Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Nonlinear device

Subclass of:

372 - Coherent light generators


Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
372022000 Frequency multiplying (e.g., harmonic generator) 96
20090232168Green Laser System - A green laser is made by constructing a laser cavity that includes within it a laser diode, a non-linear crystal such as KTP, and a lens. The boundaries of the cavity are not defined by the ends of the diode itself, but are instead defined by the ends of an apparatus that includes the lens and the KTP or similar crystal.09-17-2009
20130028277Frequency Conversion of Laser Radiation - A system includes: a first nonlinear crystal arranged to receive to a first laser beam having a first wavelength λ01-31-2013
20090196314Method and System for a Semiconductor Laser Light Source - A laser module includes a Distributed Bragg Reflector semiconductor laser light source that is operable to generate a light beam having a stabilized frequency and spatial mode. A periodically poled, nonlinear optical device is operable to receive the light beam, and frequency-convert the light beam.08-06-2009
20100020834QUADRATIC NONLINEARITY-BASED HIGH-ENERGY PULSE COMPRESSOR FOR GENERATING FEW-CYCLE PULSES - A pulse compressor for compressing many-cycle femtosecond-duration high-energy pulses to near-single-cycle durations uses a single quadratic nonlinear crystal. A pulsed laser beam is controlled and its passage is aligned through the quadratic nonlinear crystal such that the detrimental effects of group-velocity mismatch are avoided, while still allowing enough nonlinear phase accumulation for compression to near-single-cycle pulse durations. To do so, the perturbation to nonlinear Schrödinger-type soliton compression due to group-velocity mismatch is minimized which requires that the soliton order must not exceed an optimal value set by the amount of group-velocity mismatch.01-28-2010
20130039372WAVELENGTH CONVERSION DEVICE, SOLID-STATE LASER APPARATUS, AND LASER SYSTEM - A wavelength conversion device may include a wavelength conversion element that converts an entering first laser beam into a second laser beam by wavelength conversion, and a cooling mechanism that cools the wavelength conversion element from at least one surface of the wavelength conversion element.02-14-2013
20130208739Supercontinuum Pulse Source - An optical pulse source for generating optical supercontinuum pulses comprises an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating optical supercontinuum pulses; an optical modulator operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate optical supercontinuum pulses at a selectable and lower repetition rate; an optical fiber amplifier located between the optical modulator and the optical pump laser; wherein the optical supercontinuum pulses generated by the optical fiber have a supercontinuum spanning from below 450 nm to greater than 2000 nm; wherein the optical pulse source is provided with a microprocessor configured to determine when supercontinuum pulses are delivered; and wherein the optical pulse source is configured to provide an output trigger signal.08-15-2013
20130208736Method For Illuminating A Sample With Supercontinuum Pulses - A method of providing supercontinuum illumination in applications involving the excitation of fluorescence, comprising generating, at an optical pump laser, optical pump pulses at a pump pulse repetition rate; selectively controlling with an optical modulator the launch of pump pulses into a nonlinear optical element comprising an optical fiber at a variable, lower repetition rate to thereby selectively control the repetition rate of supercontinuum pulses generated within the optical fiber; and illuminating a sample with supercontinuum pulses to excite fluorescence. The supercontinuum pulses can be wavelength filtered such that the fluorescence is excited with wave length filtered supercontinuum pulses.08-15-2013
20090316738DEVICE FOR AMPLITUDE AND PHASE PROGRAMMING OF LONG LIGHT PULSES WITH NARROW SPECTRAL BAND STARTING FROM A MODULATOR OF SHORT LIGHT PULSES WITH WIDE SPECTRAL BAND - Device for adaptation of a programmable generator of ultra short wide spectral band light pulses, to long narrow spectral band light pulses comprising a laser source (12-24-2009
20090310631High-Repetition-Rate Guided-Mode Femtosecond Laser - Femtosecond pulse trains in waveguide lasers with high fundamental repetition rates are achieved by exploiting the nonlinearity in the waveguide. Components of the apparatus include an optical resonator, a saturable absorber for starting and stabilizing mode-locking, and a gain element. Part of the laser cavity or the entire laser cavity is made of waveguide or fiber (collectively called “waveguide” herein). The net dispersion of the laser cavity can be anomalous. This anomalous dispersion in combination with the positive self-phase modulation nonlinearity in the waveguide creates soliton formation to shorten the pulse duration in the invented lasers. Conversely, a normal dispersive waveguide with negative self-phase modulation nonlinearity can also be used.12-17-2009
20120219026UV-GREEN CONVERTING FIBER LASER USING ACTIVE TAPERS - Nonlinear optical systems include fiber amplifiers using tapered waveguides such as optical fibers that permit multimode propagation but produce amplification and oscillation in a fundamental mode. The tapered waveguides generally are provided with an active dopant that is pumped with an optical pump source such as one or more semiconductor lasers. The active waveguide taper is selected to taper from a single or few mode section to a multimode section, and a seed beam in a fundamental mode is provided to a section of the waveguide taper associated with a smaller optical mode. An amplified beam exits the waveguide taper at a section associated with a larger optical mode. The amplified beam is directed to nonlinear conversion optics such as one or more nonlinear crystals to produce high peak power and high beam quality converted light using second or third harmonic generation, or other nonlinear processes.08-30-2012
20080259974Not Temperature Stabilized Pulsed Laser Diode and All Fibre Power Amplifier - A laser system has an output/input coupler unit (10-23-2008
20120113995MEASURING CRYSTAL SITE LIFETIME IN A NON-LINEAR OPTICAL CRYSTAL - The present invention includes a fundamental laser light source configured to generate fundamental wavelength laser light, an optical crystal configured to receive fundamental laser light from the fundamental laser light source, the optical crystal configured to generate alternate wavelength light by frequency converting a portion of the received fundamental laser light to alternate wavelength light, an auxiliary light source configured to generate auxiliary wavelength light, the auxiliary wavelength light having a wavelength different from the fundamental wavelength laser light and the alternate wavelength light, the fundamental laser light source and the auxiliary light source oriented such that the fundamental laser light copropagates with the auxiliary light through a surface of the optical crystal, and a detector configured to detect at least one of fundamental wavelength laser light scattered by the optical crystal, alternate wavelength light scattered by the optical crystal, or auxiliary light scattered by the optical crystal.05-10-2012
20090207869LASER PLASMONIC SYSTEM - The present invention can selectively control surface plasmon-mediated two-photon-induced luminescence in a dendritic silver nanoparticle system over distances of up to 100 m. This control is achievable by changing the polarization of the incident beam and by controlling the phase across the spectrum of a femtosecond laser pulse used for excitation. Furthermore, the present invention uses the phase and polarization dependence to address photonically locations within substantially 100 m from the focal spot.08-20-2009
20090086775Laser source with interdigital heater electrodes and underlying current confinement layer - A semiconductor laser source is provided wherein the wavelength selective section of the laser diode comprises a P+ type current confinement layer and first and second sets of interdigital heater electrodes formed over the current confinement layer. Individual electrode digits of the first and second sets of interdigital heater electrodes alternate in succession along a direction of optical propagation defined by the active waveguide layer of the laser diode. The first set of interdigital heater electrodes are positively or negatively biased relative to the laser diode cathode and relative to the second set of interdigital heater electrodes such that the relative bias is either less than the forward bias turn-on voltage of the P-N junction or has an absolute value less than the reverse break-down voltage of the P-N junction.04-02-2009
20090180499FREQUENCY CHANGING DEVICE - The invention relates to a frequency changing device comprising a laser having a waveguide and a nonlinear optical medium which changes the frequency of the light generated by the laser. It is provided that the waveguide of the laser at least adjacent to the exit facet of the laser runs at an angle with respect to the perpendicular to the exit facet, that the exit facet of the laser and the entrance facet of the nonlinear optical medium are arranged parallel to one another, and that the exit facet of the laser and the entrance facet of the nonlinear optical medium are oriented with respect to one another in such a way that the condition of Snell's law is met, i.e.,07-16-2009
20090097512Optical pulse sources - An optical pulse source comprising a DPSS pump laser, a photonic crystal fiber (PCF), and acousto-optic modulator (AOM) gating device is disclosed. The pump pulses are coupled through lenses to the AOM gating device, which is synchronized to the pump laser and is operable to gate the pump pulses to a reduced repetition rate Rr=Rf/N, where Rf is the pump laser fundamental frequency. The pulses from the AOM are injected via optics into the PCF. Propagation through the PCF causes the pulses to broaden spectrally to produce optical supercontinuum pulses. An optical pulse source that further includes an acousto-optical tunable filter (AOTF) operable to convert the optical supercontinuum pulses into wavelength variable output pulses is also provided. A method of scaling the energy of the optical supercontinuum pulses is also disclosed.04-16-2009
20090279574Frequency conversion laser head - A laser assembly is configured with a frequency conversion laser head operative to shift a fundamental frequency of input light to the desired frequency of an output light. The frequency conversion laser head includes a dump means operative to guide an unconverted output light at the fundamental frequency outside the case of the frequency conversion laser head. The dump means is configured with a guide optics operative to couple the output light at the fundamental frequency to a fiber terminating outside the case of the frequency conversion laser head.11-12-2009
20100103965Light Source Device - A first light source device using a transition element-doped optical waveguide as a light emitter, which is characterized in that a light output end and an excitation light source to excite the transition element-doped optical waveguide are connected to one end of the transition element-doped optical waveguide through an optocoupler and a reflector is connected to the other end of the transition element-doped optical waveguide through a variable attenuator, thereby changing a coherence length of light that is output from the light output end, is provided.04-29-2010
20080304523Method of increasing the contrast of a high-intensity laser - In the improved method for increasing the contrast of a high-intensity laser, signal light outputted from a laser oscillator, a preamplifier or the like is amplified by OPCPA which is excited by pump light having a short pulse width comparable to that of the signal light, thereby producing an extremely high contrast.12-11-2008
20080247427Optical systems for laser arrays - Surface emitting laser arrays with intra-cavity harmonic generation are coupled to an optical system that extracts harmonic light in both directions from an intra-cavity nonlinear optical material in such a way that the focusing properties of the light beams are matched.10-09-2008
20080240176Laser light generating apparatus - A laser light generating apparatus includes a laser light source, a phase-modulator, a signal generating unit configured to generate a modulation signal applied to the phase-modulator, a first external resonator, a second external resonator disposed at the stage succeeding the first external resonator, nonlinear optical elements each provided in the external resonators configured to implement wavelength conversion, an optical path length varying unit for varying the optical path length of each of the external resonators, and a control circuit having a negative feedback arrangement configured to obtain error signals for each of the external resonators, and configured to control the optical path length varying unit using the error signals according to FM sideband method. In the laser light generating apparatus, the external resonators are each held simultaneously in a resonance state by setting the frequency of the modulation signal and by controlling the optical path length of each of the external resonators.10-02-2008
20100142569System and Method for Optical Frequency Conversion - A system and method for optical frequency conversion having asymmetric output include a coherent light apparatus. The coherent light apparatus includes a coherent light source that produces a first coherent light, a frequency converter optically coupled to the coherent light source, and a coupling optic optically coupled between the coherent light source and the frequency converter. The frequency converter converts the first coherent light to a second coherent light at a second frequency and includes an asymmetric frequency converter (AFC) that nonlinearly converts the first coherent light to the second coherent light with the frequency conversion being more efficient in a first direction than in a second direction. A resonant cavity formed about the AFC circulates the first coherent light and transmits the second coherent light propagating in the first direction.06-10-2010
20120063475NONLINEAR OPTICAL CRYSTALS AND THEIR MANUFACTURE AND USE - Described are nonlinear optical (NLO) crystals, including aluminum-borate NLO crystals, that have low concentrations of contaminants that adversely affect the NLO crystal's optical properties, such as compounds that contain transition-metal elements and/or lanthanides, other than yttrium, lanthanum, and lutetium. Some NLO crystals with low concentrations of these contaminants are capable of second harmonic generation at very short wavelengths. Also described are embodiments of a method for making these NLO crystals. Some embodiments involve growing a single NLO crystal, such as an aluminum-borate NLO crystal, from a mixture containing a solvent that is substantially free of harmful contaminants. The described NLO crystals can be used, for example, in laser devices.03-15-2012
20090180498Coherent Beam Combiner Based on Parametric Conversion - Methods and systems are provided to form a single coherent beam of light from a plurality of smaller beams of light. In one implementation a beam combiner comprising a beam director is configured to direct a seed beam of coherent light and a plurality of pump beams of coherent light; and a nonlinear converter is configured to combine the seed beam and the plurality of pump beams directed by the beam director to produce a substantially coherent wave front.07-16-2009
20090097510Optical Parametric Micro-Oscillator Comprising Couplet Cavities - The invention relates to the field of optical parametric oscillators (OPO), especially to an essentially vertical monolithic system (S) for parametric conversion from a pump wave with a pump wavelength, said system comprising at least two resonant cavities (04-16-2009
20090097511LASER LIGHT SOURCE AND METHOD OF OPERATING THE SAME - A laser light source comprises a semiconductor laser adapted for pulsed operation, a partially transmitting wavelength selective light reflector. The semiconductor laser comprises a front facet and a back facet. The front facet and the back facet define an internal laser cavity. The internal laser cavity comprises a laser active medium. The partially transmitting wavelength selective light reflector has a peak reflectivity within a gain bandwidth of said laser active medium. The wavelength selective light reflector and the back facet define an external laser cavity. A roundtrip time of light in the external laser cavity is about 20 nanoseconds or less. A full width half maximum bandwidth of the wavelength selective light reflector is adapted to accommodate at least 12 longitudinal modes of the internal laser cavity and at least 250 longitudinal modes of the external laser cavity.04-16-2009
20130215916LASER APPARATUS - A laser apparatus includes a master oscillator capable of outputting a laser beam having a spectrum that includes at least three wavelength peaks, a multi-wavelength oscillation control mechanism capable of controlling energy of each of the wavelength peaks, a spectrum detecting unit that detects the spectrum of the above-mentioned laser beam, and a controller that controls the multi-wavelength oscillation control mechanism based on a detection result detected by the spectrum detecting unit.08-22-2013
20080291951Light emitting array - A light emitting device including an array of light emitters to emit first light pulses. Each of the light emitters includes a saturable absorber and a waveguide having an electrically pumped gain region to emit the first light pulses. At least one reflector structure reflects the first light pulses into a nonlinear crystal by changing the direction of the first light pulses by an angle that is in a range of 70 to 110 degrees. The reflector structure includes a sub-wavelength grating structure to change the polarization of the first light pulses. A nonlinear crystal generates second light pulses such that the optical frequency of the second light pulses is two times the optical frequency of the first light pulses.11-27-2008
20090110012Method for Having Laser Light Source in Standby Status - When the laser light source is caused to standby, the temperatures of semiconductor laser 04-30-2009
20110044360INTRACAVITY WAVELENGTH CONVERSION SOLID-STATE LASER GENERATOR - Fundamental laser light having a wavelength of 1,064 nm, for example, is generated by a solid-state laser medium. The fundamental laser light is reflected by a flat mirror and amplified again passing through a Q-switch, a solid-state laser medium, a Q-switch, a Q-switch, a solid-state laser medium, and a Q-switch. The fundamental laser light furthermore reflects from a flat mirror, passes through a flat mirror for second-harmonic resonance, passes through a lens, then reflects from a flat mirror for laser light separation, and enters a nonlinear optical crystal for the third harmonic and a nonlinear optical crystal for the second harmonic. A solid-state laser generator can thereby be obtained in which second-harmonic laser light obtained in an intermediate stage can be used with good efficiency and be converted, for example, to third-harmonic laser light and higher-harmonic laser light with higher efficiency and higher output.02-24-2011
20110026548LASER LIGHT SOURCE MODULE - When a laser light source module includes a heat sink in which a solid laser element, an excitation light source, and a wavelength conversion element are arranged and a stem that supports the heat sink, wherein the heat sink is separated into three blocks, namely a first block including a laser oscillating unit for the solid laser element is arranged, a second block including a semiconductor laser element that emits excitation light for the laser oscillating unit and a first temperature sensor are arranged and on a specific surface of which the first heater is arranged, and a third block including the wavelength conversion element that converts the wavelength of the fundamental laser beam and a second temperature sensor are arranged and on a specific surface of which a second heater is arranged, enabling thus downsizing of the module and improvement of the positioning accuracy of the elements.02-03-2011
20110116519APPARATUS AND METHOD FOR CONVERTING LASER ENERGY - Provided are an apparatus and a method for converting laser energy, characterized by employing an optical parametric oscillator for converting light of a green laser wavelength into light of a blue or red laser wavelength via a phase matching structure, by means of a non-linear optical crystal having a one-dimensional quasi-phase matching structure with a single grating period under appropriately-controlled temperature conditions. The non-linear optical crystal with the single grating period facilitates optical parametric oscillation and second harmonic generation to thereby enable green-to-blue wavelength conversion with a slope efficiency greater than 20%. Under 400 mW green light pump laser action, a periodically poled LiTaO05-19-2011
20110243161FREQUENCY CONVERSION OF A LASER BEAM USING A PARTIALLY PHASE-MISMATCHED NONLINEAR CRYSTAL - The invention relates to a laser system including a nonlinear crystal having a first length portion and a second length portion. The nonlinear crystal disposed to receive input light from the laser for converting the input light into frequency converted light; wherein the nonlinear crystal is configured so that the first length portion of the nonlinear crystal is phase matching for the input light and the frequency converted light, and the second length portion of the nonlinear crystal is phase mismatching for the input light and the frequency converted light. Phase mismatching means may include a temperature controlling board, a clamp, or electrodes.10-06-2011
20110243162INFRARED RAY TRANSMISSIVE OPTICAL MEMBER AND MANUFACTURING METHOD THEREOF, OPTICAL DEVICE, AND OPTICAL APPARATUS - An optical member made of polycrystalline silicon formed from high-purity trichlorosilane as a raw material, and that absorbs and scatters an infrared ray in a wavelength region of 4 μm or less. In the optical member, a ratio A/B between a transmittance A of an infrared ray having a wavelength of 4 μm and a transmittance B of an infrared ray having a wavelength of 10 μm is 0.9 or less, and an average crystal grain size of the polycrystalline silicon is 5 μm or less. This polycrystalline silicon is produced by hydrogen reducing SiHCI10-06-2011
20120243564SYSTEM AND METHOD FOR AGILE REMOTE GENERATION OF A BROADBAND TUNABLE SHORT-PULSE EMISSION - A method comprising using a pulse shaper in the spectral domain to generate multiple-color pulses directly at the output of the laser amplifier. The delay can thus be controlled directly in the spectral domain and there is no need for an optical delay line. The method allows reducing the number of optical components and insures insensitivity to alignment, vibrations and turbulence on long distance propagation and filamentation, particularly in air. The method allows programmable and tunable interaction, since the pulse shaper is able to control the laser spectral amplitude and phase.09-27-2012
20100150186LASER LIGHT SOURCE AND DISPLAY DEVICE - According to the present invention, a laser light source comprises plural semiconductor lasers (06-17-2010
20090016386Quantum Entanglement Photon-Pair Producing Device and Quantum Entanglement Photon Pair Producing Method - In one embodiment of the present invention, a quantum entangled photon-pair producing device is disclosed which includes a superposed state generating device for generating a superposed state of photon-pairs entering through N (N≧2) different incident optical paths and being composed of photons having different polarization directions, and a light-guide device for separating the photon-pairs entering through the N (e.g. N is two) incident optical paths into photons having a first polarization direction (e.g. horizontally polarized light) and those having a second polarization direction (e.g. vertically polarized light) and guiding the photons having the first polarization direction and entering through the i-th (1≦i≦N) (e.g. the first) incident optical path and photons having the second polarization direction and entering through the (N−i+1) (e.g. the second) incident optical path to the i-th (e.g. the first) exit optical path through optical paths having the same optical path length. Therefore, quantum entangled photons of N channels having a quantum correlation with regard to the polarization direction can be produced. With this, a quantum entangled photon-pair producing device capable of producing quantum entangled photon-pairs of multi-channel having a quantum correlation with regard to the polarization direction with high production efficiency is realized.01-15-2009
20100061410System and method for controlling nonlinearities in laser units - An optical system includes a launching component radiating a beam of light at a fixed power, a specialty component, which receives the beam and is configured with a transverse mode field diameter different from that one of the launching component, and a focusing component substantially losslessly coupled to the launching and receiving components. The focusing component is configured so that the effective area of mode at the input of the receiving component determines the intensity of light inducing at least one nonlinear effect at the desired threshold.03-11-2010
20090213880PULSE LASER APPARATUS, TERAHERTZ MEASURING APPARATUS, AND TERAHERTZ TOMOGRAPHIC APPARATUS - A pulse laser apparatus includes a laser configured to generate a pulse of a laser beam, a fiber amplifier, and a pulse compressor. The fiber amplifier includes a rare-earth doped fiber that exhibits normal dispersion at a wavelength of the laser beam generated from the laser. The pulse laser apparatus further includes a unit configured to give a loss to energy portions in a wavelength region corresponding to a zero-dispersion wavelength of the rare-earth doped fiber and/or a wavelength region longer than the zero-dispersion wavelength within a wavelength spectrum of the laser beam having been chirped in the fiber amplifier.08-27-2009
20110075690Pump recycling scheme for terahertz generation - Structures and techniques are disclosed that enable efficient generation of terahertz (THz) radiation capable of surpassing the fundamental quantum limit, as defined by the Manley-Rowe relations. In one particular embodiment, a difference frequency mixing (DFM) crystal stage receives pump radiation and signal radiation, and generates THz radiation. Leftover signal radiation from the DFM stage is then used to pump an optical parametric oscillator (OPO) stage, which is used to generate another mixing signal and more THz radiation. The output signal and the residual pump from the OPO stage can then be used in a subsequent DFM process to generate even more terahertz radiation, and further drives a subsequent OPO stage. Such cascaded OPO, DFM, OPO staging can be repeated to maximize total amount of THz output power.03-31-2011
20090022187LASER MODULE - A laser module including at least one light-emitting unit, a filter and a poled nonlinear optical crystal is provided. The light-emitting unit provides an incoherent beam. The filter is disposed on the transmission path of the incoherent beam and reflects at least a part of the incoherent beam. The poled nonlinear optical crystal is disposed on the transmission path of the incoherent beam, and has a plurality of poled portions. The poled portions have a plurality of first poled portions and a plurality of second poled portions which are alternately disposed. The incoherent beam passes through at least a part of the first poled portions and a part of the second poled portions. At least parts of the poled portions have different average widths from each other in the direction parallel to the chief ray of the incoherent beam.01-22-2009
20110255562PLANE WAVEGUIDE TYPE LASER AND DISPLAY DEVICE - A plane waveguide type laser according to the present invention includes: a plate-shaped laser medium (10-20-2011
20080219302HARMONIC GENERATOR AND AN IMAGE DISPLAY DEVICE USING THE HARMONIC GENERATOR - It is aimed to suppress a local increase of an energy density per unit time in a nonlinear crystal. A fundamental wave emitted from a fundamental wave laser light source is condensed by a condenser lens and incident on a nonlinear crystal 09-11-2008
20100215065Coherent multiple-stage optical rectification terahertz wave generator - The present invention coherent multiple-stage optical rectification terahertz wave generator discloses the generation of single-cycle terahertz radiation with two-stage optical rectification in GaSe crystals. By adjusting the time delay between the pump pulses employed to excite the two stages, the terahertz radiation from the second GaSe crystal can constructively superpose with the seeding terahertz field from the first stage. The high mutual coherence between the two terahertz radiation fields is ensured with the coherent optical rectification process and can be further used to synthesize a desired spectral profile of output coherent THz radiation. The technique is also useful for generating high amplitude single-cycle terahertz pulses, not limited by the pulse walk-off effect from group velocity mismatch in the nonlinear optical crystal used.08-26-2010
20110188523TEMPERATURE CONTROL SYSTEM FOR A FREQUENCY CONVERTED DIODE LASER - Apparatus and methods of controlling a frequency-converted diode laser system are disclosed. The diode laser systems can include embodiments of thermally coupled elements facilitating temperature stabilization. Aspects of some methods include monitoring the output of a stabilized diode laser system to reduce noise of the output laser beam. Other aspects of some methods include adjusting the temperature of a frequency converter based on noise in the output beam, and/or the current provided to drive the diode laser. Systems incorporating such control aspects, and others, are also disclosed.08-04-2011
20080279231Optical limiter - An optical power limiter comprises an input optical transmission element, an output optical transmission element, and a power-limiting element disposed between the input and output elements for transmitting optical signals from the input element to the output element. The power-limiting element comprises an optical-limiting solid mixture containing particles of at least one material that produces reversible thermal changes in response to light above a predetermined optical power level, thereby changing the optical transmission properties of the power-limiting element.11-13-2008
20100054286Semiconductor Diode Pumped Laser Using Heating-Only Power Stabilization - A laser system such as a DPSS green laser uses a laser diode pump source that is specially selected so that the wavelength of diode source is centered around the optimal source wavelength, typically 808 nm, which produces the optimal green laser output from the system. Unlike prior systems in which the source wavelength is at 808 nm at typical ambient temperature of about 25° C., in the system disclosed, the source wavelength is at 808 nm at a temperature significantly higher than ambient, which may be as high as about 40° C. In this system optimum performance can be established and maintained in a broad temperature range such as 0˜50° C. using only a heating element adjacent to the diode laser pump source. No cooling is required. Cost, size, and power requirements of the system are therefore minimized.03-04-2010
20100238957OPO Laser Mid-IR Wavelength Converter - A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 μm. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.09-23-2010
20090135862Solid laser apparatus excited by a semiconductor laser - Single mode oscillation at a wavelength of about 1064.4 nm is enabled with no use of an etalon installed in an optical resonator by providing one of two ends of a Nd:YAG element, which acts as one end of the optical resonator, with an HR coating arranged for the wavelength of about 1064.4 nm and determining the thickness along the direction of transmission of light of the Nd:YAG element so that the peak of reflection appears at the wavelength of about 1064.4 nm but not at a wavelength of about 1062.8 nm.05-28-2009
20120170601LASER DEVICE OF EQUAL-ENERGY PULSE SYNCHRONOUS WITH MOTION - A laser device of an equal-energy pulse synchronous with motion includes: a resonant cavity, outputting a plurality of pulses with stable pulse-width and energy; a beam switch modulator, selectively enabling one of the pulses to pass; a beam energy modulator, adjusting the energy of the pulse according to a power feedback signal; an optical power sensor, sensing the energy and the pulse-width of the pulse; a motion controller, providing processing motion information; an optical feedback controller, outputting the power feedback signal to the beam energy modulator according to the energy of the pulse and the processing motion information; a trigger controller, measuring a time difference between time when the pulse is triggered and time when the optical power sensor detects the pulse, and correcting a turn-on time point of the beam switch modulator. The processing quality is therefore stabilized, and the device is applicable to various laser industrial processes.07-05-2012
20100290487RECYCLING PUMP-BEAM METHOD AND SYSTEM FOR A HIGH-POWER TERAHERTZ PARAMETRIC SOURCE - A method and a system are implemented in the fabrication of a portable high power terahertz beam source that can produce a tunable, high power terahertz beam over the frequency from 0.1 THz to 2.5 THz. The terahertz source employs a recycling pump beam method and a beam quality control device. The beam quality control device may or may not be required for a high power terahertz beam generation. In exemplary embodiments, a lithium niobate (LiNbO11-18-2010
20120093179INTRA-CAVITY OPTICAL PARAMETRIC OSCILLATOR - An optical parametric oscillator comprising: an optical cavity; a semiconductor gain-medium located within the optical cavity, such that together they form a semiconductor laser, and a nonlinear material located within the cavity such that the nonlinear material continuously generates down-converted idler- and signal-waves in response to a pump-wave continuously generated by the semiconductor gain-medium, wherein the pump wave is resonant within the optical cavity and one or other but not both of the down-converted waves is resonant within the pump wave cavity or a further optical cavity. Brewster plates ensure singly resonant optical parametric oscillators and a birefringent filer is used for frequency setting. Coupled cavities allow for setting the photon lifetime in the cavity that relaxation oscillations are prevented.04-19-2012
20120087383BONDED PERIODICALLY POLED OPTICAL NONLINEAR CRYSTALS - A method for designing optimized length of a nonlinear crystal (04-12-2012
20090245297Wavelength-Agile Laser Transmitter Using Optical Parametric Oscillator - A wavelength-agile laser transmitter apparatus and method are provided. The apparatus comprises a pump laser that is configured to output a pump beam at a first (pump) wavelength and an optical parametric oscillator. The optical parametric oscillator comprises a cavity that contains several optical components including a non-linear optical medium, a first, second and third optical elements, and a narrow linewidth filter. The non-linear optical medium is configured to convert light at the first wavelength to light at a second (signal) wavelength and a third (idler) wavelength that are each longer than the first wavelength. Light at the second and third wavelengths is allowed to partially resonate in the optical parametric oscillator, and the output beam of the apparatus corresponds to light at the third wavelength.10-01-2009
20130170511LASER LIGHT SOURCE - A laser light source according to the present invention includes a laser element that outputs a fundamental wave; a wavelength conversion element into which the fundamental wave is input and that converts at least a part of the fundamental wave input therein to a converted wave having a wavelength shorter than the wavelength of the fundamental wave; a waveguide that attenuates a component of the fundamental wave included in an output wave from the wavelength conversion element; and a diffraction grating that is formed on the waveguide and feeds back the fundamental wave output from the wavelength conversion element to lock the wavelength or the frequency of the fundamental wave output from the laser element. The diffraction grating is formed at a position determined taking into account an amount by which the fundamental wave is attenuated in the waveguide.07-04-2013
20100303108WAVELENGTH CONVERTING ELEMENT AND WAVELENGTH CONVERTING LASER APPARATUS - A wavelength converting element that is of a planar waveguide type, includes a plate-like nonlinear optical material, and performs a wavelength conversion on a fundamental wave of a laser beam by propagating the fundamental wave in a plurality of laser oscillation modes in a direction perpendicular to a main surface of the plate-like nonlinear optical material, the direction being perpendicular to an optical axis, wherein periods of polarization inversions of the nonlinear optical material are changed so that each of the periods has a width of a phase matching band A that includes phase matching conditions of at least two of the plurality of laser oscillation modes and so that a non-polarization-inversion region and a polarization inversion region are formed in the nonlinear optical material.12-02-2010
20130156053Electromagnetic Wave Oscillating Devices and a Method of Producing the Same - It is provided a device oscillating an electromagnetic wave having a target frequency of 0.1 THz to 30 THz. The device includes a main body made of a non-linear optical crystal and a sub-wavelength grating structure formed on the main body. The sub-wavelength grating structure includes protrusions arranged in first direction “X” and second direction “Y” on the main body, first grooves 06-20-2013
20130156054MONOLITHIC, FIBER-TO-FIBER COUPLED NONLINEAR RESONATOR FOR BREWSTER CUT PERIODICALLY POLED CRYSTALS - An apparatus and method for nonlinear conversion of laser light is described herein. The apparatus of the instant invention comprises a fiber coupled light source, a cavity in optical alignment with the first light beam from the light source, wherein the cavity comprises: two concave mirrors, one or more Brewster-cut periodically poled crystals, and a cavity servo to lock the length of cavity to laser frequency. In one aspect of the present invention the feedback to the lock is S-polarized component of first laser light reflected off the Brewster surface of nonlinear crystal.06-20-2013
20130202003WAVELENGTH CONVERTER, WAVELENGTH CONVERTING DEVICE, SOLID STATE LASER DEVICE, AND LASER SYSTEM - A wavelength converter may include a non-linear optical crystal, and an optical member bonded to a region of a contact surface of the non-linear optical crystal, located a predetermined distance or more on an inner side from an outer periphery of the contact surface. The wavelength converter may receive laser light and stably output light having a wavelength different from that of the laser light.08-08-2013
20130208738Method and Apparatus for Providing Supercontinuum Pulses - Optical pulse source for generating optical supercontinuum pulses, comprising an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising a microstructured optical fiber arranged to receive the optical pump pulses and configured to spectrally broaden the pump pulses to generate optical supercontinuum pulses; an optical modulator provided between the optical pump laser and the microstructured optical fiber and operable to selectively control the launch of pump pulses into the microstructured optical fiber at a variable, reduced repetition rate Rr=Rf/N, wherein N is a positive integer, to thereby control the repetition rate of optical supercontinuum pulses generated within the nonlinear element; and wherein the optical pulse source is configured to provide a plurality of different repetition rates and nominally identical spectral broadening for the different repetition rates.08-15-2013
20130208740AMPLIFICATION DEVICE WITH FREQUENCY DRIFT FOR A PULSED LASER - An amplification device with frequency drift for a pulsed laser includes a stretcher temporally stretching an incident laser pulse, at least one amplifying medium for amplifying the stretched laser pulse, and a compressor for temporally compressing the stretched and amplified laser pulse. The compressor includes an amplifying medium for amplifying a partially temporally compressed laser pulse, increasing energy yield of the amplifier.08-15-2013
20130208737Variable Repetition Rate And Wavelength Optical Pulse Source - Variable repetition rate and wavelength optical pulse source, comprising a fixed or variable repetition rate source of supercontinuum pulses; a wavelength tunable optical bandpass filter to filter the supercontinuum pulses at two or more wavelengths, wherein said source of supercontinuum pulses and said wavelength tunable optical bandpass filter are configured such that the optical pulse source can provide variable repetition rate and variable wavelength optical pulses including a series of repetition rates with selected wavelength-varying pulse trains.08-15-2013

Patent applications in class Nonlinear device

Patent applications in all subclasses Nonlinear device