Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Monolithic integrated

Subclass of:

372 - Coherent light generators

372039000 - PARTICULAR ACTIVE MEDIA

372430010 - Semiconductor

372440010 - Injection

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
372500120 Laser array 115
372500110 With diffraction grating (Bragg reflector) 101
372500230 Having lens 22
372500210 Having photodetection means 18
372500220 Having an amplifier 9
Entries
DocumentTitleDate
20130044783HOLE BLOCKING LAYERS IN NON-POLAR AND SEMI-POLAR GREEN LIGHT EMITTING DEVICES - Light emitting devices are provided comprising an active region interposed between n-type and p-type sides of the device and a hole blocking layer interposed between the active region and the n-type side of the device. The active region comprises an active MQW structure and is configured for electrically-pumped stimulated emission of photons in the green portion of the optical spectrum. The n-type side of the light emitting device comprises an n-doped semiconductor region. The p-type side of the light emitting device comprises a p-doped semiconductor region. The n-doped semiconductor region comprises an n-doped non-polar or n-doped semi-polar substrate. Hole blocking layers according to the present disclosure comprise an n-doped semiconductor material and are interposed between the non-polar or semi-polar substrate and the active region of the light emitting device. The hole blocking layer (HBL) composition is characterized by a wider bandgap than that of the quantum well barrier layers of the active region.02-21-2013
20080259984STRUCTURE HAVING PHOTONIC CRYSTAL LAYER AND SURFACE EMITTING LASER INCLUDING THE SAME - A structure has a photonic crystal layer comprising a first member made of a material having a first refractive index; and a second member made of a material having a second refractive index, wherein the first member has a plurality of holes periodically arranged, and the second member is placed in each of the holes so that a center of the second member is staggered from a center of the hole on a plane of the photonic crystal layer.10-23-2008
20120114004NITRIDE SEMICONDUCTOR LASER DEVICE AND METHOD OF MANUFACTURING THE SAME - A nitride semiconductor laser device includes a first semiconductor layer, an active layer, a second semiconductor layer having a ridge portion and a planar portion, a first electrode formed above the ridge portion, and a dielectric film formed on the side wall portion of the ridge portion. A region from a front end face to a predetermined position P is a region A. A region from the predetermined position P to the rear end face is a region B. A thickness of the part of the ridge portion exposed from the dielectric film in the region A is greater than a thickness of the part of the ridge portion exposed from the dielectric film in the region B, and the first electrode is in contact with the ridge portion at least in the region A.05-10-2012
20120236893Semiconductor Laser Mounting for Improved Frequency Stability - A first contact surface of a semiconductor laser chip can be formed to a target surface roughness selected to have a maximum peak to valley height that is substantially smaller than a barrier layer thickness of a metallic barrier layer to be applied to the first contact surface. A metallic barrier layer having the barrier layer thickness can be applied to the first contact surface, and the semiconductor laser chip can be soldered to a carrier mounting along the first contact surface using a solder composition by heating the soldering composition to less than a threshold temperature at which dissolution of the metallic barrier layer into the soldering composition occurs. Related systems, methods, articles of manufacture, and the like are also described.09-20-2012
20130016752Laser Diode Assembly and Method for Producing a Laser Diode AssemblyAANM Lell; AlfredAACI Maxhutte-HaidhofAACO DEAAGP Lell; Alfred Maxhutte-Haidhof DEAANM Straussburg; MartinAACI DonaustaufAACO DEAAGP Straussburg; Martin Donaustauf DE - A laser diode arrangement having at least one semiconductor substrate, having at least two laser stacks each having an active zone and having at least one intermediate layer. The laser stacks and the intermediate layer are grown monolithically on the semiconductor substrate. The intermediate layer is arranged between the laser stacks. The active zone of the first laser stack can be actuated separately from the active zone of the at least one further laser stack.01-17-2013
20110280270SEMICONDUCTOR LASER APPARATUS AND OPTICAL APPARATUS - This semiconductor laser apparatus includes a semiconductor laser chip and a package sealing the semiconductor laser chip. The package has a concave base portion with an opening provided in an upper surface and one side surface and a sealing member covering the opening, and the sealing member is mounted on a bonded region of the base portion through a sealant.11-17-2011
20110280269HIGH CONTRAST GRATING INTEGRATED VCSEL USING ION IMPLANTATION - A Vertical Cavity Surface Emitting Laser (VCSEL) and its fabrication are taught which incorporate a high contrast grating (HCG) to replace the top mirror of the device and which can operate at long-wavelengths, such as beyond 0.85 μm. The HCG beneficially provides a high degree of polarization differentiation and provides optical containment in response to lensing by the HCG. The device incorporates a quantum well active layer, a tunnel junction, and control of aperture width using ion implantation. A tunable VCSEL is taught which controls output wavelength in response to controlling a micro-mechanical actuator coupled to a HCG top mirror which can be moved to, or from, the body of the VCSEL. A fabrication process for the VCSEL includes patterning the HCG using a wet etching process, and highly anisotropic wet etching while precisely controlling temperature and PH.11-17-2011
20080212634Optical Irradiation Device for the Polarization of Alkali Atoms and a Device for the Hyperpolarization of Noble Gases - An optical irradiation device for the polarization of alkali metal atoms for the hyperpolarization of noble gases by spin exchange includes at least one semiconductor laser device which can generate laser light which, with regard to its wavelength, is suitable for the polarization of the alkali metal atoms. A polarizer effects circular polarization of the laser light generated by the semiconductor laser device. A device for introducing the laser light into a working region in which the alkali metal atoms to be polarized can be present, and a device for defining a wavelength of the laser light, which can couple part of the laser light back into the semiconductor laser device in order thereby to define the wavelength of the laser light at a predetermined wavelength or a predetermined wavelength range.09-04-2008
20100091810MULTI-LEVEL INTEGRATED PHOTONIC DEVICES - A laser and electroabsorption modulator (EAM) are monolithically integrated through an etched facet process. Epitaxial layers on a wafer include a first layer for a laser structure and a second layer for an EAM structure. Strong optical coupling between the laser and the EAM is realized by using two 45-degree turning mirrors to route light vertically from the laser waveguide to the EAM waveguide. A directional angled etch process is used to form the two angled facets.04-15-2010
20080267240OPTICAL SEMICONDUCTOR MODULE - An optical semiconductor module including a base having installed on an optical fiber and an optical semiconductor element, and a package which houses the base on a bottom thereof and has a first side wall with an optical section through which the optical fiber is led and a second side wall facing the first side wall, where the base is cut off to form a curved surface with respect to the bottom at a lower corner on a side of the base facing the second side wall of the housing, and a ratio of r/t is from 0.4 to 1.0, where t is a thickness of the base, and r is a curvature radius of the curved surface.10-30-2008
20120033702SEMICONDUCTOR LASER APPARATUS - A p-type pad electrode in a red semiconductor laser device and a first terminal are connected through a wire. A p-type pad electrode in an infrared semiconductor laser device and a second terminal are connected through a wire. A p-electrode in a blue-violet semiconductor laser device and a third terminal are connected through a wire. An n-electrode in the blue-violet semiconductor laser device is electrically conducting to a mount. An n-electrode in the red semiconductor laser device and the mount are connected through a wire, while an n-electrode in the infrared semiconductor laser device and the mount is connected through a wire. The mount has a fourth terminal inside.02-09-2012
20100085998Laser diode and method of manufacturing the same - A laser diode has a plurality of structures, each of which having a function of scattering, absorbing or reflecting stray light, disposed in a region along an optical waveguide, wherein at least one of said structures is formed in each divided region obtained by equally dividing said region along said optical waveguide into three or more parts in the longitudinal direction of said optical waveguide.04-08-2010
20090092166Nitride semiconductor light-emitting device - A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.04-09-2009
20090274188Light emitting device and fabrication method thereof - Disclosed herein is a light emitting device with improved life characteristics. The light emitting device comprises a circuit board having a recess, a reflection plane and an excitation source disposed in the recess, an overmolding overlying the reflection plane and the excitation source, a surface-inducing film formed on the overmolding, and a light conversion layer overlying the surface-inducing film. Also disclosed herein is a method for fabricating the light emitting device.11-05-2009
20090103585Optical semiconductor element and optical semiconductor device - An optical semiconductor device includes an optical semiconductor element, a metal pattern and at least one thermal conductive material. The optical semiconductor element has a first optical waveguide region and a second optical waveguide region. The second optical waveguide region is optically coupled to the first optical waveguide region and has a heater for changing a refractive index of the second optical waveguide region. The metal pattern is provided on an area to be thermally coupled to a temperature control device. The thermal conductive material couples the metal pattern with an upper face of the first optical waveguide region of the optical semiconductor element. The thermal conductive material is electrically separated from the first optical waveguide region.04-23-2009
20100118909MINIATURE HIGH-POWER LASER DIODE DEVICE - The present invention provides a miniature high-power laser diode device, which includes a base, a laser chip, an optical fiber guider, and an optical fiber. The base has a groove and a disposing area, and the groove connects to the disposing area. The laser chip is disposed on the disposing area, and the optical fiber guider is disposed at the groove. The optical fiber is disposed in and through the optical fiber guider. The optical fiber has a first end connected to the laser chip. As a result of the cooperation between the optical fiber guider and the groove, the orientation of the optical fiber is simple and precise. The conventional thermal deformation and residual welding stress can be reduced, and the soldering flux applied in a conventional soldering and packaging process of the optical fiber can be omitted, so that the coupling efficiency, the yield, the stability of high power laser output, and the lifetime of the laser diode device of the present invention can be improved.05-13-2010
20080212635HIGH EFFICIENCY DISTRIBUTED FEEDBACK (DFB) LASER WITH LOW-DUTY CYCLE GRATING - The invention provides a grating for a distributed feedback laser having decreased diffraction loss with reduced +/−1 order diffraction and scattering loss resulting from the reduced imperfections in the grating fabrication. In various embodiments, the grating has a low duty cycle wherein the ratio of the length of the low-index portion ‘a’ to the length of the pitch of the grating ‘b’ is less than 0.5. Further, in some preferred embodiments, the invention includes a laser, the laser comprising a distributed feedback laser wherein the laser includes a grating having less diffraction and less scattering loss. In various exemplary embodiments, the grating is further a partial grating, thereby providing increased efficiency resulting from a decrease in first-order diffraction loss due to the grating being separated from the front and rear facets and in some exemplary embodiments being situated at the area of lowest electric filed.09-04-2008
20100103972PHOTONIC CRYSTAL LASER AND METHOD OF MANUFACTURING PHOTONIC CRYSTAL LASER - A photonic crystal laser comprises an n-type substrate, an n-type clad layer, an active layer, a p-type clad layer, a photonic crystal layer, a p-type electrode, an n-type electrode and a package member. The n-type clad layer is formed on a first surface of the n-type substrate. The active layer is formed on the n-type clad layer. The p-type clad layer is formed on the active layer. The photonic crystal layer is formed between the n-type clad layer and the active layer or between the active layer and the p-type clad layer, and includes a photonic crystal portion. The p-type electrode is formed on the photonic crystal portion. The n-type electrode is formed on a second surface, and includes a light-transmitting portion arranged on a position opposed to the photonic crystal portion and an outer peripheral portion having lower light transmittance than the light-transmitting portion.04-29-2010
20090003399Integrated Circuit Employing Low Loss Spot-Size Converter - An integrated circuit is provided with a photonic device and a spot-size converter waveguide device integrated on a common substrate. The spot-size converter waveguide device provides for transformation between a larger spot-size and a smaller spot-size corresponding to the photonic device. The spot-size converter waveguide device includes at least one of a bottom mirror and top mirror, which provide highly-reflective lower and upper cladding, respectively, for vertical confinement of light propagating through the waveguide device. The top mirror overlies opposing sidewalls of the spot-converter waveguide device, which provide highly-reflective sidewall cladding for lateral confinement of light propagating through the waveguide device. Advantageously, the highly-reflective lower cladding provided by the bottom mirror limits optical loss of the waveguide device. Similarly, the highly-reflective upper cladding and sidewall cladding provided by the top mirror limits optical loss of the waveguide device.01-01-2009
20080240194Vertical cavity surface emitting laser and method of manufacturing it - A VSCEL capable of being easily and inexpensively manufactured and of stabilizing the polarization direction of laser light in one direction is provided. The Vertical Cavity Surface Emitting Laser includes a semiconductor lamination structure including a first multilayer film reflector, an active layer having a light emitting region, and a second multilayer film reflector in this order over a substrate from the substrate side. The semiconductor lamination structure has a pair of grooves provided with a region opposed to the light emitting region in between, and one or a plurality of first oxidation layers including a first non-oxidation region provided at least in a region opposed to the light emitting region and a first oxidation region provided on each side face of the pair of grooves.10-02-2008
20090245314LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD OF THE SAME - A semiconductor light-emitting device including an insulating film, an optical resonator formed on the insulating film, and a p-electrode and an n-electrode which are disposed on the both sides of the optical resonator, respectively. The optical resonator includes a first semiconductor wire and a second semiconductor wire which are arranged in parallel with a space left therebetween, the space being narrower than emission wavelength, resonator mirrors disposed at the both ends of these semiconductor wires, and a plurality of semiconductor ultra-thin films which are interposed between the first semiconductor wire and the second semiconductor wire and are electrically connected with these semiconductor wires, the first semiconductor wire is electrically connected with the p-electrode, and the second semiconductor wire is electrically connected with the n-electrode, thereby enabling the semiconductor ultra-thin films to generate laser oscillation as a current is injected thereinto.10-01-2009
20110222570ACTIVE PHOTONIC DEVICE - An active photonic device assembly (09-15-2011
20090074023Broad Spectrum Light Source - The light includes a laser (03-19-2009
20100189153Method of Producing a Radiation-Emitting Component and Radiation-Emitting Component - A method of producing a radiation-emitting component is provided. A far field radiation pattern is predetermined. From the predetermined radiation pattern a refractive index profile for the radiation-emitting component is determined in a direction extending perpendicularly to a main emission direction of the component. A structure is determined for the component, such that the component includes the previously determined refractive index profile. The component is configured according to the previously determined structure.07-29-2010
20090116529SEMICONDUCTOR LASER APPARATUS, METHOD OF MANUFACTURING SEMICONDUCTOR LASER APPARATUS, AND OPTICAL PICKUP APPARATUS - A monolithic red/infrared semiconductor laser device is joined to a blue-violet semiconductor laser device. The distance between a blue-violet emission point in the blue-violet semiconductor laser device and an infrared emission point in an infrared semiconductor laser device is significantly shorter than the distance between a red emission point in a red semiconductor laser device and the infrared emission point. A blue-violet laser beam, a red laser beam, and an infrared laser beam respectively emitted from the blue-violet emission point, the red emission point, and the infrared emission point are introduced into a photodetector after being incident on an optical disk by an optical system comprising a polarizing beam splitter, a collimator lens, a beam expander, a λ/4 plate, an objective lens, a cylindrical lens, and an optical axis correction element.05-07-2009
20120195341System, Method and Apparatus for Internal Polarization Rotation for Horizontal Cavity, Surface Emitting Laser Beam for Thermally Assisted Recording in Disk Drive - A laser, such as a horizontal cavity surface emitting laser, with internal polarization rotation may be used in thermally assisted recording in hard disk drives. The desired polarization of the laser may be accomplished with two beam reflections off of facets within the laser. The facets may be formed in a single ion beam etching step. The laser may be used on a thermally assisted recording head to produce a polarized beam that is aligned with a track direction of the disk.08-02-2012
20120195340SOLID STATE LIGHTING DEVICES COMPRISING QUANTUM DOTS - Solid state lighting devices containing quantum dots dispersed in polymeric or silicone acrylates and deposited over a light source. Solid state lighting devices with different populations of quantum dots either dispersed in matrix materials or not are also provided. Also provided are solid state lighting devices with non-absorbing light scattering dielectric particles dispersed in a matrix material containing quantum dots and deposited over a light source. Methods of manufacturing solid state lighting devices containing quantum dots are also provided.08-02-2012
20090116528Nitride semiconductor laser device - A nitride semiconductor laser device has a multilayer structure formed by stacking a plurality of nitride semiconductor layers made of hexagonal nitride semiconductors, while the multilayer structure is provided with a waveguide structure for guiding a laser beam, the nitride semiconductor layers forming the multilayer structure are stacked in a direction substantially perpendicular to the c-axes of the hexagonal nitride semiconductors constituting the nitride semiconductor layers, a first cavity facet forming a side surface of the waveguide structure is a c-plane having Ga-polarity, a second cavity facet forming another side surface of the waveguide structure opposed to the first cavity facet is a c-plane having N-polarity, a crystalline nitrogen-containing film is formed on the surface of the first cavity facet, and the reflectance of the first cavity facet is smaller than the reflectance of the second cavity facet.05-07-2009
20100208764SURFACE EMITTING SEMICONDUCTOR LASER, SURFACE EMITTING SEMICONDUCTOR LASER DEVICE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL INFORMATION PROCESSING DEVICE - A surface emitting semiconductor laser includes: a semiconductor substrate; a lower reflector that is formed on the semiconductor substrate and includes a semiconductor multilayer of a first conduction type; an upper reflector that is formed above the semiconductor substrate and includes a semiconductor multilayer of a second conduction type; an active region interposed between the lower reflector and the upper reflector; a current confining layer that is interposed between the lower reflector and the upper reflector and has a conductive region having an anisotropic shape in a plane perpendicular to an optical axis; and an electrode that is formed on the upper reflector and has an opening via which a laser beam is emitted, the opening having different edge shapes in directions of the anisotropic shape.08-19-2010
20100085999VERTICAL CAVITY SURFACE EMITTING LASER - A vertical cavity surface emitting laser capable of efficiently injecting carries into an active region directly under a photonic crystal mirror is provided. The vertical cavity surface emitting laser includes a first reflective mirror 04-08-2010
20120033700SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes a semiconductor laser element configured to emit a fundamental wave; a transducer configured to receive the fundamental wave incident thereon and convert a wavelength of the fundamental wave to emit wavelength converted light; a filter configured to selectively transmit wavelength range light having a desired wavelength range of the wavelength converted light; a sealing member including a light-transmitting member and configured to enclose the semiconductor laser element, the light-transmitting member being configured to receive the wavelength range light transmitted through the filter and incident on the light-transmitting member, specularly reflect part of the wavelength range light, and substantially transmit the remaining part of the wavelength range light; and a photoreceptor configured to receive the specularly reflected light from the light-transmitting member.02-09-2012
20110128987HIGH-POWER SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING THE SAME - A high-power semiconductor laser includes a support block, an anode metal plate, a cathode metal plate and a chip. The support block has a step, and the two ends of the support block have bosses, in which there are screw holes. The chip is welded to an insulation plate, which is attached to the support block. The anode metal plate and the cathode metal plate are, respectively, welded with an anode insulation plate and a cathode insulation plate, which are welded on the step of the support block. The cathode of the chip is connected with a metal connecting plate. The metal connecting plate is connected to the anode metal plate and the cathode metal plate. The insulation plate and the anode metal plate are bonded using a gold wire in press-welding.06-02-2011
20090080485Nitride semiconductor laser device - The present invention relates to a nitride semiconductor laser device having a structure in which two or more of nitride semiconductor laser elements, having at least a first electrode on a first main surface of a first conductive type conductive substrate, having at least a first conductive type nitride semiconductor layer, an active layer, a second conductive type nitride semiconductor layer, and a second electrode on a second main surface of the conductive substrate, and having a stripe-waveguide structure parallel to the first main surface, are arranged in a direction parallel to the first main surface and a direction perpendicular to the direction of light that is emitted from the stripe waveguide structure in the nitride semiconductor laser device, and the first sub-mount and the first electrode of the nitride semiconductor laser element are electrically and heat-conductively connected, and the second sub-mount and the second electrode of the nitride semiconductor laser element are electrically and heat-conductively connected.03-26-2009
20110026558 LIGHT EMITTING SEMICONDUCTOR DEVICE - A fiber coupled semiconductor device and a method of manufacturing of such a device are disclosed. The method provides an improved stability of optical coupling during assembly of the device, whereby a higher optical power levels and higher overall efficiency of the fiber coupled device can be achieved. The improvement is achieved by attaching the optical fiber to a vertical mounting surface of a fiber mount. The platform holding the semiconductor chip and the optical fiber can be mounted onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Optionally, attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.02-03-2011
20120033701METHOD OF MANUFACTURING SEMICONDUCTOR LASER DEVICE, SEMICONDUCTOR LASER DEVICE AND LIGHT APPARATUS - A method of manufacturing a semiconductor laser device comprises steps of forming a first semiconductor laser device substrate having first grooves for cleavage on a surface thereof, bonding a second semiconductor laser device substrate onto the surface side having the first grooves and thereafter cleaving the first and second semiconductor laser device substrates along at least the first grooves.02-09-2012
20110243174Semiconductor light-emitting device - There is provided a semiconductor light-emitting device including a temperature detecting section which is allowed to accurately estimate an element temperature. The semiconductor light-emitting device includes: one or a plurality of surface-emitting semiconductor light-emitting sections and one or a plurality of semiconductor temperature detecting sections on a semiconductor substrate, the surface-emitting semiconductor light-emitting sections emitting light in a direction normal to the semiconductor substrate, the semiconductor temperature detecting sections not emitting light to outside. The semiconductor light-emitting sections and the semiconductor temperature detecting sections have a PN junction or a PIN junction in a direction normal to the semiconductor substrate.10-06-2011
20100027577STACKABLE OPTOELECTRONICS CHIP-TO-CHIP INTERCONNECTS AND METHOD OF MANUFACTURING - An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.02-04-2010
20110176573Silicone Leaded Chip Carrier - In an embodiment, the invention provides a SLCC package comprising first and second electrically conductive terminals, a polysiloxane and glass fiber structural body, a light source and a polysiloxane encapsulant. The first and second electrically conductive terminals are attached to the polysiloxane and glass fiber structural body. The light source is electrically connected to the first and second electrically conductive terminals. The polysiloxane and glass fiber structural body has a cavity that contains at least a portion of the polysiloxane encapsulant.07-21-2011
20110211609INTEGRATED SEMICONDUCTOR LASER DEVICE AND METHOD OF FABRICATING THE SAME - An integrated semiconductor laser device capable of improving the properties of a laser beam and reducing the cost for optical axis adjustment is provided. This integrated semiconductor laser device comprises a first semiconductor laser element including a first emission region and having either a projecting portion or a recess portion and a second semiconductor laser element including a second emission region and having either a recess portion or a projecting portion. Either the projecting portion or the recess portion of the first semiconductor laser element is fitted to either the recess portion or the projecting portion of the second semiconductor laser element.09-01-2011
20120275480SOLID-STATE IMAGING DEVICE AND MANUFACTURING METHOD THEREOF - According to one embodiment, a solid-state imaging device includes a semiconductor layer including first and second regions, a pixel portion provided in the first region, electrodes provided in the second region and configured to penetrate the semiconductor layer, and a guard ring provided in the second region and configured to penetrate the semiconductor layer and electrically isolate the pixel portion from the electrodes. An upper surface of the semiconductor layer in the second region is lower than an upper surface of the semiconductor layer in the first region.11-01-2012
20080253420Light-emitting device - The conventional light-emitting element formed by an electroluminescent material has a problem due to poor color purity of light emission. Accordingly, it is an object of the present invention to provide a high luminance and high efficiency light-emitting device formed by an organic compound material. The invention provides a light-emitting device in which an organic compound layer that emits light having an emission peak with a half-band width of at most 10 nm upon applying current is interposed between a pair of electrodes is provided. The variation of emission peak intensity depending on a current density can be sorted by two linear regions with different gradients. A region of a sharp gradient is at a higher current density side compared to a region of a slow gradient. TFTs are provided to each pixel in order to perform active matrix driving.10-16-2008
20110150023NITRIDE SEMICONDUCTOR LASER DEVICE - A nitride semiconductor laser device includes: a stack, the stack including an n-type layer and a p-type layer each including a nitride semiconductor; an n-electrode electrically coupled to the n-type layer; a p-electrode electrically coupled to the p-type layer; and a thermally conductive portion disposed in contact with the p-type layer in a region which is different from the region where the p-electrode is connected, wherein the thermally conductive portion is electrically insulated from the p-electrode. Manufacturing steps specific to nitride semiconductors are employed to form the device. An optical apparatus, such as an optical disc device, a display device, or a lighting device includes such a nitride laser device and depends its functions thereto.06-23-2011
20110255567Laser Diodes Comprising QWI Output Window and Waveguide Areas and Methods of Manufacture - In accordance with one embodiment of the present disclosure, a process of manufacturing a semiconductor laser diode comprising a gain section, a QWI output window, and QWI waveguide areas is provided. The QWI waveguide areas are fabricated using quantum well intermixing and define a QWI waveguide portion in the QWI output window of the laser diode. The QWI output window is transparent to the lasing wavelength λ10-20-2011
20110164644OPTOELECTRONIC SEMICONDUCTOR CHIP WITH GAS-FILLED MIRROR - An optoelectronic semiconductor chip includes a semiconductor body containing an active region, a mirror layer, and contact points arranged between the semiconductor body and the mirror layer and providing a spacing D between the semiconductor body and the mirror layer, whereby at least one cavity is formed between the mirror layer and the semiconductor body and the at least one cavity contains a gas.07-07-2011
20100284435Red-Shifted Optical Feedback Laser - A semiconductor laser is provided, and a method of producing 600-1100 laser light, and a method of making a semiconductor laser is provided. The semiconductor laser includes a quantum well layer with a spectral profile of peak wavelength λ11-11-2010
20110051771Optoelectronic Component and Method for Producing an Optoelectronic Component - An optoelectronic component contains an epitaxial layer sequence (03-03-2011
20110051770SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes a semiconductor-layer lamination (03-03-2011
20100020839OPTICAL DEVICE PACKAGE AND OPTICAL SEMICONDUCTOR DEVICE USING THE SAME - An optical device package comprises: a metal frame including a substrate and a rectangular die pad portion integrally connected to the substrate, wherein the substrate is a metal plate, and the die pad portion is bent from the substrate such that the die pad portion extends from the substrate at an angle of 90 degrees; signal lead pins extend in the opposite direction from the die pad portion relative to the substrate such that the first lead pins intersect the principal surfaces of the substrate at a right angle and are spaced apart from the metal frame; and a molded resin member including a plate-like resin base extending across and in contact with one of the principal surfaces of the substrate, wherein the signal lead pins protrude from a surface of the resin base; surfaces of the signal lead pins are covered with the molded resin member; and the metal frame and the signal lead pins are secured in place by the molded resin member.01-28-2010
20110305255SEMICONDUCTOR OPTICAL INTEGRATED ELEMENT AND METHOD FOR MANUFACTURING THE SAME - A semiconductor optical integrated element includes: a substrate; and a laser diode and a modulator which are integrated on the substrate. The laser diode includes an embedded waveguide having a core layer, both sides of which are embedded in a semiconductor material. The modulator includes a high-mesa ridge waveguide having a core layer, neither side of which is embedded in the semiconductor material. The core layers in the laser diode and the modulator are stripe-shaped.12-15-2011
20090059987MONOLITHIC OPTO-ISOLATORS - Monolithic opto-isolators and arrays of monolithic opto-isolators are disclosed. The monolithic opto-isolators are manufactured in a single semiconductor wafer where they may be tested at the wafer level before each opto-isolator is singulated from the wafer. The monolithic opto-isolators include a VCSEL monolithically produced adjacent to a photodiode where an axis of optical signal transmission of the VCSEL is substantially parallel to an axis of optical signal reception by the photodiode.03-05-2009
20110158280PHOTONIC CRYSTAL SURFACE EMITTING LASER - The present invention provides a photonic crystal surface emitting laser with which an arbitrary beam shape can be obtained and which enables design with a high degree of freedom. The surface emitting laser including a photonic crystal having a resonance mode in an in-plane direction parallel to a substrate includes a reflecting mirror for reflecting light emitted from the photonic crystal in a normal direction of the substrate and a spacer layer interposed between the reflecting mirror and the photonic crystal, wherein a nonuniform in-plane distribution is provided to the characteristics of one of the reflecting mirror and the spacer layer, so that a Q-value, which is a resonator characteristic in the normal direction of the substrate in the surface emitting laser, has a nonuniform in-plane distribution.06-30-2011
20110317735SEMICONDUCTOR LASER MODULE AND MANUFACTURING METHOD THEREFOR - A light-emitting element mount (12-29-2011
20120207187SEMICONDUCTOR LASER MODULE - A semiconductor laser module includes a semiconductor laser unit and a light selecting unit. The semiconductor laser unit includes a semiconductor laser substrate and a plurality of distributed reflector semiconductor laser devices formed on the semiconductor laser substrate in an array. Each of the distributed reflector semiconductor laser devices is configured to emit a laser light of a different wavelength from an output facet. The light selecting unit includes a light selecting device substrate and a light selecting device formed on the light selecting device substrate. The light selecting device is configured to selectively output a laser light emitted from a distributed reflector semiconductor laser device. The semiconductor laser unit and the light selecting unit are attached to each other in such a manner that the light selecting device is optically coupled to the distributed reflector semiconductor laser devices.08-16-2012
20120027040SEMICONDUCTOR LASER APPARATUS AND OPTICAL APPARATUS - In this semiconductor laser apparatus, a first wire-bonding portion is arranged at a position in a fourth direction from a first semiconductor laser device and in a first direction from a photodetector, and a second wire-bonding portion is arranged at a position in the fourth direction from the first semiconductor laser device and in a third direction from the first wire-bonding portion. A third wire-bonding portion is arranged at a position in a second direction from a third semiconductor laser device and in the first direction from the photodetector, and a fourth wire-bonding portion is arranged at a position in the second direction from the third semiconductor laser device and in the third direction from the third wire-bonding portion.02-02-2012
20100290497WAVEGUIDE DEVICE HAVING DELTA DOPED ACTIVE REGION - Embodiments of the invention include a laser structure having a delta doped active region for improved carrier confinement. The laser structure includes an n-type cladding layer, an n-type waveguide layer formed adjacent the n-type cladding layer, an active region formed adjacent the n-type waveguide layer, a p-type waveguide layer formed adjacent the active region, and a p-type cladding layer formed adjacent the p-type waveguide layer. The laser structure is configured so that a p-type dopant concentration increases across the active region from the n-type side of the active region to the p-type side of the active region and/or an n-type dopant concentration decreases across the active region from the n-type side of the active region to the p-type side of the active region. The delta doped active region provides improved carrier confinement, while eliminating the need for blocking layers, thereby reducing stress on the active region caused thereby.11-18-2010
20100246626SIDE-EMITTING LED LIGHT SOURCE FOR BACKLIGHTING APPLICATIONS - This invention relates to a side-emitting light device comprising two sub-assemblies which are optically bonded together. Each sub-assembly comprises a substrate, at least one light source disposed on the substrate, and a luminescent plate optically bonded with the at least one light source. The light source emits light of a wavelength capable of exciting luminescence light from the luminescent plate. The two sub-assemblies are arranged having the free surface of the luminescent plates facing each other. The side-emitting light device is for instance applicable for light sources comprising naked dies arranged with Thin Film Flip Chip (TFFC) technique or laser diodes.09-30-2010
20120134383ELECTRO-ABSORPTION MODULATOR AND OPTICAL SEMICONDUCTOR DEVICE - An electro-absorption modulator includes: a semiconductor substrate; and an n-type InP cladding layer, an AlGaInAs light absorbing layer, an InGaAsP optical waveguide layer, and a p-type InP cladding layer, which are sequentially laminated on the semiconductor substrate. The InGaAsP optical waveguide layer includes a plurality of InGaAsP layers with different constitutions. The energy barrier between valence band edges of the InGaAsP layers is smaller than the energy barrier when the InGaAsP optical waveguide layer includes only one InGaAsP layer.05-31-2012
20120213242SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes a nitride semiconductor laminate structure including an n-type clad layer, an n-type guide layer formed on the n-type clad layer, a light emitting layer formed on the n-type guide layer and a p-type semiconductor layer formed on the light emitting layer. The nitride semiconductor laminate structure does not include a p-type semiconductor clad layer. The semiconductor laser device further includes an upper clad layer formed on the p-type semiconductor layer. The upper clad layer includes a first conductive film made of an indium oxide-based material and a second conductive film formed on the first conductive film and made of a zinc oxide-based material, a gallium oxide-based material or a tin oxide-based material.08-23-2012
20120076168SEMICONDUCTOR LASER DEVICE - A semiconductor laser according to the present invention comprises a λ/2 dielectric film (λ: in-medium wavelength of a dielectric film, for example, SiO03-29-2012
20120076167SIDE-EMITTING LED LIGHT SOURCE FOR BACKLIGHTING APPLICATIONS - Disclosed is a side-emitting light device comprising two sub-assemblies which are optically bonded together. Each sub-assembly comprises a substrate, at least one light source disposed on the substrate, and a luminescent plate optically bonded with the at least one light source. The light source emits light of a wavelength capable of exciting luminescence light from the luminescent plate. The two sub-assemblies are arranged having the free surface of the luminescent plates facing each other. The side-emitting light device is for instance applicable for light sources comprising naked dies arranged with Thin Film Flip Chip (TFFC) technique or laser diodes.03-29-2012
20110122910Semiconductor device and method of manufacturing the same - The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.05-26-2011
20090028204SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes a substrate made of a nitride-based semiconductor and a waveguide formed on a principal surface of the substrate, wherein the substrate includes a dislocation concentrated region arranged so as to obliquely extend with respect to the principal surface of the substrate, and the waveguide is so formed as to be located above the dislocation concentrated region and also located on a region except a portion where the dislocation concentrated region is present in the principal surface of the substrate.01-29-2009
20100124246METHOD FOR PRODUCTION OF A PLURALITY OF SEMICODUCTOR CHIPS, AND A SEMICONDUCTOR COMPONENT - A method for production of a plurality of semiconductor chips (05-20-2010
20080273567HYBRID WAVEGUIDE SYSTEMS AND RELATED METHODS - A III-V semiconductor waveguide is coupled with a Si waveguide to form a hybrid structure. Spatial location of the optical mode (or supermode) of the hybrid structure is controlled by controlling at least one between the geometry and the refractive index of the structure, e.g., varying width of the Si waveguide. Control of such spatial location allows location of the optical mode either almost entirely in the III-V semiconductor waveguide or almost entirely in the Si waveguide, thus allowing various optical arrangements to be obtained according to the location of the optical mode and the proprieties of the waveguides. For example, if the III-V semiconductor waveguide is amplifying and is provided with a highly reflective mirror at one end, the Si waveguide is provided with a partially reflective mirror at the other end, the optical mode is almost entirely located in the gain region of the III-V semiconductor waveguide, and is also almost entirely located in the coupling region of the Si waveguide, a resonator for laser oscillation is obtained.11-06-2008
20130177037SEMICONDUCTOR INTEGRATED DEVICE AND METHOD FOR PRODUCING THE SAME - A semiconductor integrated device includes a light-emitting portion including a first lower mesa, a first lower buried layer provided on a side surface of the first lower mesa, a first upper mesa provided above the first lower mesa, and a first upper buried layer provided on a side surface of the first upper mesa; and an optical modulator portion including a second lower mesa, a second lower buried layer provided on a side surface of the second lower mesa, a second upper mesa provided above the second lower mesa, and a second upper buried layer provided on a side surface of the second upper mesa. The first and second lower mesas include first and second core layers optically coupled to each other. The first and second lower buried layers are composed of a semi-insulating semiconductor. The first and second upper buried layers are composed of a resin material.07-11-2013
20080219315Semiconductor Optical Device and Manufacturing Method Thereof - A low reflective window structure in an existent electro-absorption optical modulator involves a trading off problem between the increase in the parasitic capacitance and the pile-up. This is because the capacitance density of the pn junction in the window structure is higher compared with the pin junction as the optical absorption region, and the application of electric field to the optical absorption region becomes insufficient in a case of receding the electrode structure from the junction between the optical absorption region and the window structure making it difficult to discharge photo-carriers generated in the optical absorption region. An undope waveguide structure comprising a structure having such compositional wavelength and a film thickness that the compositional wavelength for each of multi-layers constituting the waveguide structure is sufficiently shorter than that of the signal light and the average refractive index is about identical with that in the optical absorption region may be disposed. In a case of forming the electrode structure so as to overlap the junction boundary between the optical absorption region and the undope waveguide, and do not extend on the joined boundary between the undope waveguide and the window structure, increase in the parasitic capacitance due to the pn junction of the window structure and pile up can be suppressed simultaneously.09-11-2008
20130202005LASER USING LOCALLY STRAINED GERMANIUM ON SILICON FOR OPTO-ELECTRONIC APPLICATIONS - The subject matter disclosed herein relates to formation of silicon germanium devices with tensile strain. Tensile strain applied to a silicon germanium device in fabrication may improve performance of a silicon germanium laser or light detector.08-08-2013
20120093188SURFACE EMITTING LASER, SURFACE EMITTING LASER ARRAY, AND OPTICAL APPARATUS HAVING SURFACE EMITTING LASER ARRAY - There is provided a surface emitting laser allowing a direction of a far-field pattern (FFP) centroid to be inclined from a normal direction of a substrate providing the surface emitting laser, comprising: a substrate; a lower reflecting mirror, an active layer, an upper reflecting mirror stacked on the substrate; and a surface relief structure located in an upper portion of a light emitting surface of the upper reflecting mirror, the surface relief structure being made of a material allowing at least some beams emitted from the surface emitting laser to be transmitted therethrough, a plurality of regions having a predetermined optical thickness in a normal direction of the substrate being formed in contact with other region in an in-plane direction of the substrate, and a distribution of the optical thickness in the in-plane direction of the substrate is asymmetric to a central axis of the light emitting regions.04-19-2012

Patent applications in class Monolithic integrated

Patent applications in all subclasses Monolithic integrated