality of predetermined direction patterns; a detection portion to detect a direction pattern switched by the switch portion among the plurality of direction patterns; a recording portion to execute plural kinds of processing on sound collected by the plurality of microphones and to record the processed sound; a setting portion to set parameters to be used by the recording portion to execute the plural kinds of processing; and a storage portion to store the parameters to be used by the recording portion to execute the plural kinds of processing, separately for each of the plural kinds of processing, in association with each of the plurality of direction patterns. When a direction pattern switched by the switch portion is detected by the detection portion, the setting portion sets the parameters to be used to execute plural kinds of processing that are associated with the detected direction pattern.03-15-2012
20120207324Multiple Microphone System - A microphone system has a primary microphone for producing a primary signal, a secondary microphone for producing a secondary signal, and a selector operatively coupled with both the primary microphone and the secondary microphone. The system also has an output for delivering an output audible signal principally produced by one of the to microphones. The selector selectively permits either 1) at least a portion of the primary signal and/or 2) at least a portion of the secondary signal to be forwarded to the output as a function of the noise in the primary signal.08-16-2012
20110103612Indoor Sound Receiving System and Indoor Sound Receiving Method - An indoor sound receiving system and an indoor sound receiving method are provided. The indoor sound receiving system comprises a microphone array, a path function database, a sound tracking unit, a path function selecting unit and a signal processing unit. The microphone array senses at least one primary sound source to output a plurality of microphones sensing signals. The path function database stores a plurality of sets of path functions. The sound tracking unit locates a primary sound source region according to a plurality of microphones sensing signals. The path function selecting unit selects a set of path functions corresponding to the primary sound source region as a set of primary sound source path functions from the path function database. The signal processing unit executes an audio enhancement process to output an enhanced speech signal according to the set of primary sound source path functions and the microphone sensing signals.05-05-2011
20120314885SIGNAL PROCESSING USING SPATIAL FILTER - A device and method processing microphone signals from at least two microphones is presented. A first beamformer processes the signals from the microphones and provides a first beamformed signal. A power estimator processes the signals from the microphones and the first beamformed signal from the first beamformer in order to generate, in frequency bands, a first statistical estimate of the energy of a first part of an incident sound field. A gain controller processes said first statistical estimate in order to generate in frequency bands a first gain signal, and an audio processor for processing an input to the signal processing device in dependence of said generated first gain signal. The invention provides a new and improved noise reduction device and noise reduction method for use in the signal processing in devices processing acoustic signals, e.g. microphone devices.12-13-2012
20120128176SPATIAL NOISE SUPPRESSION FOR A MICROPHONE ARRAY - A noise reduction system and a method of noise reduction includes utilizing an array of microphones to receive sound signals from stationary sound sources and a user that is speaking. Positions of the stationary sound sources relative to the array of microphones are estimated using sound signals emitted from the sound sources at an earlier time. Noise is suppressed in an audio signal based at least in part on the estimated positions of the stationary sound sources. A position of the user relative to the array of microphones can also be estimated05-24-2012
20120128175SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ORIENTATION-SENSITIVE RECORDING CONTROL - Systems, methods, apparatus, and machine-readable media for orientation-sensitive selection and/or preservation of a recording direction using a multi-microphone setup are described.05-24-2012
20120128174Converting multi-microphone captured signals to shifted signals useful for binaural signal processing and use thereof - A method includes, for each of a number of subbands of a frequency range and for at least first and second frequency-domain signals that are frequency-domain representations of corresponding first and second audio signals: determining a time delay of the first frequency-domain signal that removes a time difference between the first and second frequency-domain signals in the subband. The method includes forming a first resultant signal including, for each of the number of subbands, a sum of one of the first or second frequency-domain signals shifted by the time delay and of the other of the first or second frequency-domain signals; and forming a second resultant signal including, for each of the number of subbands, a difference between the shifted one of the first or second frequency-domain signals and the other of the first or second frequency-domain signals. Apparatus and program products are also disclosed.05-24-2012
20120163626ACTIVE SOUND REDUCTION SYSTEM AND METHOD - The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound source for producing an attenuating sound to be superposed with the sound emitted by said primary sound source, a reference microphone for receiving sound from said primary sound source, and at least one error microphone being allocated to each speaker to form a speaker/microphone pair. The at least one error microphone is provided as a directional microphone pointing at its allocated speaker to receive residual sound resulting from the superposition of the sounds from the primary sound source and the corresponding speaker. The error microphone and speaker of at least one speaker/microphone pair and the primary sound source are arranged substantially collinear. A control unit is provided to receive an output reference signal of the reference microphone representing the sound received by the reference microphone and an output error signal of the at least one error microphone representing the sound received by the at least one error microphone and to calculate a control signal for the speaker from the output reference signal and the output error signal.06-28-2012
20120163625METHOD OF CONTROLLING AUDIO RECORDING AND ELECTRONIC DEVICE - A method of controlling audio recording using an electronic device and an electronic device are described. The electronic device comprises a microphone arrangement having a directivity pattern. A target direction relative to the electronic device is automatically determined in response to sensor data representing at least a portion of an area surrounding the electronic device. The microphone arrangement is automatically controlled in response to the determined target direction to adjust an angular orientation of the directivity pattern relative to the electronic device.06-28-2012
20120163623WIDEBAND NOISE REDUCTION SYSTEM AND A METHOD THEREOF - Systems and methods improve audio signals and include means and methods of reducing stochastic noise in wideband audio signals. Multiple microphones may acquire near and far end audio signals, the audio signals may undergo transformations via a general or specialized digital signal processor.06-28-2012
20120163622NOISE DETECTION AND REDUCTION IN AUDIO DEVICES - Methods and apparatuses for detection and reduction of wind noise in audio devices are disclosed. In an embodiment, a method includes acquiring and transforming the audio signals. Correlations from the transformed audio signals are computed. A cross correlation index is compared to a predetermined value to determine if a wind noise spectral content is present. In another embodiment, an apparatus includes an audio processing unit to receive non-decomposed audio signals, and an audio decomposition unit to receive the non-decomposed audio signals and to generate decomposed audio signals. A wind noise spectrum estimation unit receives non-decomposed audio signals and decomposed audio signals and identifies wind noise spectral components in at least one of the non-decomposed and decomposed audio signals. A wind noise spectrum reduction unit receives the wind noise spectral components and removes the wind noise spectral components from at least one of the non-decomposed and the decomposed audio signals.06-28-2012
20120134507Methods, Systems, and Products for Voice Control - Methods, systems, and computer program products provide voice control of electronic devices. Speech and a beacon signal are received. A directional microphone is aligned to a source of the beacon signal. A voice command in the speech is received and executed.05-31-2012
20120250881MICROPHONE BIASING - A plurality of microphones are coupled in series to receive a bias current. A plurality of configurable switches may be used to select which ones of the microphones receive the bias current. The current source may be adjustable and the switches may be reconfigurable to dynamically change both the number of microphones being used and the amount of bias current being generated.10-04-2012
20120230512Audio Zooming Process within an Audio Scene - A method comprising: obtaining a plurality of audio signals originating from a plurality of audio sources in order to create an audio scene; analyzing the audio scene in order to determine zoomable audio points within the audio scene; and providing information regarding the zoomable audio points to a client device for selecting.09-13-2012
20090285409SOUND SOURCE LOCALIZATION DEVICE - Provided is a sound source localization device which can detect a source location of an extraction sound, including at least two microphones; an analysis unit (11-19-2009
20120177219WEARABLE SHOOTER LOCALIZATION SYSTEM - A wearable shooter localization system including a microphone array, processor, and output device for determining information about a gunshot. The microphone array may be worn by on the upper arm of the user. A second array, which may operate cooperatively or independently from the first array, may be worn on the other arm. The microphone array is sensitive to the acoustic effects of gunfire and provides a set of electrical signals to the processing unit, which identifies the origin of the fire. The system may include orientation and/or motion detection sensors, which the processor may use to either initially compute a direction to the origin of a projectile in a frame of reference meaningful to a wearer of the system or to subsequently update that direction as the wearer moves.07-12-2012
20100272287PATTERNED IMPLANTABLE ELECTRET MICROPHONE - An implantable microphone that includes a hermetically-sealed, enclosed volume and an electret member and back plate disposed with a space therebetween and capacitively coupleable to provide an output signal indicative of acoustic signals incident upon at least one of the electret member and back plate. At least one of the electret member and the back plate may include a plurality of laterally offset portions located in corresponding spatial relation to a plurality of laterally offset regions including the lateral extent of the space. The output signal may be at least one of weighted and weightable in relation to the plurality of laterally offset portions. The electret member may include the plurality of laterally offset portions, and the laterally offset portions may include at least one positively charged dielectric material portion and at least one negatively charged dielectric material portion.10-28-2010
20120237055METHOD FOR DUBBING MICROPHONE SIGNALS OF A SOUND RECORDING HAVING A PLURALITY OF MICROPHONES - In order to compensate tonal changes arising from a multi-path propagation of sound portions during the mixing of multi microphone audio recordings as far as possible it is suggested to form spectral values of respectively overlapping time frames of samples of each a first microphone signal (09-20-2012
20120224716SOUND PICKUP DEVICE - A sound pickup device is provided that includes a first housing, a second housing, a first microphone, and a second microphone. The second housing is coupled to the first housing and is configured to change positions with respect to the first housing. The first microphone is mounted on the first housing and is configured to output a first audio signal based on sound picked up by the first microphone. The second microphone is mounted on the second housing and is configured to output a second audio signal based on sound picked up by the second microphone.09-06-2012
20120263315SOUND SIGNAL PROCESSING DEVICE, METHOD, AND PROGRAM - There is provided a sound signal processing device, in which an observation signal analysis unit receives multi-channels of sound-signals acquired by a sound-signal input unit and estimates a sound direction and a sound segment of a target sound to be extracted and a sound source extraction unit receives the sound direction and the sound segment of the target sound and extracts a sound-signal of the target sound. By applying short-time Fourier transform to the incoming multi-channel sound-signals this device generates an observation signal in the time-frequency domain and detects the sound direction and the sound segment of the target sound. Further, based on the sound direction and the sound segment of the target sound, this device generates a reference signal corresponding to a time envelope indicating changes of the target's sound volume in the time direction, and extracts the signal of the target sound, utilizing the reference signal.10-18-2012
20120082322SOUND SCENE MANIPULATION - An audio-processing device having an audio input, for receiving audio signals, each audio signal having a mixture of components, each corresponding to a sound source, and a control input, for receiving, for each sound source, a desired gain factor associated with the source, by which it is desired to amplify the corresponding component, and an auxiliary signal generator, for generating at least one auxiliary signal from the audio signals, and with a different mixture of components as compared with a reference audio signal; and a scaling coefficient calculator, for calculating scaling coefficients based upon the desired gain factors and upon parameters of the different mixture, each scaling coefficient associated with one of the auxiliary signal and optionally the reference audio signal, and an audio synthesis unit, for synthesizing an output audio signal by applying scaling coefficients to the auxiliary signal and optionally the reference audio signal and combining the results.04-05-2012
20120230511MICROPHONE ARRAY WITH REAR VENTING - Techniques for noise suppression systems coupled to one or more microphone arrays are described, including a housing, a first microphone, a second microphone, and a third microphone, where the third microphone functions as a common rear vent for the first and the second microphones.09-13-2012
20110038489SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR COHERENCE DETECTION - Based on phase differences between corresponding frequency components of different channels of a multichannel signal, a measure of directional coherency is calculated. Application of such a measure to voice activity detection and noise reduction are also disclosed.02-17-2011
20090060222Sound zoom method, medium, and apparatus - A sound zoom method, medium, and apparatus generating a signal in which a target sound is removed from sound signals input to a microphone-array by adjusting a null width that restricts a directivity sensitivity of the microphone array, and extracting a signal corresponding to the target sound from the sound signals by using the generated signal. Thus, a sound located at a predetermined position away from the microphone array can be selectively obtained so that a target sound is efficiently obtained.03-05-2009
20120321100Wide Dynamic Range Microphone - A microphone system has an output and at least a first transducer with a first dynamic range, a second transducer with a second dynamic range different than the first dynamic range, and coupling system to selectively couple the output of one of the first transducer or the second transducer to the system output, depending on the magnitude of the input sound signal, to produce a system with a dynamic range greater than the dynamic range of either individual transducer. A method of operating a microphone system includes detecting whether a transducer output crosses a threshold, and if so then selectively coupling another transducer's output to the system output. Some embodiments combine the outputs of more than one transducer in a weighted sum during transition from one transducer output to another, as a function of time or as a function of the amplitude of the incident audio signal.12-20-2012
20110235822APPARATUS AND METHOD FOR REDUCING REAR NOISE - An apparatus and method for removing noise are provided. The apparatus includes an acoustic signal input unit configured to comprise three or more microphones including a first microphone as a reference microphone, a second microphone disposed at a position asymmetrical to the first microphone, and a third microphone disposed at a position symmetrical to the first microphone, and an acoustic signal processing unit configured to remove rear noise using acoustic signals received from the first microphone, the second microphone, and the third microphone.09-29-2011
20100232620SOUND PROCESSING DEVICE, CORRECTING DEVICE, CORRECTING METHOD AND RECORDING MEDIUM - A sound processing device includes: a plurality of sound input units; a detecting unit for detecting a frequency component of each sound input to the plurality of sound signal unit, the each sound arriving from a direction approximately perpendicular to a line determined by arrangement positions of two sound input units among the plurality of sound input units; a correction coefficient unit for obtaining a correction coefficient for correcting a level of at least one of the sound signals generated from the input sounds by the two sound input units so as to match the levels of the sound signals with each other based on the sound of the detected frequency component; a correcting unit for correcting the level of at least one of the sound signals using the obtained correction coefficient; and a processing unit for performing a sound process based on the sound signal with the corrected level.09-16-2010
20120087513MICROPHONE UNIT AND SOUND COLLECTING DEVICE - To provide a microphone unit capable of acquiring a target sound with high accuracy. A microphone unit in accordance with an exemplary embodiment of the present invention includes a plurality of microphones, a microphone substrate on which the plurality of microphones are mounted, and a vibration observation device disposed at roughly a center of gravity of a shape that is formed by connecting centers of certain adjacent microphones among the plurality of microphones.04-12-2012
20120087512DISTRIBUTED SIGNAL PROCESSING SYSTEMS AND METHODS - Systems and methods for parallel and distributed processing of audio signals produced by a microphone array are described. In one aspect, a distributed signal processing system includes an array of microphones and an array of processors. Each processor is connected to one of the microphones and is connected to at least two other processors, enabling communication between adjacent connected processors. The system also includes a computing device connected to each of the processors. Each microphone detects a sound and generates an audio signal, and each processor is configured to receive and process the audio signal sent from a connected microphone and audio signals sent from at least one of the adjacent processors to produce a data stream that is sent to the computing device.04-12-2012
20120288114AUDIO CAMERA USING MICROPHONE ARRAYS FOR REAL TIME CAPTURE OF AUDIO IMAGES AND METHOD FOR JOINTLY PROCESSING THE AUDIO IMAGES WITH VIDEO IMAGES - A method comprises providing at least one processing unit comprising a decomposing section and a playback section; receiving, at the decomposing section, audio data generated via an array of microphones, the audio data representing an acoustic scene; decomposing the audio data into a plurality of signals representing components of the acoustic scene arriving from a plurality of directions, using the decomposing section; and rendering the audio components for a listener based on the plurality of directions of the audio components, using the playback section.11-15-2012
20090052689Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays - Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.02-26-2009
20100202628AUGMENTED ELLIPTICAL MICROPHONE ARRAY - In one embodiment, an audio system has a microphone array and a signal processing subsystem that processes audio signals generated by the microphone array to produce an output beampattem. The microphone array has (i) a plurality microphones arranged in a circular portion and (ii) a center microphone. The signal processing subsystem has (1) a decomposer that spatially decomposes the microphone audio signals to generate a plurality of eigenbeams and (2) a heamformer that generates the output beampattern as a weighted sum of the eigenbeams. By adding the center microphone, the audio system is able to provide some degree of control over the beamforming in the vertical direction as well as provide reduction of modal aliasin.08-12-2010
20130016852SOUND SOURCE LOCALIZATION USING PHASE SPECTRUMAANM Regunathan; ShankarAACI RedmondAAST WAAACO USAAGP Regunathan; Shankar Redmond WA USAANM Koishida; KazuhitoAACI RedmondAAST WAAACO USAAGP Koishida; Kazuhito Redmond WA USAANM Kikkeri; Harshavardhana NarayanaAACI BellevueAAST WAAACO USAAGP Kikkeri; Harshavardhana Narayana Bellevue WA US - An array of microphones placed on a mobile robot provides multiple channels of audio signals. A received set of audio signals is called an audio segment, which is divided into multiple frames. A phase analysis is performed on a frame of the signals from each pair of microphones. If both microphones are in an active state during the frame, a candidate angle is generated for each such pair of microphones. The result is a list of candidate angles for the frame. This list is processed to select a final candidate angle for the frame. The list of candidate angles is tracked over time to assist in the process of selecting the final candidate angle for an audio segment.01-17-2013
20110158426SIGNAL PROCESSING APPARATUS, MICROPHONE ARRAY DEVICE, AND STORAGE MEDIUM STORING SIGNAL PROCESSING PROGRAM - A signal processing apparatus includes: two sound input units, an orthogonal transformer to transform two sound signals input from the two sound input units into respective spectral signals in a frequency domain, a phase difference calculator to calculate a phase difference between the spectral signals in the frequency domain, a range determiner to determine a coefficient responsive to a frequency in the phase difference as a function of frequency, and determine a suppression range related to a phase on a per frequency basis of the frequency responsive to the coefficient; and a filter to phase-shift a component of one of the spectral signals on a per frequency basis in order to generate a phase-shifted spectral signal when the phase difference at each frequency falls within the suppression range, synthesizing the phase-shifted spectral signal and the other of the spectral signals in order to generate a filtered spectral signal.06-30-2011
20110158425MICROPHONE DIRECTIVITY CONTROL APPARATUS - A directivity control apparatus is capable of acquiring tilt information indicating a tilt angle of the directivity control apparatus; acquiring sound source direction information; storing mapping data indicating a relationship between the tilt angle and the direction; determining whether the sound information indicates a target sound; updating the mapping data based on the sound source direction information and the tilt information, if the sound information indicates the target sound; estimating a direction of sound responsive to the tilt information, based on the mapping data if the sound information doesn't indicate a target sound; and adjusting a directivity of a microphone based on the sound source direction information if the sound information indicates the target sound, or adjusting the directivity of the microphone based on the estimated direction if the sound information doesn't indicate the target sound.06-30-2011
20130022216SYSTEMS AND METHODS FOR PROCESSING AUDIO SIGNALS CAPTURED USING MICROPHONES OF MULTIPLE DEVICES - Systems, methods and apparatus for capturing at least one audio signal using a plurality of microphones that generate a plurality of representations of the at least one audio signal. In some embodiments, the plurality of microphones are disposed in a multiple-microphone setting so that the at least one audio signal is captured by at least two of the plurality of microphones. In some embodiments, at least one of the plurality of microphones is a microphone of a mobile device. The plurality of representations of the at least one audio signal may be processed to obtain a processed representation of the at least one audio signal.01-24-2013
20080247567Directional Audio Capturing - Method and system for digitally directive focusing and steering of sampled sound within a target area for producing a selective audio output accompanying video. In a preferred embodiment, the method and system is characterized by receiving position and focus data from one or more cameras shooting an event, and use this input data for generating relevant sound output together with the picture.10-09-2008
20080247566Sound source localization system and sound source localization method - A sound source localization system and a sound source localization method. The sound source localization system includes sound capturing devices and an arithmetic unit. The sound capturing devices sense a sound source to output time domain signals. The arithmetic unit transforms the time domain signals into frequency domain signals, performs a cross spectrum process according to the frequency domain signals to determine time differences of arrival, and locates the sound source according to the time differences of arrival and locations of the sound capturing devices.10-09-2008
20080247565Position-Independent Microphone System - An audio system generates position-independent auditory scenes using harmonic expansions based on the audio signals generated by a microphone array. In one embodiment, a plurality of audio sensors are mounted on the surface of a sphere. The number and location of the audio sensors on the sphere are designed to enable the audio signals generated by those sensors to be decomposed into a set of eigenbeam outputs. Compensation data corresponding to at least one of the estimated distance and the estimated orientation of the sound source relative to the array are generated from eigenbeam outputs and used to generate an auditory scene. Compensation based on estimated orientation involves steering a beam formed from the eigenbeam outputs in the estimated direction of the sound source to increase direction independence, while compensation based on estimated distance involves frequency compensation of the steered beam to increase distance independence.10-09-2008
20080240463Enhanced Beamforming for Arrays of Directional Microphones - A novel enhanced beamforming technique that improves beamforming operations by incorporating a model for the directional gains of the sensors, such as microphones, and provides means of estimating these gains. The technique forms estimates of the relative magnitude responses of the sensors (e.g., microphones) based on the data received at the array and includes those in the beamforming computations.10-02-2008
20130177168Apparatus - An apparatus comprising at least one processor and at least one memory including computer program code the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform determining a change in position and/or orientation of an apparatus, and processing at least two audio signals dependent on the change in position and/or orientation to generate at least one output signal wherein the processing of the two audio signals dependent on the change in position and/or orientation produces the output signal comprising a representation of acoustic energy from a first direction.07-11-2013
20130170666ADAPTIVE SELF-CALIBRATION OF SMALL MICROPHONE ARRAY BY SOUNDFIELD APPROXIMATION AND FREQUENCY DOMAIN MAGNITUDE EQUALIZATION - Methods and apparatus for self-calibration of small-microphone arrays are described. In one embodiment, self-calibration is based upon a mathematical approximation for which a detected response by one microphone should approximately equal a combined response from plural microphones in the array. In a second embodiment, self-calibration is based upon matching gains in each of a plurality of Bark frequency bands, and applying the matched gains to frequency domain microphone signals such that the magnitude response of all the microphones in the array approximates an average magnitude response for the array. The methods and apparatus may be implemented in hearing aids or small audio devices and used to mitigate adverse aging and mechanical effects on acoustic performance of small-microphone arrays in these systems.07-04-2013
20110274289SENSOR ARRAY BEAMFORMER POST-PROCESSOR - A novel beamforming post-processor technique with enhanced noise suppression capability. The present beamforming post-processor technique is a non-linear post-processing technique for sensor arrays (e.g., microphone arrays) which improves the directivity and signal separation capabilities. The technique works in so-called instantaneous direction of arrival space, estimates the probability for sound coming from a given incident angle or look-up direction and applies a time-varying, gain based, spatio-temporal filter for suppressing sounds coming from directions other than the sound source direction, resulting in minimal artifacts and musical noise.11-10-2011
20130142358Variable Directivity MEMS Microphone - The directivity pattern of a MEMS microphone is adjusted. An indication of a position of a MEMS microphone is received and the microphone includes at least one diaphragm. An adjustment to the position of the MEMS microphone is determined. Based upon the adjustment, a position of the at least one diaphragm is adjusted. The adjusting is effective to alter a directivity pattern of the microphone.06-06-2013
20080219470Signal processing apparatus, signal processing method, and program recording medium - A signal processing apparatus includes a receiving unit configured to receive an audio signal, and a noise reducing unit configured to reduce a wind noise component of the audio signal received by the receiving unit by reducing a signal component that has a frequency less than or equal to a predetermined frequency and that is localized in a different manner from a specified manner.09-11-2008
20080219469Full Range Planar Magnetic Microphone And Arrays Thereof - Contemplated planar magnetic microphones have a magnet and diaphragm arrangement such that substantially homogenous vertical and high horizontal magnetic flux density is realized in the inter-magnet space. Most preferably, the diaphragm is disposed in the inter-magnet space and includes a voice coil covering a significant fraction of the active portion of the membrane. In further especially preferred aspects, the membrane is sufficiently strong and tensioned to allow a large elastic excursion in the inter-magnet space. Consequently, contemplated planar magnetic microphones provide exceptionally large dynamic range without compression and/or distortion and can be easily configured to operate in an environment that is subject to moisture, rain, or to even operate in a submerged environment. Moreover, contemplated microphones can be used as speakers at even high SPL without reconfiguration.09-11-2008
20130136274Processing Signals - Method, device and computer program product for processing signals. Signals are received at a plurality of sensors of the device. The initiation of a signal state in which signals of a particular type are received at the plurality of sensors is determined. Responsive to the determining of the initiation of the signal state, data indicating beamformer coefficients to be applied by a beamformer of the device is retrieved from data storage means, wherein the indicated beamformer coefficients are determined so as to be suitable for application to signals received at the sensors in the signal state. The beamformer applies the indicated beamformer coefficients to the signals received at the sensors in the signal state, thereby generating a beamformer output.05-30-2013
20130094664METHOD AND DEVICE FOR PHASE-SENSITIVE PROCESSING OF SOUND SIGNALS - A method and device for phase-sensitive processing of sound signals of at least one sound source may include arranging two microphones at a distance d from each other, capturing sound signals with both microphones, generating associated microphone signals, and processing the sound signals of the microphones. During a calibration mode, a calibration-position-specific, frequency-dependent phase difference vector φ0(f) between the associated calibration microphone signals may be calculated from their frequency spectra for the calibration position. Then, during an operating mode, a signal spectrum S of a signal to be output is calculated by multiplication of at least one of the two frequency spectra of the current microphone signals with a spectral filter function F.04-18-2013
20130121505MICROPHONE ARRAY CONFIGURATION AND METHOD FOR OPERATING THE SAME - An apparatus comprises a plurality of microphone units including at least a first microphone unit and a second microphone unit, each of the first and second microphone units comprising a microphone, an analog-to-digital converter, and a local memory. The microphone is configured to capture an analog audio signal. The analog-to-digital converter is configured to convert the analog audio signal created by the microphone into a digital audio signal. The local memory is configured to store the digital audio signal. The apparatus further comprises, a controller unit comprising a processor configured to process the digital audio signals. The first microphone unit and the second microphone unit are operatively connected to the controller unit in a series configuration, the second microphone unit being configured to output the digital audio signal to the first microphone unit, and the first microphone unit being configured to output the digital audio signal to the controller unit.05-16-2013
20130121504MICROPHONE ARRAY WITH DAISY-CHAIN SUMMATION - Microphone stages in a microphone array may be coupled together in a daisy chain. Each stage may include a microphone, an analog to digital converter, a decimation unit, a receiver, an adder, and a transmitter. The converter may convert analog audio microphone signals into digital codes that may be decimated. The adder may add decimated digital codes in each stage to a cumulative sum of decimated digital codes from prior stages. This new sum may be transmitted to the next microphone stage, where the adder may add the decimated digital codes from that stage to the cumulative sum. A serial interface may be used to connect the transmitters and receivers of each of the stages. The serial interface may be used to transmit the cumulative sum of decimated digital codes between the stages. The serial interface may also be used to transmit configuration data between the stages.05-16-2013
20130142356NEAR-FIELD NULL AND BEAMFORMING - Devices and methods are disclosed that allow for selective acoustic near-field nulls for microphone arrays. One embodiment may take the form of an electronic device including a speaker and a microphone array. The microphone array may include a first microphone positioned a first distance from the speaker and a second microphone positioned a second distance from the speaker. The first and second microphones are configured to receive an acoustic signal. The microphone array further includes a complex vector filter coupled to the second microphone. The complex vector filter is applied to an output signal of the second microphone to generate an acoustic sensitivity pattern for the array that provides an acoustic null at the location of the speaker.06-06-2013
20130142357METHOD FOR VISUALIZING SOUND SOURCE ENERGY DISTRIBUTION IN ECHOIC ENVIRONMENT - A method for visualizing sound source energy distribution in an echoic environment comprises steps: arranging in an echoic environment a plurality of arrayed sound pickup units, wherein each sound pickup unit includes at least two microphones separated by a directive distance enabling the sound pickup unit to have a primary pickup direction; disposing the sound pickup units with the primary pickup directions thereof pointing toward a sound source in the echoic environment, and measuring the sound source by the sound pickup units to obtain a sound source-related parameter; substituting the directive distance and the parameter into an algorithm to make the parameter have directivity; and then substituting the parameter into an ESM algorithm to establish a sound source energy distribution profile. Thereby, the method can measure a sound source in a specified direction in an echoic environment and establish a visualized sound source energy distribution profile.06-06-2013
20130142355NEAR-FIELD NULL AND BEAMFORMING - Devices and methods are disclosed that allow for selective acoustic near-field nulls for microphone arrays. One embodiment may take the form of an electronic device including a speaker and a microphone array. The microphone array may include a first microphone positioned a first distance from the speaker and a second microphone positioned a second distance from the speaker. The first and second microphones are configured to receive an acoustic signal. The microphone array further includes a complex vector filter coupled to the second microphone. The complex vector filter is applied to an output signal of the second microphone to generate an acoustic sensitivity pattern for the array that provides an acoustic null at the location of the speaker.06-06-2013
20090103749Microphone Array Processor Based on Spatial Analysis - An array processing system improves the spatial selectivity by forming multiple steered beams and carrying out a spatial analysis of the acoustic scene. The analysis derives a time-frequency mask that, when applied to a reference look-direction beam (or other reference signal), enhances target sources and substantially improves rejection of interferers that are outside of the specified region.04-23-2009
20130101136WEARABLE DIRECTIONAL MICROPHONE ARRAY APPARATUS AND SYSTEM - A wearable microphone array apparatus and system used as a directional audio system and as an assisted listening device. The present invention advances hearing aids and assisted listening devices to allow construction of a highly directional audio array that is wearable, natural sounding, and convenient to direct, as well as to provide directional cues to users who have partial or total loss of hearing in one or both ears. The advantages of the invention include simultaneously providing high gain, high directivity, high side lobe attenuation, and consistent beam width; providing significant beam forming at lower frequencies where substantial noises are present, particularly in noisy, reverberant environments; and allowing construction of a cost effective body-worn or body-carried directional audio device.04-25-2013
20080199025SOUND RECEIVING APPARATUS AND METHOD - A plurality of sound receiving units is installed onto an equipment body. An initial information memory stores an initial direction of the equipment body in a terminal coordinate system based on the equipment body. An orientation detection unit detects an orientation of the equipment body in a world coordinate system based on a real space. A lock information output unit outputs lock information representing to rock the orientation. An orientation information memory stores the orientation detected when the lock information is output. A direction conversion unit converts the initial direction to a target sound direction in the world coordinate system by using the orientation stored in the orientation information memory. A directivity forming unit forms a directivity of the plurality of sound receiving units toward the target sound direction.08-21-2008
20080199023Assembly, System and Method for Acoustic Transducers - The invention relates to an assembly of acoustic transducers, a system and a method for receiving and reproducing sound. The assembly comprises a first acoustic transducer having a directional pattern of the shape of a figure of eight in the direction of an X axis of a XYZ coordinate system, and a second acoustic transducer placed perpendicularly relative to a first capsule and providing a directional pattern of the shape of a figure of eight in the direction of a Y axis of a XYZ coordinate system. The assembly is characterized in that it further comprises a third acoustic transducer placed perpendicularly relative to the first and second acoustic transducers, enabling the implementation of spatial sound both in a XY plane and in a XYZ plane by using these acoustic transducers placed in accordance with an axis of the axes of the XYZ coordinate system. The invention further provides a system and a method for processing signals received with the assembly.08-21-2008
20110243348PIPE CALIBRATION SYSTEM FOR OMNIDIRECTIONAL MICROPHONES - Embodiments include a system comprising a pipe that includes a first end and a second end. The pipe includes a plurality of sections coupled together. The system includes a loudspeaker that is a mouth simulator loudspeaker. The system includes an adapter that connects the loudspeaker to the first end. The system includes a receptacle positioned in the pipe a first distance from the first end and a second distance from the second end. The receptacle secures a plurality of microphones a third distance inside an inside surface of the pipe.10-06-2011
20120275621Surface-Mounted Microphone Arrays on Flexible Printed Circuit Boards - A microphone array, having a three-dimensional (3D) shape, has a plurality of microphone devices mounted onto (at least one) flexible printed circuit board (PCB), which is bent to achieve the 3D dimensional shape. Output signals from the microphone devices can be combined (e.g., by weighted or unweighted summation or differencing) to form sub-element output signals and/or element output signals, and ultimately a single array output signal for the microphone array. The PCB may be uniformly flexible or may have rigid sections interconnected by flexible portions. Possible 3D shapes include (without limitation) cylinders, spirals, serpentines, and polyhedrons, each formed from a single flexible PCB. Alternatively, the microphone array may be an assembly of multiple, interconnecting sub-arrays, each having two or more rigid portions separated by one or more flexible portions, where each sub-array has at least one cut-out portion for receiving a rigid portion of another sub-array.11-01-2012
20120275620MICROPHONE ARRAY APPARATUS AND STORAGE MEDIUM STORING SOUND SIGNAL PROCESSING PROGRAM - A microphone array apparatus includes: an acquisition unit configured to acquire samples from a sound signal inputted from each of a plurality of microphones, at predetermined time intervals; an operation unit configured to calculate a value based on volumes of the sound signal possessed by a plurality of the samples for each of the sound signals inputted from the plurality of microphones; a correlation coefficient calculator configured to calculate a coefficient of correlation between the sound signals, on the basis of the values calculated for the respective sound signals; and a gain calculator configured to calculate reduction gain for the sound signals inputted from the plurality of microphones, on the basis of the coefficient of correlation.11-01-2012
20120275619AUDIO SIGNAL PROCESSING APPARATUS, AUDIO SIGNAL PROCESSING METHOD AND IMAGING APPARATUS - An audio signal processing apparatus generates an audio signal having an omni-directivity in the whole circumferential direction, generates an audio signal having a directivity in the right-left direction, generates an audio signal having a directivity in the front-back direction, adds the audio signal resulting from the multiplication of the audio signal having a directivity in the whole circumferential direction by a predetermined coefficient, the audio signal resulting from the multiplication of the audio signal having a directivity in the right-left direction by a predetermined coefficient, and the audio signal resulting from the multiplication of the audio signal having a directivity in the front-back direction by a predetermined coefficient, and generates a unidirectional audio signal.11-01-2012
20100316232Spatial Audio for Audio Conferencing - Spatialized audio is generated for voice data received at a telecommunications device based on spatial audio information received with the voice data and based on a determined virtual position of the source of the voice data for producing spatialized audio signals.12-16-2010
20100316231System and Method for Determining Vector Acoustic Intensity External to a Spherical Array of Transducers and an Acoustically Reflective Spherical Surface - A system and computer implemented method for determining and displaying vector acoustic intensity fields based on signals from a rigid spherical array of acoustic sensors within a volume external to the array. The method includes a propagator with a ratio of Green's functions for the location within the volume and for the spherical array radius, and a Tikhonov regularization filter that uses the Morozov discrepancy principle on the measured noise variance and Fourier coefficients of the measured partial pressures with respect to reference accelerometer or microphone measurements.12-16-2010
20130156220SELECTIVE SPATIAL AUDIO COMMUNICATION - Audio data associated with a plurality of originating sources is obtained, the audio data directed to a participant entity. An originating entity associated with one of the originating sources is determined. A listener focus indication is obtained from the participant entity indicating a listener focus on the originating entity. A spatial positional relationship is determined between the participant and originating entities. A filtering operation is initiated to enhance a portion of the audio data associated with the originating entity, the portion enhanced relative to another portion of the audio data that is associated with the originating sources other than the first one. A spatialization of a stream of the first portion that is based on a participant positional listening perspective is initiated, based on the spatial positional relationship. Transmission of a spatial stream of audio data is initiated to the participant entity, based on the filtering operation and spatialization.06-20-2013
20130156221SIGNAL PROCESSING APPARATUS AND SIGNAL PROCESSING METHOD - A signal processing apparatus includes an adder that acquires a plurality of input signals from a plurality of microphones and calculates an added value obtained by adding the input signals together, a subtracter that acquires a plurality of input signals from the plurality of microphones and calculates a subtracted value obtained by subtracting one input signal from the other input signal, and a determination unit that determines whether noise is included in the input signals based on the added value and the subtracted value.06-20-2013
20120281854SOUND EMISSION AND COLLECTION DEVICE - A sound emission and collection device has a plurality of speakers (11-08-2012
20120281853SYSTEM AND METHOD FOR ENHANCING SPEECH INTELLIGIBILITY USING COMPANION MICROPHONES WITH POSITION SENSORS - Systems and methods for enhancing speech intelligibility using a companion microphone system can include microphones, a position sensor and a microcontroller. In certain embodiments, the position sensor is configured to generate position data corresponding to a position of the companion microphone system. In various embodiments, the microphones and the position sensor include a fixed relationship in three-dimensional space. In certain embodiments, the microcontroller is configured to receive the position data from the position sensor and select one or more of the microphones to receive an audio input based on the received position data.11-08-2012
20090052687Method and apparatus for determining and indicating direction and type of sound - A method and apparatus for determining the direction of a sound source is disclosed. The method includes determining time differences of arrival of the sound at N locations and using the differences to determine the angular direction of the source. The apparatus indicates the angle of arrival and additionally indicates the type of the sound source.02-26-2009
20130195285ZONE BASED PRESENCE DETERMINATION VIA VOICEPRINT LOCATION AWARENESS - A speech from a speaker proximate to one or more microphones within an environment can be received. The microphones can be a directional microphone or an omni-directional microphone. The speech can be processed to produce an utterance to determine the identity of the speaker. The identity of the speaker can be associated with a voiceprint. The identity can be associated with a user's credentials of a computing system. The credentials can uniquely identify the user within the computing system. The utterance can be analyzed to establish a zone in which the speaker is present. The zone can be a bounded region within the environment. The zone can be mapped within the environment to determine a location of the speaker. The location can be a relative or an absolute location.08-01-2013
20090141908Distance based sound source signal filtering method and apparatus - Provided is a sound source signal filtering method and apparatus. The sound source signal filtering method includes: generating two or more microphone output signals by combining sound source signals input through a plurality of microphones; calculating distances between the microphones and a sound source from which the sound source signals are emitted by using distance relationships according to frequencies of the sound source signals extracted from the generated microphone output signals; and filtering the sound source signals to obtain one or more sound source signals corresponding to a predetermined distance by using the calculated distances. Accordingly, it is possible to obtain only sound source signals emitted from a sound source at a particular distance from the microphone array among a plurality of sound source signals input through the microphone array.06-04-2009
20120093340VARIABLE DIRECTIONAL MICROPHONE UNIT AND VARIABLE DIRECTIONAL MICROPHONE - A variable directional microphone unit includes, a pair of microphone elements disposed back to back, output signal systems of the microphone elements connected to a hot-side terminal and a cold-side terminal of a balanced output respectively, an inverting amplifier connected to one output signal system of the microphone elements, an input resistance and a feedback resistance of the inverting amplifier at least any one of which is divided, and a switching device switching a signal retrieving point by arbitrarily selecting each divide of at least one of the input resistance or the feedback resistance. The switching device switches one output of the balanced output to enable directivity of the balanced output signal to vary. A circuit for switching the directivity does not become a load or a noise source.04-19-2012
201200933393D SOUNDSCAPING - A system and method for tracking and tracing motions of multiple incoherent sound sources and for visualizing the resultant overall sound pressure distribution in 3D space in real time are developed. This new system needs only four microphones (although more could be used) that can be mounted at any position so long as they are not placed on the same plane. A sample configuration is to mount three microphones on the y, z plane, while the 4th microphone on a plane perpendicular to the y, z plane. A processor receives signals from the microphones based on the signals received from noise sources in unknown locations, and the processor determines the locations of these sources and visualizes the resultant sound field in 3D space in real time. This system works for broadband, narrowband, tonal sound signals under transient and stationary conditions.04-19-2012
20120093338SYSTEM AND METHOD FOR SPATIAL NOISE SUPPRESSION BASED ON PHASE INFORMATION - Disclosed herein are systems, methods, and non-transitory computer-readable storage media for suppressing spatial noise based on phase information. The method transforms audio signals to frequency-domain data and identifies time-frequency points that have a parameter (e.g., signal-to-noise ratio) above a threshold. Based on these points, unwanted signals can be attenuated the desired audio source can be isolated. The method can work on a microphone array that includes two microphones or more.04-19-2012
20120093337Microphone Array - Embodiments of the invention improve upon the prior art array by having more carefully defined directivity functions designed to meet two criteria, being firstly to minimise cross-talk between non-adjacent microphones in the array, and secondly to design the array response such that it approximates stereophonic panning curves that have been shown to provided for good auditory localisation. One embodiment therefore provides a microphone array, comprising N microphones, wherein N is greater than or equal to 3. The microphones are substantially equiangularly arranged over a circular arc subtending an angle ε, wherein ε is less than or equal to 2π, with the directional axes of the N microphones facing substantially radially outwards. Each of the N microphones have a substantially common directivity function Γ(θ) defining the directional response of the microphone, wherein θ=0 is the directional axis, and the directivity function Γ(θ) is arranged such that a sound source in acoustical free field is effectively captured by no more than two consecutive microphones in the array. By arranging the directivity function in this manner crosstalk between non-adjacent microphones can be minimised, which has been shown to improve auditory localisation performance.04-19-2012
20120093336SYSTEMS AND METHODS FOR PERFORMING SOUND SOURCE LOCALIZATION - Systems and methods for performing sound source localization are provided. In one aspect, a method for locating a sound source using a computing device subdivides a space into subregions. The method then computes a sound source power for each of subregions and determines which of the sound source energies is the largest. When the volume of the subregion is less than a threshold volume, the method outputs the subregion having the largest sound source power. Otherwise, the stages of partitioning, computing, and determining the subregion having the largest sound source power is repeated.04-19-2012

Patent applications in class DIRECTIVE CIRCUITS FOR MICROPHONES