Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


PARTICULAR TEMPERATURE CONTROL

Subclass of:

372 - Coherent light generators

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
372036000 Heat sink 76
372035000 Liquid coolant 29
Entries
DocumentTitleDate
20080273561Method for Forming Anti-Reflective Coating - A system and method of minimizing the amount of power that is used by an optoelectronic module is disclosed. The system uses a thermoelectric cooler (TEC) to maintain a case temperature of the module at about 50° C. This allows the TEC to operate in the much more efficient heating mode, thus minimizing the amount of current being used to maintain the module temperature. The method includes the steps of determining a temperature range and operating temperature for an optoelectronic module, such that a maximum current level is not exceeded. In one exemplary embodiment, an operating temperature of about 50° C. with a temperature range of from about −5° C. to about 75° C. allows a maximum current of about 300 mA.11-06-2008
20130044777OPTICAL TRANSMITTER WITH STABLE OUTPUT WAVELENGTH - An optical transmitter is disclosed, where the optical transmitter shows an emission wavelength kept stable in one of grid wavelengths of the WDM system during the boot of the transmitter. The optical transmitter includes an LD, a TEC to control a temperature of the LD, and a controller. Detecting the flag to enable the optical output, the controller increases the driving current of the LD concurrently with the decrease of the temperature of the TEC to compensate the self-heating of the LD due to the driving current.02-21-2013
20130044776Integrated Advanced Heat Spreader for Solid-State Laser Systems - A thermal management apparatus and method for a solid-state laser system enabling the laser system to have near isothermal temperatures across and throughout a solid-state gain material, by mechanically controlling an oscillating heat pipe having effective thermal conductivity of 10-20,000 W/m*K; bonding a solid-state lasing crystal or ceramic to the mechanically controlled oscillating heat pipe; and providing a supporting structure including a surface bonded to the solid-state lasing crystal or ceramic that matches the coefficient of thermal expansion of both the solid-state lasing crystal or ceramic and the mechanically controlled oscillating heat pipe.02-21-2013
20130044775THERMAL CONDUCTION PATH FOR A HEAT-SENSITIVE COMPONENT - A thermal conduction path for a heat-sensitive, heat-generating component is formed by placing a heat-generating device, such as a laser diode, in a desired orientation relative to a supporting surface. A solid-phase mass of a heat-conducting material is positioned between the heat-generating device and the supporting surface and is converted to liquid phase by heating the supporting surface. Additional heat-conducting material is then added to the liquid-phase heat-conducting material until a meniscus is formed between the heat-generating component and the supporting surface. Because the heat-conducting material has a melting point or liquidus that is less than a critical temperature of the heat-generating component, the thermal conduction path can be formed without damaging the heat-generating component.02-21-2013
20100074285Microchannel Cooler For High Efficiency Laser Diode Heat Extraction - A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.03-25-2010
20090141757OPTICAL AMPLIFIERS - An optical amplifier comprises an optical fibre, a pump laser for optically pumping the optical fibre to amplify an optical signal, a TEC 06-04-2009
20130028278OPTICAL TRANSMITTER FOR STABILIZING OUTPUT WAVELENGTH - An optical transmitter implemented with an LD whose temperature is stably controlled is disclosed. A temperature of the LD is continuously monitored; and a difference from the target temperature and a time derivative thereof are calculated. When the time derivative becomes substantially zero, that is, the difference becomes an extremum, the convergent range for the time derivative is changed depending on the extremum, or an average of the current extremum and the previous extremum.01-31-2013
20130208746LASER SYSTEM WITH WAVELENGTH CONVERTER - The present invention relates to an apparatus comprising a diode laser (08-15-2013
20130089114MOUNTING BASE FOR A LASER SYSTEM - A laser source assembly (04-11-2013
20090041073DBR LASER WITH IMPROVED THERMAL TUNING EFFICIENCY - A distributed Bragg reflector (DBR) includes a base substrate and a gain medium formed on the base substrate. A waveguide positioned above the base substrate in optical communication with the gain medium and defines a gap extending between the base substrate and the waveguide along a substantial portion of the length thereof The waveguide having a grating formed therein. A heating element is in thermal contact with the waveguide and electrically coupled to a controller electrically configured to adjust optical properties of the waveguide by controlling power supplied to the heating element.02-12-2009
20090103580Vertically displaced stack of multi-mode single emitter laser diodes - An optical source comprised of a stack of at least two laser diode subassemblies is provided. Each laser diode subassembly includes a submount and a multi-mode, single emitter laser diode. Each of the at least two laser diode subassemblies is mounted to a stepped mounting member such that the output beams from the at least two laser diode subassemblies are vertically displaced along the z-axis, horizontally displaced along the y-axis, and not horizontally displaced along the x-axis.04-23-2009
20090232173Optical semiconductor apparatus - An optical semiconductor apparatus includes: an optical semiconductor element that outputs light; a lens that transmits light output from the optical semiconductor element; and a support member that is integrally formed and includes a first support supporting the optical semiconductor element, a second support supporting the lens, and an intermediate portion through which the first support and the second support are integrated.09-17-2009
20100054289Solid-state laser - A method for assembling an optically pumped solid-state laser having an extended cavity is disclosed. The method comprises the steps of providing a casing, mounting a TEC and a base plate in the casing, and mounting a plurality of laser components on the base plate using a UV and heat curing adhesive. Once the laser components are correctly positioned and aligned on the base plate, the adhesive is pre-cured using UV radiation. Final curing of the adhesive is obtained by subjecting the entire laser package to an ambient temperature of at least 100° C. The base plate is preferably selected to have a CTE similar to that of the laser components in order to facilitate the high temperature curing. A preferred material for the base plate is AlSiC.03-04-2010
20130022065Gas Laser having Radial and Axial Gas Bearings - A fan for circulating laser gas in a gas laser, the fan having a shaft which is supported by at least one radial bearing and at least one axial gas bearing. The axial gas bearing has at least two rotating bearing faces, one or both being structured with a groove pattern, and at least two stationary bearing faces that are arranged at both sides of a plate.01-24-2013
20110299559OPTICAL DEVICE - When environmental temperature becomes low, the quantity of light of the backward output light irradiated onto a light absorber formed on a mount over which a chip is mounted, is increased by a light quantity adjuster, to increase the optical absorption by the light absorber, thereby raising its temperature. As a result, the temperature of the chip on the mount rises, thereby enabling to substantially narrow a temperature range on a low temperature side. Accordingly, an optical device with low power consumption that can satisfy characteristics required for signal transmission at a required rate over a wide temperature range can be provided.12-08-2011
20090168820Mitigated Temperature Gradient-Distributed Bragg Reflector - A semiconductor laser system comprising a gain region, a gain contact coupled to the gain region, and a distributed Bragg reflector (DBR) having a near side and a far side with respect to the gain region are provided. The DBR reflects a resonant frequency of light back into the gain region. The semiconductor laser system further comprises a heat conducting structure, wherein the heat-conducting structure is positioned to transfer heat in a direction from the near side to the far side of the DBR grating, and an outcoupler, positioned to outcouple the resonant frequency of light from the semiconductor laser system.07-02-2009
20110286481LASER DIODE PACKAGE WITH ENHANCED COOLING - A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.11-24-2011
20090074021OPERATING A PULSE LASER DIODE - Circuit arrangements for the operation of a pulse laser diode and methods for operating a pulse laser diode include a current source to supply a direct current to the pulse laser diode. The circuit arrangement can provide operation of the pulse laser diode that can be stable and without unintentional shifts in wavelength.03-19-2009
20090296761Optical device including a bimorph-type piezoelectric element - An optical device includes optical parts including a laser diode element accommodated in a housing. A bimorph-type piezoelectric element is arranged in a vicinity of the laser diode element and has a free end contacting one of the laser diode element, a support member supporting the laser diode element, and the housing. A control circuit controls an operation of the bimorph-type piezoelectric element.12-03-2009
20100014547Device For Longitudinal Pumping Of A Laser Medium - The invention concerns a device for longitudinal pumping of an amplifying laser medium comprising at least one laser diode capable of emitting at least one laser beam, means for focusing said laser beam onto said amplifying laser medium and means for collimating said laser beam capable of generating a collimated laser beam. The invention is characterized in that said focusing means comprise at least one mirror, said mirror being arranged such that said collimated beam is reflected towards the amplifying medium.01-21-2010
20100034225PROJECTION DISPLAY APPARATUS - In a projection display apparatus in which a laser beam source and an optical engine are connected together through an optical fiber, safety is improved against temperature rise in the optical fiber and its periphery. A projection display apparatus includes a temperature sensor 02-11-2010
20090185591SEMICONDUCTOR DEVICE - In a semiconductor device where a semiconductor element having an asymmetric temperature distribution during an operation is mounted, inner leads on the right and left ends have asymmetric lengths, so that the right and left regions of a semiconductor element mounting part have different sizes. The semiconductor element is mounted so as to have a high-temperature region side in a wide region of the mounting part, and the inner leads are wire bonded at the center to the wide region of the mounting part. It is thus possible to provide a small semiconductor device in which a long semiconductor element is mounted with heat dissipation.07-23-2009
20090147810Method for controlling a temperature of a thermo-electric cooler and a temperature controller using the same - The present invention is to provide a control algorithm of a thermo-electric cooler (TEC) for a laser diode (LD) where a rush current accompanied with the stepwise change of the target temperature of the TEC. First, the controller stops the TEC driver prior to the setting of the target temperature, and sets the present temperature of the LD. Subsequently, the controller gradually increases the reference temperature of the TEC in stepwise to the target temperature. Thus, the controller suppresses the rush current accompanied with the instantaneous increase of the reference temperature of the TEC.06-11-2009
20130022066LASER DEVICE AND METHOD FOR MANUFACTURING SAME - A laser device includes: a semiconductor laser element having an output surface; an optical fiber having a leading end portion facing the output surface of the semiconductor laser element; and an optical fiber supporting member for supporting the optical fiber, the optical fiber supporting member being made from a non heat insulating material and having a bonding pad to which the optical fiber is fixed by use of solder. The optical fiber supporting member includes a contact portion thermally in contact with a base. The bonding pad is (i) spaced apart from the contact portion so as to be located on a side opposite from the contact portion so that a region to which laser light is applied from another laser element when the optical fiber is fixed to the bonding pad is sandwiched between the bonding pad and the base and (ii) separated spatially from the base.01-24-2013
20090168819VERTICAL-CAVITY SURFACE-EMITTING LASER DIODE DEVICE - A vertical-cavity surface-emitting laser diode (VCSEL) device, including a laser element portion formed on a substrate, the laser element portion comprising a multi-layer reflective mirror of a first conductivity type, an active layer, and a multi-layer reflective mirror of a second conductivity type, and a light absorbing heat converting region at a position thermally connected to the laser element portion on the substrate, the light absorbing heat converting region absorbing light and generating heat.07-02-2009
20090296762Light Emitting Apparatus, Optical Scanning Apparatus, And Image Forming Apparatus - A light emitting apparatus includes a surface emitting laser and a ceramic package. The surface emitting laser has a common electrode on the back surface thereof and is mounted on the ceramic package via the common electrode. The common electrode of the surface emitting laser is electrically connected to a mount portion of the ceramic package. The mount portion is electrically connected to a back-surface electrode on the back surface of the ceramic package. The mount portion is also thermally connected to a back-surface heat-dissipating electrode on the back surface of the ceramic package via a penetrating electrode that penetrates the ceramic package. The surface emitting laser is spaced apart from the penetrating electrode in order to prevent inclination in light-emitted direction. The back-surface heat-dissipating electrode prevents destruction of a soldered portion when the light emitting apparatus is mounted on a substrate by soldering.12-03-2009
20090285251PLANAR LIGHTWAVE CIRCUIT AND TUNABLE LASER DEVICE HAVING THE SAME - To prevent the property of an optical filter from being changed even if there is a change in a gap of directional couplers generated due to variations in manufacturing conditions so as to improve the yield. A tunable laser device includes a PLC and an SOA. The PLC includes: optical waveguides; an optical filter; a loop mirror; thin-film heaters; and asymmetrical MZIs. Optical coupling parts within the PLC are formed with the asymmetrical MZIs, so that there is no change generated in the property of the optical filter even if there is a change generated in a gap of the directional couplers due to variations in the manufacturing conditions. Therefore, the yield can be improved.11-19-2009
20090003397OPTICAL DEVICE, AND SEMICONDUCTOR LASER OSCILLATOR - In an optical device, a slab layer includes an active layer sandwiched between cladding layers. The slab layer has a periodic refractive index profile structure in a two-dimensional plane, as a two-dimensional slab photonic crystal structure, and a linear defect region serving as a waveguide in the periodic refractive index profile structure. Regions having different widths of the waveguides, as segments of the waveguide, are connected in series.01-01-2009
20080279238ILLUMINATION APPARATUS, DISPLAY APPARATUS AND PROJECTION DISPLAY APPARATUS - An illumination apparatus includes: a solid-state light source; a Peltier element configured to cool the solid-state light source; a light amount sensor configured to detect an amount of a light emitted from the solid-state light source; a power consumption monitor configured to monitor power consumptions of the solid-state light source and the Peltier element; and a power controller configured to control powers supplied to the solid-state light source and the Peltier element. The power controller controls the powers supplied to the solid-state light source and the Peltier element, on the basis of the light amount detected by the light amount sensor and a sum of the power consumptions of the solid-state light source and the Peltier element.11-13-2008
20080279237DYNAMIC THERMAL MANAGEMENT OF LASER DEVICES - The present invention generally relates to dynamic thermal management of a device. In one aspect, a method for thermally controlling a device is provided. The method includes setting a value of a set point in a thermoelectric cooler, wherein the set point corresponds to a first operating state. The method also includes monitoring a condition of the device to determine if the device is in the first operating state or a second operating state. Additionally, the method includes dynamically altering the value of the set point according to an algorithm upon determination that the device is in the second operating state. In another aspect, a method for dynamically controlling a device having a thermoelectric cooler is provided. In yet a further aspect, a system for dynamic thermal management of a device is provided.11-13-2008
20080291954Optical Projection System and Method for a Cooled Light Source - A light projection optical system is presented. The system comprises a cooling chamber containing: a light source operative at a cool temperature being lower than 240K; a cooler unit capable of cooling said light source to said cool temperature during the light source operation, an optical window permitting light emergence outside from the cooling chamber; and an optical unit accommodated in the optical path of light emitted by said light source and enabling emergence of this light through said optical window outside from the cooling chamber.11-27-2008
20080267233RESISTIVE HEATING ELEMENT FOR ENABLING LASER OPERATION - Heating resistor used to control laser operation. A laser package, such as a Transmitter Optical Subassembly (TOSA) includes a substrate. A laser is disposed on the substrate. A resistive heating element is disposed on the substrate with the laser. Control circuitry is connected to the resistive heating element. The control circuitry is configured to cause current flow through the resistive heating element based on temperature conditions. Current flow through the resistive heating element causes an increase in the operating temperature of the laser. This can be used to increase the effective operating temperature range of a laser.10-30-2008
20090141756Adaptive Thermal Feedback System for a Laser Diode - According to one embodiment of the disclosure, a thermal feedback system comprises an adaptive controller coupled to a heater element and a temperature sensor. The heater element and the temperature sensor are thermally coupled to a laser diode. The adaptive controller estimates an estimated error according to a measured temperature from the temperature sensor, and determines a target from the estimated error and a temperature reference. The adaptive controller adjusts an input to the transfer function model according to the target to decrease the estimated error. The input to the transfer function model drives the heater element.06-04-2009
20090052482COOLING AN ACTIVE MEDIUM USING RAMAN SCATTERING - A method is described for setting up a system comprising an active medium. The method comprises thermally controlling the system comprising an active medium by radiative cooling. The radiative cooling thereby is based on stimulated and/or coherent Raman scattering processes. In particular embodiments, the thermally controlling may be obtained by tailoring the efficiencies of the Raman scattering processes by optimising at least one of a number of system parameters. The invention furthermore relates to systems thus obtained, to methods for thermally controlling systems comprising an active medium that generate radiation and to computer program products for performing the methods for setting up systems comprising an active medium and thermally controlled by radiative cooling using stimulated and/or coherent Raman scattering processes.02-26-2009
20110142086OPTICAL MODULE WITH ENHANCED ROBUSTNESS OF TEMPERATURE CONTROLLING DEVICE - An optical assembly (OSA) that installs a semiconductor optical device mounted on a thermo-electric controller (TEC) is disclosed. The TEC in the upper plate thereof is mechanically connected to the housing, or to the block stiffly fixed to the housing by a bridge made of stiff material. The bridge preferably extends along the optical axis to show enhanced durability against the impact caused by an external ferrule abutting against the receptacle of the OSA.06-16-2011
20090252188Misalignment Prevention in an External Cavity Laser Having Temperature Stabilisation of the Resonator and the Gain Medium - The present invention relates to an external-cavity laser module comprising a thermoelectric cooler (TEC) including an upper carrier plate having an upper surface, said TEC being configured to stabilise the temperature of the upper surface at a substantially constant temperature. The laser module further comprises a laser assembly mounted on an optical bench, which is in thermal coupling with said upper surface, said laser assembly comprising a gain medium for emitting an optical beam into the external cavity and an end mirror.10-08-2009
20090262767LIQUID COOLED LASER BAR ARRAYS INCORPORATING DIAMOND/COPPER EXPANSION MATCHED MATERIALS - A laser diode array having a plurality of diode bars bonded by a hard solder to expansion matched spacers and mounted on a gas or liquid cooled heatsink. The spacers are formed of a material such as copper/diamond composite material having a thermal expansion that closely matches that of the laser bars.10-22-2009
20100158057FEEDBACK CONTROL FOR HEATED TOSA - A closed loop system for controlling laser temperature without the need for additional sensors or other hardware. Embodiments utilize an existing automatic power feedback loop and existing sensors to determine the temperature of a TOSA based on changes in laser bias current, thus avoiding the need for the additional hardware. The automatic power feedback loop will modify the laser bias current as the temperature of the TOSA changes. That is, as the temperature increases, the amount of laser bias current is increased and as the temperature decreases, the amount of laser bias current is decreased. Thus, the laser bias current may be used as feedback for the laser temperature control. Accordingly, when the transceiver module drops below a predetermined temperature, a laser heater current may be controlled to thereby maintain the same laser bias current as at the preset temperature.06-24-2010
20090316740Light Source That Utilizes Small Footprint Reference Gas Cells for Multiple Laser Frequency Stabilization - A light source and the method for operating the same are disclosed. The light source includes first and second lasers, and first and second wavelength control assemblies. The lasers emit first and second light beams, respectively, at wavelengths that are determined by first and second wavelength control signals. First and second beam splitters split the first and second light beams, respectively, to create first and second sampling light beams. The first and second wavelength control assemblies receive sampling light beams and generate the first and second wavelength control signals such that the wavelengths of the first and second light beams differ by no more than a predetermined amount. The first and second wavelength control assemblies each include an absorption cell having a gas that has an optical absorption that varies with the wavelength of the first and second sampling light beams at wavelengths around the output wavelength of the light source.12-24-2009
20080212626Semiconductor laser with reduced heat loss - Disclosed is a semiconductor laser. The semiconductor laser includes a semiconductor chip that includes an active layer and emits radiation in a main radiating direction. The active layer is structured in a direction perpendicular to the main radiating direction to reduce heating of the semiconductor chip by spontaneously emitted radiation, and the active layer has the form of a mesa that comprises side walls that form a resonator in such a way as to reduce the spontaneous emission in the active layer in a direction perpendicular to the main radiating direction.09-04-2008
20090074020DBR laser with improved thermal tuning effciency - A distributed Bragg reflector (DBR) includes a base substrate and a gain medium formed on the base substrate. A waveguide positioned above the base substrate in optical communication with the gain medium and defines a gap extending between the base substrate and the waveguide along a substantial portion of the length thereof. The waveguide may have a grating formed therein. A heating element is in thermal contact with the waveguide and electrically coupled to a controller configured to adjust optical properties of the waveguide by controlling power supplied to the heating element.03-19-2009
20090110014SMALL FORM FACTOR TRANSMITTER OPTICAL SUBASSEMBLY (TOSA) HAVING FUNCTIONALITY FOR CONTROLLING THE TEMPERATURE, AND METHODS OF MAKING AND USING THE TOSA - The invention is directed to an OSA having a TO-can-type configuration that is relatively low-cost to manufacture and that has functionality for monitoring and controlling the temperature of the laser diode without the need for additional pins or an increase in the size of the OSA. Thus, the OSA typically includes four or five pins at most. These features of the invention are achieved by providing a thermal control circuit, a temperature sensor and a heater that are integrated along with a laser output power monitor photodiode into the submount assembly substrate.04-30-2009
20110211603Laser wavelength stabilization - In a coarse wavelength division multiplexing (CWDM) optical transmission system, a distributed feedback (DFB) laser is tuned so that the peak reflection of the grating overlaps with the gain range of the DFB laser. The diffraction grating is tuned so that the peak is positioned on the long wavelength end of the gain spectrum at a selected temperature. The optical transmission system operates in an environment having a wide temperature range (i.e., about −40° C. to about 85° C.). Heat is applied to the laser and as the laser temperature increases, the gain range overtakes the grating peak. When the gain range and the grating peak overlap at increased laser temperature, laser output is improved.09-01-2011
20110243167Temperature Measurement And Control For Laser And Light-Emitting Diodes - The existing diodes in an LED or laser diode package are used to measure the junction temperature of the LED or laser diode. The light or laser emissions of a diode are switched off by removing the operational drive current applied to the diode package. A reference current, which can be lower the operational drive current, is applied to the diode package. The resulting forward voltage of the diode is measured using a voltage measurement circuit. Using the inherent current-voltage-temperature relationship of the diode, the actual junction temperature of the diode can be determined. The resulting forward voltage can be used in a feedback loop to provide temperature regulation of the diode package, with or without determining the actual junction temperature. The measured forward voltage of a photodiode or the emissions diode in a diode package can be used to determine the junction temperature of the emissions diode.10-06-2011
20090323742LASER LIGHT SOURCE APPARATUS - A laser light source apparatus includes a laser light source; a heat exchanger that includes a plurality of cooling fins and that cools the laser light source; a driving circuit that drives the laser light source; a housing including an intake port and an exhaust port; and an air-cooling fan that is attached to the housing and that discharges air taken in from the intake port to the exhaust port. The cooling fins are arranged at a position opposed to the intake port to be stacked up on each other at predetermined intervals and a pitch between the cooling fins is equal to or less than a minimum width of the intake port.12-31-2009
20100008389Inverted composite slab sandwich laser gain medium - The present invention pertains to a composite slab laser gain medium with an undoped core and at least one doped gain medium section disposed on at least one side of that core. The gain medium is constructed so as to mitigate the effects of thermal and mechanical stresses within it and also allow for impingement cooling of the doped gain medium section.01-14-2010
20090316742SEMICONDUCTOR LASER DEVICE AND DRIVING METHOD OF THE SAME - A semiconductor laser device according to the present invention outputs light while periodically varying the temperature of a semiconductor laser, an optical waveguide, or a diffraction grating, outputs light while causing the optical waveguide or the diffraction grating to mechanically and periodically vary, or causes return light, which varies periodically or non-periodically, to be incident on the semiconductor laser. Since the periodical fluctuation is applied to the temperature of the semiconductor laser, the optical waveguide, or diffraction grating, the periodical mechanical variation is applied to the optical waveguide or the diffraction grating, or the return light is caused to be incident on the semiconductor laser, the semiconductor laser carries out a multimode oscillation from a low output to a high output without shifting between a single mode oscillation and a multimode oscillation. Accordingly, the present invention can provide a semiconductor laser device having IL characteristics in which a current is proportional to a light output and a driving method thereof.12-24-2009
20090316741Temperature control apparatus and optical transmission device using same - A temperature control apparatus that performs stabile temperature control operation, besides avoiding generation of unwanted noise. A thermo-control device cools or heats an object according to a supply current that a thermo-control driver provides according to a specified control voltage. A temperature sensor observes the temperature of the object. A variable voltage controller varies the control voltage such that the observed temperature of the object will be a specified reference temperature. The variable voltage controller begins to operate in alternate setting mode when the control voltage is expected to enter a voltage range in which the thermo-control driver could malfunction. During that mode, the variable voltage controller outputs a first control voltage and a second control voltage alternately at predetermined intervals. The first and second control voltages are malfunction-free voltages near the malfunction-prone voltage range.12-24-2009
20090213885DIFFUSION-COOLED CO2 LASER WITH FLEXIBLE HOUSING - A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.08-27-2009
201201209746 KHZ AND ABOVE GAS DISCHARGE LASER SYSTEM - A system and method of operating a high repetition rate gas discharge laser system. The system includes a gas discharge chamber having a hot chamber output window heated by the operation of the gas discharge laser chamber, an output laser light pulse beam path enclosure downstream of the hot chamber window and comprising an ambient temperature window, a cooling mechanism cooling the beam path enclosure intermediate the output window and the ambient window. The gas discharge chamber can include a longitudinally and axially compliant ground rod, including a first end connected to a first chamber wall, a second end connected to a second chamber wall, the second chamber wall opposite the first chamber wall and a first portion formed into a helical spring, the ground rod providing mechanical support for a preionizer tube.05-17-2012
20120033692OPTICAL PUMPING OF A SOLID-STATE GAIN-MEDIUM USING A DIODE-LASER BAR STACK WITH INDIVIDUALLY ADDRESSABLE BARS - A diode-laser bar stack includes a plurality of diode-laser bars having different temperature dependent peak-emission wavelengths. The stack is arranged such that the bars can be separately powered. This allows one or more of the bars to be “on” while others are “off”. A switching arrangement is described for selectively turning bars on or off, responsive to a signal representative of the temperature of the diode-laser bar stack, for providing a desired total emission spectrum.02-09-2012
20090022190Heat capacity laser and associated lasing medium - A heat capacity laser having a solid lasing medium, at least one pumping source that is able to emit a pumping radiation, and an optical cavity that can be characterized by having: at least one device able to homogenize the pumping radiation, a doped lasing medium having a body with a first and a second end and being stretched in the length by more than 6 cm and whose height in cross section is less than its stretching in the length of the lasing medium. The doping concentration in the lasing medium may vary axially. Also either the cavity can have beam forming optics and the doping concentration of the lasing medium is radially uniform, or the cavity can have no beam forming optics and the lasing medium has a doping concentration that may vary radially.01-22-2009
20090147811WAVELENGTH CONVERSION LASER LIGHT SOURCE, LASER LIGHT SOURCE DEVICE AND TWO-DIMENSIONAL IMAGE DISPLAY DEVICE ADOPTING THE SAME, AND METHOD OF SETTING TEMPERATURE OF WAVELENGTH CONVERSION ELEMENT - A wavelength conversion laser light source includes: an element temperature switching section that switches a temperature of the wavelength conversion element according to a harmonic wave output value as set in an output setting device, and the element temperature switching section for switching a temperature of a wavelength conversion element according to a harmonic wave output level as set in the output setting device, wherein the element temperature switch section includes an element temperature holding section that holds the wavelength conversion element at the temperature as switched by the element temperature switching section.06-11-2009
20100309940HIGH POWER LASER PACKAGE WITH VAPOR CHAMBER - A heat spreader structure includes a high power laser with an epi side and an emitting facet. A vapor chamber includes a housing defining an inner vapor cavity and a wick positioned in the vapor cavity to define an evaporation area on one side of the cavity, a condensation area on an opposite side of the cavity, and fluid communication between the condensation area and the evaporation area. A space defined between the evaporation area and the condensation area. The wick includes a porous powder sintered to inner surfaces of the sealed cavity to hold the porous powder in position. The epi side of the laser is coupled to the one side of the vapor chamber and heat removal mechanism is coupled to the opposite side of the cavity.12-09-2010
20110164634SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes: a semiconductor laser; a carrier that has a carrier side face facing with a longitudinal direction of the semiconductor laser, has a carrier edge area, and has a first bonding area that is the closest to a first end of the semiconductor laser and a second bonding area that is the closet to a second end of the semiconductor laser; a first thermal conduction portion that has a first thermal resistance and couples between the first bonding area and an outer connection terminal; and a second thermal conduction portion that has a second thermal resistance smaller than the first thermal resistance and couples between the second bonding area and an outer connection terminal, wherein the first end side of the semiconductor laser is closer to the carrier side face than the second end side of the semiconductor laser.07-07-2011
20080205462SURFACE EMITTING LASER ARRAY, PRODUCTION PROCESS THEREOF, AND IMAGE FORMING APPARATUS HAVING SURFACE EMITTING LASER ARRAY - A surface emitting laser array comprising a plurality of surface emitting laser devices each having a semiconductor layer containing a first reflection mirror, an active layer, a current confined portion and a second reflection mirror. The laser array further comprises a first metal material layer for dissipating heat formed through a first insulating layer on the semiconductor layer and a second metal material layer for injecting current into the active layer formed through a second insulating layer on the first metal material layer. The first metal material layer is commonly shared by the plurality of the surface emitting laser devices.08-28-2008
20110134949COMPACT, THERMALLY STABLE MULTI-LASER ENGINE - Various embodiments of a multi-laser system are disclosed. In some embodiments, the multi-laser system includes a plurality of lasers, a plurality of laser beams, a beam positioning system, a thermally stable enclosure, and a temperature controller. The thermally stable enclosure is substantially made of a material with high thermal conductivity such as at least 5 W/(m K). The thermally stable enclosure can help maintain alignment of the laser beams to a target object over a range of ambient temperatures.06-09-2011
20080198882Active cooling of crystal optics for increased laser lifetime - A laser beam is generated and transmitted within an enclosed pathway through at least one crystal optic at a power density that progressively degrades transmissivity of the crystal optic with accumulating fluence. The crystal optics are cooled below normal operating temperatures to slow the progressive degradation in the transmissivity of the crystal optics with the accumulating fluence or to accommodate a higher power density without correspondingly increasing the progressive degradation in transmissivity.08-21-2008
20120147913LASER CRYSTAL COMPONENTS JOINED WITH THERMAL MANAGEMENT DEVICES - A method for preparing a surface of a YAG crystal for thermal bonding includes performing an ion implantation process to introduce nitrogen into a surface layer of the YAG crystal to replace depleted oxygen therein, to change surface energy of the surface layer of the YAG crystal and to provide desired bonding characteristics for the surface layer; and joining the ion implanted surface layer with a thermal management device configured to dissipate heat from the YAG crystal. Also, a micro-chip device having a YAG crystal whose surface is prepared with the above disclosed method is provided and a device for forming a metallization pattern on a surface of the YAG crystal is provided.06-14-2012
20110134948Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method - Provided is a semiconductor laser chip improved more in heat dissipation performance. This semiconductor laser chip includes a substrate, which has a front surface and a rear surface, nitride semiconductor layers, which are formed on the front surface of the substrate, an optical waveguide (ridge portion), which is formed in the nitride semiconductor layers, an n-side electrode, which is formed on the rear surface of the substrate, and notched portions, which are formed in regions that include the substrate to run along the optical waveguide (ridge portion). The notched portions have notched surfaces on which a metal layer connected to the n-side electrode is formed.06-09-2011
20110096802HIGH POWER RADIATION SOURCE WITH ACTIVE-MEDIA HOUSING - A high power source of electro-magnetic radiation having a multi-purpose housing is disclosed. The multi-purpose housing includes an interior filled with a material forming at least a light source and further comprising a reflector which can envelope a laser rod surrounded by light sources for providing light excitation to the laser rod. A material defining outer surfaces of the light sources extends out to and defines outer surfaces of the reflector. A high-reflectivity coating is disposed over an outer surface of the reflector, as is a protective coating. Also disposed over an outer surface of the reflector can be an optional heat sink, with cooling being performed by an optional arrangement of forced-air traveling over the heat sink. The light sources may be light source pumps, and the high-reflectivity coating may be formed to envelop the reflector.04-28-2011
20100166029Apparatus for selectively distributing energy from a laser beam - An assembly for distributing laser energy is provided that is formed using a compact rigid housing with a sealed beam path contained therein. The assembly employs a monolithic housing with modular collimator and mirror switching components installed therein to reduce its size while maintaining a sealed beam path thereby reducing the possibility of contamination of the beam path. Other than the optics and mirror, there are no elements of the distribution device contained within the beam path. In one embodiment, the assembly distributes incoming energy from a single source to one or more outputs. In another embodiment, the assembly operates as a beam combiner to direct energy from one or more sources to a single output.07-01-2010
20110051758HIGH POWER SEMICONDUCTOR LASER DIODES - A high power laser source comprises at least a bar of laser diodes with a first coefficient of thermal expansion (CTE03-03-2011
20110188525TERAHERTZ WAVE EMISSION LASER DEVICE - A laser device having a wave emission within a frequency range of 0.5 to 5 THz, includes a semiconductor heterostructure having a cylindrical form with a circular cross-section and including: a first optically nonlinear semiconductor material layer including an emitting medium configured to emit at least two optical whispering gallery modes belonging to the near-infrared spectrum, the two whispering gallery modes being confined within the first layer and enabling the generation, within the first layer, of radiation within an electromagnetic whispering gallery mode having a frequency of 0.5 to 5 THz, the radiation being obtained through the difference in frequency of the two whispering gallery modes, the cylindrical geometry of the heterostructure ensuring phase tuning between the two optical whispering gallery modes belonging to the near-infrared spectrum and the terahertz mode at the difference in frequency; a second and a third semiconductor material layer, each having an optical index weaker than the index of the material of the first layer and located on both sides of the first layer; at least one metal layer located on one end of the hetero structure.08-04-2011
20110188524DESIGNS AND PROCESSES FOR THERMALLY STABILIZING A VERTICAL CAVITY SURFACE EMITTING LASER (VCSEL) IN A CHIP-SCALE ATOMIC CLOCK - Designs and processes for thermally stabilizing a vertical cavity surface emitting laser (vcsel) in a chip-scale atomic clock are provided. In one embodiment, a Chip-Scale Atomic Clock includes: a vertical cavity surface emitting laser (vcsel); a heater block coupled to a base of the vcsel; a photo detector; a vapor cell, wherein the vapor cell includes a chamber that defines at least part of an optical path for laser light between the vcsel and the photo detector; and an iso-thermal cage surrounding the vcsel on all sides, the iso-thermal cage coupled to the heater block via a thermally conductive path.08-04-2011
20110216793LASER DIODE STRUCTURE WITH REDUCED INTERFERENCE SIGNALS - A laser diode structure for generating a collimated or divergent laser beam, preferably for application in gas detection, with a laser diode arranged in a closed housing, with the housing comprising a housing bottom, an exit window, electrical connections, a temperature control device for the laser diode, and an optical element for influencing the laser beam. The temperature control device carrying the laser diode is arranged on the housing bottom and the optical element is positioned at a distance from the laser diode. The invention proposes an electrically controllable power device for the cyclic alteration of the position and/or alignment of the optical element in relation to the laser diode so that the optical path length for the laser beam in the housing changes periodically. The oscillating motion of the optical element has the effect of time-averaging the etalon and/or self-mixing effects caused by the back-reflections of the laser beam in the housing, thereby reducing the optical noise of the laser diode structure.09-08-2011
20090168821THERMAL SHUNT FOR ACTIVE DEVICES ON SILICON-ON-INSULATOR WAFERS - An optimized structure for heat dissipation is provided that may include two types of thermal shunts. The first type of thermal shunt employed involves using p and n metal contact layers to conduct heat away from the active region and into the silicon substrate. The second type of thermal shunt involves etching and backfilling a portion of the silicon wafer with poly-silicon to conduct heat to the silicon substrate.07-02-2009
20120008654LASER GAIN MEDIUM AND LASER OSCILLATOR USING THE SAME - A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.01-12-2012
20090135866OPTICAL TRANSMISSION CIRCUIT - An optical transmission circuit includes a light emitting device (05-28-2009
20090135867Temperature compensation method for laser power of an optical disk drive - A temperature compensation method for laser power in an optical disk drive is provided. A predetermined linear-fitting power curve and a temperature-changing slope curve are previously stored in the optical disk drive. Firstly, an output of laser power is controlled according to the predetermined linear-fitting power curve to read/write data. Next, the temperature of the disk drive is detected. Then, whether the temperature has changed is checked. If the temperature has not changed, the method continues to read/write data. If the temperature has changed, the method obtains a relative slope from the slope curve by use of the temperature of the disk drive, displaces the slope of the predetermined linear-fitting power curve with the obtained relative slope to form a new linear-fitting power curve for replacing the predetermined linear-fitting power curve, and controls the output of laser power.05-28-2009
20120300803HANDHELD LASER SMALL ARM - A hand-held laser weapon including: a laser module for generating a laser light; a telescope module fiber optically coupled to the laser module for focusing the laser light on a target; a burst power module, including a storage capacitor, for storing electrical energy capable of a rapid release in the form of a current; a trickle power module including a battery for providing said electrical energy to the burst power module; a drive circuit for driving the laser module with the stored electrical energy to generate the laser light; a trigger module for providing the stored electrical energy to the drive circuit; and a structure for coupling at least the laser module, the telescope module, the drive circuit and the trigger module together.11-29-2012
20110007761TEMPERATURE CONTROL DEVICE FOR OPTOELECTRONIC DEVICES - Current may be passed through an n-doped semiconductor region, a recessed metal semiconductor alloy portion, and a p-doped semiconductor region so that the diffusion of majority charge carriers in the doped semiconductor regions transfers heat from or into the semiconductor waveguide through Peltier-Seebeck effect. Further, a temperature control device may be configured to include a metal semiconductor alloy region located in proximity to an optoelectronic device, a first semiconductor region having a p-type doping, and a second semiconductor region having an n-type doping. The temperature of the optoelectronic device may thus be controlled to stabilize the performance of the optoelectronic device.01-13-2011
20090059978Laser Diode Control Method, Laser Diode Control Device, and Information Recording/Playback Apparatus - Even though a laser diode is within the operation guarantee temperature range, the rise time characteristics required to protect and maintain the writing quality right away may not be present at a lower temperature. By sufficiently increasing the rise time, a laser diode control method of the present invention makes it possible to write readily. A laser diode control device includes a temperature sensor for detecting temperature of a laser diode. When a detected temperature by the temperature sensor is equal to or below a predetermined value within the operation guarantee temperature range, a seek motor controls the position of a pickup to move the pickup to a region outside a recording region of a recording medium. In this way, a current exceeding a threshold current value is supplied to the laser diode, and the writing operation starts after the laser diode temperature is increased up to a level where the rise time characteristics required to protect and maintain the writing quality is present.03-05-2009
20120120975DIODE-PUMPED CAVITY - A side-pumped, diode-pumped solid-state laser cavity includes a conductively cooled housing having an opening for pump radiation from a diode array in close proximity to a laser rod. The pump light is absorbed by the rod and excites the laser ions. The cavity includes a thin, diffuse reflector encircling the rod, having a shaped opening for the collection and redirection of the pump light into the rod, and a good heat conductor as the heat sink and heat conductor. A split heat sink inhibits the flow of heat from the pump diodes into the laser rod, and pre-formed air spacings are designed to provide uniform temperature distribution around the laser rod.05-17-2012
201201209763D OPTOELECTRONIC PACKAGING - An optoelectronic (OE) package or system and method for fabrication is disclosed which includes a silicon layer with a wiring layer. The silicon layer has an optical via for allowing light to pass therethrough. An optical coupling layer is bonded to the silicon layer, and the optical coupling layer includes a plurality of microlenses for focusing and or collimating the light through the optical via. One or more first OE elements are coupled to the silicon layer and electrically communicating with the wiring. At least one of the first OE elements positioned in optical alignment with the optical via for receiving the light. A second OE element embedded within the wiring layer. A carrier may be interposed between electrical interconnect elements and positioned between the wiring layer and a circuit board.05-17-2012
20100246620LASER DEVICE - A laser device includes: an optical modulator that is optically coupled to a semiconductor laser mounted on a first mounting portion; a second mounting portion that is separately away from the first mounting portion; a bridge that couples the first mounting portion and the second mounting portion; a driver IC that is mounted on the second mounting portion and drives the optical modulator through a transmission pathway provided on the bridge; and a capacitor that is provided on the bridge and is coupled to the transmission pathway.09-30-2010
20100208758Light source device, projector device, monitor device, and lighting device - The controller 08-19-2010
20120163405LOW CHIRP COHERENT LIGHT SOURCE - A coherent light source having a semiconductor laser resonator and an optical amplifier which amplifies coherent light emitted by the semiconductor laser resonator in response to current injection, in which the amount of current injected into the semiconductor laser is controlled for conformity with a chirp requirement of an optical communication system. The optical amplifier, which introduces no chirp, may be controlled to match an optical power requirement of the optical communication system. A heater may be provided to introduce a low frequency chirp in order to suppress interferometric intensity noise and unwanted second-order effects such as stimulated Brillouin Scattering. The optical amplifier may be monolithically formed with the semiconductor laser resonator, with separate electrodes provided for injecting current into the semiconductor laser resonator and the optical amplifier.06-28-2012
20110235662OPTICAL PUMPING STRUCTURE - An optical pumping structure for lasers includes: an active medium in the form of a cylindrical rod with a circular cross-section, said rod being inserted at its ends into two rings made of a thermally conductive material; at least three stacks of pumping diode strips arranged in the form of a star around the rod; and a support temperature-regulated by a Peltier-effect module. The rings are in contact with the support, and a stack of diodes, called bottom stack, being situated between the rod and the support, and the structure comprises, for each other stack, a thermal conduction block forming a support for said stack, these blocks being mounted on the cooled support and not being in contact with one another or with the rings.09-29-2011
20120087384COMPONENT TEMPERATURE CONTROL - There is disclosed an electronic apparatus comprising a chip within a casing. A thermoelectric cooler has thermal connections to the chip and the casing and is configured to transport heat from the chip to the casing. A temperature measuring device is provided for determining the temperature of the chip. A control system is configured to maintain the chip at a target temperature by controlling current supplied to the thermoelectric cooler in response to the measured temperature. A temperature selection system is configured to select the chip target temperature dynamically on the basis of the casing temperature.04-12-2012
20110158271LASER RESONATOR GAIN MEDIUM SECUREMENT - A laser resonator comprises a cylindrical gain medium, a cooling system and a coupling member. The cylindrical gain medium comprises a central axis, an outer side surface, two opposing end faces and a first depression in the outer side surface. The cooling system comprises a cooling jacket disposed around the gain medium that defines a cooling cavity, in which cooling fluid is guided over the side surface of the gain medium. In one embodiment, the cooling jacket comprises a second depression. The coupling member is received within the first and second depressions. Movement of the first depression along the central axis relative to the cooling jacket is restricted by the coupling member.06-30-2011
20130022067LASER DEVICE - The laser device includes a semiconductor laser element having an emission surface from which laser light is emitted, an optical fiber having an end part facing the emission surface, and an optical fiber supporting member which (i) supports the optical fiber and (ii) has a bonding pad to which the optical fiber is fixed by solder. The optical fiber supporting member includes a beam part having (i) a first main surface on which the bonding pad is provided and (ii) a second main surface opposite to the first main surface, and a pillar part which is fixed to a base and is joined to the beam part on an end portion of the beam part such that the second main surface and the base face each other while being spatially away from each other.01-24-2013
20080247430Laser wavelength stabilization - In a coarse wavelength division multiplexing (CWDM) optical transmission system, a distributed feedback (DFB) laser is tuned so that the peak reflection of the grating overlaps with the gain range of the DFB laser. The diffraction grating is tuned so that the peak is positioned on the long wavelength end of the gain spectrum at a selected temperature. The optical transmission system operates in an environment having a wide temperature range (i.e., about −40° C. to about 85° C.). Heat is applied to the laser and as the laser temperature increases, the gain range overtakes the grating peak. When the gain range and the grating peak overlap at increased laser temperature, laser output is improved.10-09-2008
20090279577Multi-pass laser amplifier with staged gain mediums of varied absorption length - A laser amplification system is disclosed that enables reliable operation over large ambient temperature operating window, as well as a significant reduction of laser temperature sensitivity typically associated with diode pumped lasers. The techniques employed by the system effectively eliminate damaging gain hot spots and lower ASE and ESA thresholds, thereby increasing laser peak and average power levels. Additionally, the techniques allow for thermal programming of active gain medium material to minimize thermally induced aberrations. In one particular example embodiment, a variable dopant concentration multi-pass laser amplifier is provided having a customized active ion concentration profile, tailoring the combination of laser absorption and gain distribution using a ceramic YAG host.11-12-2009
20130170514LASER MACHINE AND CONTROLLING METHOD OF LASER MACHINE - A laser machine includes a laser oscillator, a cooler for cooling the laser oscillator, and a control unit for controlling the laser oscillator and the cooler. The control unit includes a controller that stops base discharge of the laser oscillator at a time when a specified time has elapsed from a stop of laser light emission by the laser oscillator. According to the laser machine, since base discharge of the laser oscillator is stopped after the specified time has elapsed from the stop of laser light emission, wasteful energy (power) consumption of the laser oscillator in a standby state can be restricted.07-04-2013
20080247431Optical Mount for Laser Rod - An optical mount for holding an optical element, such as a laser rod, in which two or more contact blocks are biased into contact with two faces of the optical element and with a base supporting the optical element. The optical mount maintains good thermal contact with the optical element to minimize thermal gradients.10-09-2008
20130142208OPTICAL AMPLIFIER AND LASER INCORPORATING SUCH AN AMPLIFIER - A high-gain optical amplifier for a wave to be amplified at a wavelength referred to as the emission wavelength, includes: optical pumping elements (06-06-2013
20080219305Method and Installation for Laser Cutting/Welding - A laser cutting/welding installation including a laser head configured to deliver a laser beam designed to generate a solder bath, the installation also including a cooling device for the laser head. The cooling device includes at least one vortex tube, supplied with compressed gas, the tube including at least one cold gas outlet connected to the laser head for cooling thereof and at least one hot gas outlet.09-11-2008
20080212625SEMICONDUCTOR DEVICE - Disclosed is a semiconductor apparatus comprising an N-type material which cools a silicon semiconductor using the current flowing through the silicon semiconductor.09-04-2008
20130148678QUANTUM CASCADE LASER SOURCE WITH ULTRABROADBAND SPECTRAL COVERAGE - A broadband quantum cascade laser includes multiple gain regions and a spacer layer disposed between at least two of the gain regions. The arrangement and characteristics of the gain regions and the spacer layer may be configured to reduce cross absorption between the gain regions. For example, one gain region may be configured to produce gain in an energy range in which another gain region produces absorptive effects. The thickness of the spacer layer may be selected to separate optical modes produced by adjacent gain regions while still producing a single broadband output from the quantum cascade laser. Gain competition between gain stages within a gain region may be mitigated by dividing gain stages with overlapping gain curves among multiple gain regions.06-13-2013
20120287954Laser Array Light Source Unit - A laser array light source unit 11-15-2012
20120020379SEMICONDUCTOR LASER MODULE AND SUPPRESSION MEMBER - Above a Peltier element disposed on a bottom of a case, bases that are platy members of two or more layers and have different expansion coefficients from each other are stacked. At least on a partial region of the base serving as an uppermost layer, a suppression member having an expansion coefficient different from that of the base serving as the uppermost layer is further provided. An optical element is disposed on the base and/or the suppression member. Even when a warp is likely to occur in the Peltier element, a stacked-plate structure of the base, the base, and the suppression member suppresses an occurrence of such a warp, whereby warps hardly occur in the base and the suppression member, and a shift hardly occurs in an optical axis between a beam splitter and an etalon.01-26-2012
20120087385FLARE FOR BATTLEFIELD ILLUMINATION - An infrared flare includes at least one diode laser configured to emit radiation in a near-infrared spectrum and an optical system configured to transform the radiation output from the at least one diode laser. Each of the at least one diode lasers are coupled to a laser mount. The infrared flare further includes a thermal management system configured to absorb waste heat generated by the at least one diode laser. The thermal management system is configured to maintain the laser mount at or below 60° C. during operation of the infrared flare.04-12-2012
20130208745HEAT-SWAP DEVICE AND METHOD - A TOSA can include: a light emitting element; and one or more heating elements thermally coupled to the light emitting element so as to provide a substantially constant heat generation profile and/or temperature profile across the TOSA during a light emitting element dormant period and a light emitting element firing period. The TOSA can include a controller operably coupled with the one or more heating elements so as to control the substantially constant heat generation profile and/or temperature profile. In one aspect, the one or more heating elements can include one or more dedicated heating elements. In one aspect, the one or more of the dedicated heating elements can include a resistor element or coil.08-15-2013
20130208744EXCIMER LASER AND LASER DEVICE - An excimer laser may include a frame, a base plate on which the frame is disposed, an excimer laser configured to oscillate and output laser light by discharge-pumping within a chamber containing a laser gas, an optical element that is mounted upon the frame and that is disposed in the optical path of the outputted laser light and a heat removal mechanism connected to both the frame and the base plate.08-15-2013

Patent applications in class PARTICULAR TEMPERATURE CONTROL

Patent applications in all subclasses PARTICULAR TEMPERATURE CONTROL